用户名: 密码: 验证码:
船舶与海洋结构物运动的三维时域方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国对深海油气资源的需求越来越迫切,船舶与海洋工程工业得到了不断发展,一些新船型和新海洋平台形式也不断出现,这对于船舶在波浪中的运动和水动力载荷的预报也提出了新的要求。因而寻求合理而实用的船舶与海洋结构物运动和水动力载荷预报方法对船舶与海洋工程发展具有重要意义。
     目前对船舶与海洋结构物在波浪上运动问题研究较多的是频域方法,但频域理论通常只适合于求解稳态问题,对瞬变或者强非线性问题显得无能为力。而时域理论是一种不分离时间项的理论方法,原则上可以处理全非线性和物体任意运动的问题。因此,时域理论的研究对那些频域理论无法解释和无法处理的问题具有重要的作用。另外,随着大容量和高速度计算机的出现,对于时域耐波性理论研究有了数值计算实现的条件。三维时域方法研究船舶与海洋结构物与波浪相互作用问题必将成为船舶与海洋工程水动力学发展的必然方向。因此本文的三维时域数值方法的研究具有重要的理论意义及工程实用价值。
     本文首先基于Bessel函数的性质,采用新的方法推导了时域Green函数及其导数所满足的常微分方程式。在探索求解精度和计算效率的矛盾中,提出了结合求解常微分方程的节点制表、节点间插值的快速计算Green函数的方法并据此开发了一套三维深水时域Green函数的数值计算程序。该方法克服了以往制表插值计算方法中存在的大小时间域分界的困难,同时保证了求解效率提高了函数振荡时的精度。数值计算表明,该方法能有效地计算三维深水时域Green函数,适用于三维时域船舶水动力势流问题的求解。
     本文应用自主开发的时域Green函数的数值计算程序,采用三维时域数值模拟方法,对在波浪中运动的无航速WigleyⅠ型船的水动力系数和波浪力以及WigleyⅢ型船的运动响应进行了数值计算,并与试验值及文献计算结果进行了比较。计算结果验证了无航速浮体与波浪相互作用的三维时域模拟计算程序的有效性。
     本文采用三维时域方法对多浮体系统水动力共振现象进行了研究,通过研究得出了如下的重要结论:(1)数值计算结果证实了每个浮体在共振频率附近峰值效应的存在,共振发生的频率基本出现在波数kL=nπ(n=1,2,…,∞)附近。(2)数值结果表明除了共振现象之外,浮体间的水动力的相互作用也很明显。(3)研究结果也为更进一步研究柔性连接的多浮体结构系统的动力性能、水弹性和结构强度分析提供了基础,特别是给工程中多浮体结构系统的局部结构的安全强度设计提供了一定的依据。
     本文应用三维深水时域Green函数,考虑了定常航速影响及加入了水线积分项,对无航速三维时域模拟计算程序进行了扩展,对在波浪中以不同速度移动的WigleyⅠ型船的水动力系数和波浪力进行了数值计算,以及对有航速WigleyⅢ型船的运动响应进行了数值计算,并与试验值及文献计算结果进行了比较。数值计算结果验证了有航速船舶与波浪相互作用的三维时域模拟计算程序的有效性,为工程的实际应用奠定了基础。
With urgent need of oil and gas Resources, the field of naval architecture and ocean engineering has achieved continuous development. More and more new types of ship and ocean structure are developed. The calculation of ship motions and wave loads in the waves is in need more and more.So it is very important to seek a reasonable and practical prediction method of ship motions and wave loads.
     At present, frequency domain method is applied to simulate motions of ship and ocean structures in the waves frequently. However, frequency domain theory is only efficient to treat the steady state problem. As for time domain theory, in principle, it can treat the fully non-linear problem and simulate motions of arbitrary bodies. In addition, with the appearance of large-capacity and high-speed computer, it is feasible that time domain theory is applied for numerical simulation of ship motions and wave loads.So it will become the inevitable direction of development of naval architecture and ocean engineering hydrodynamics that 3D time domain method is applied for numerical simulation of wave-body interactions. Conclusively, 3D time domain numerical simulation is very important both in theory and engineering application.
     How to evaluate time-domain Green function and its gradients efficiently is the key problem to analyze ship hydrodynamics in time domain. In this paper, based on the Bessel function, an Ordinary Differential Equation (ODE) was derived for time-domain Green function and its gradients in this paper. A new efficient calculation method based on solving ODE is proposed. It has been demonstrated by the numerical calculation that this method can improve the precision of the time-domain Green function. Numerical research indicates it is efficient to slove the hydrodynamic problems.
     In this paper, a 3D time domain program based on time-domain Green function has been developed to simulate the interaction between waves and floating bodies without forward speed. The radiation and the diffraction problems of a Wigley-hull-form ship were discussed, and the hydrodynamic coefficients, wave forces and motion amplitudes were computed to verify the accuracy and reliability of the 3D time domain program. The numerical results agree well with the experimental and reference results.
     In this paper, a 3D time domain method is developed to investigate the gap influence on the wave forces for three-dimensional multiple floating structures and obtained some important conclusions as follows: (1) The numerical computations have proved the existence of the sharp peak force response on each floating body at some special resonant wave numbers. The resonant wave numbers are also proved around kL=nπ(n=1, 2,…,∞) with a corresponding frequency shift. (2) Special hydrodynamic resonance due to small gaps between multiple floating structures on wave forces is examined. Strong and complicate hydrodynamic interactions between the floating bodies are observed (3) The strong hydrodynamic interaction feature is practically significant for the design of module structures and the links (connection) in whole the floating body system.
     In this paper, a 3D time domain program based on time-domain Green function has been further developed to simulate the interaction between waves and ships with forward speed. Considering the effects of forward speed and waterline integral, the radiation and the diffraction problems of a Wigley-hull-form ship at different forward speed were discussed, and the hydrodynamic coefficients, wave forces and motion amplitudes were computed to verify the accuracy and reliability of the 3D time domain program. The numerical results agree well with the experimental and reference results. It will also lay a foundation for further engineering application.
引文
[1] Beck R.F., Reed A.. Modern Seakeeping Computations for Ships. Proc. 23rd Symposium on Naval Hydrodynamics, Val de Reuil, France, 2000:1-41.
    [2] Korvin-Kroukovsky B.V.. Investigation of ship motions in regular waves, Trans. SNAME, 1955, 63:386-435.
    [3] Korvin-Kroukovsky B.V., Jacobs, W. R.. Pitching and heaving motioins of a ship in regular waves, Trans. SNAME, 1957, 65:590-632.
    [4] Tasai F.. On the swaying, yawing and rolling motions of ships in oblique waves. International Shipbuilding Progress, 1967, 14(153):1-20.
    [5] Ogilvie T.F. and Tuck E.O.. A rational strip theory for ship motions. Part l,Report No. 013, Dept. of Naval Arch. and Marine Engineering, University of Michigan, Ann Arbor, 1969.
    [6] Salvensen N., Tuck E. O., Faltinsen O. M.. Ship motions and sea loads, Trans. SNAME, 1970, 78:250-287.
    [7] Jensen, J. J. and Pedersen, P. T.. Wave-induced bending moments in ships-a quadratic theory. Trans. RINA., 1979, 121:151-165
    [8] Hachmann, D.. Calculation of Pressures a Ship’s Hull in Waves. Ship Technology Research. 1991, 38(3):111-132.
    [9]钱昆,王言英.压力公式的修正及其在波浪荷载计算中的应用.海洋工程, 1999, 17(3):34-46.
    [10] Adeegest, L.. Third-order volterra modeling of ship responses based on regular wave results. 21st Symposium on Naval Hydrodynamics, Trondheim, 1996:189-203.
    [11] Meyerhoff W. K. and Schlachter, G.. An approach for the determination of hullgirder loads in a seaway including hydrodynamic impacts. Ocean Engineering, 1980, 7:305-326.
    [12] Fujino, M. and Yoon, B. S.. A study on loads acting on a ship in large amplitude waves.Naval Architecture and Ocean Engineering, JSNAJ, 1986, 24:136-145
    [13] Guedes Soares, C.. Transient response of ship hulls to wave impact. Int. Shipbuilding Prog., 1989, 36:137-192.
    [14] Chen, C. and Shen, J.. Calculation of ship nonlinear bending moment in regular wavesin time domain. CSNAME, China:1990.
    [15] Petersen, J. B.. Non-linear strip theories for ship response in waves. Ph.D. thesis. Department of Naval Architecture and Offshore Engineering, Technical University of Denmark, 1992.
    [16] Xia, J., Gu, M. and Wu, Y.. Linear and nonlinear wave-induced responses of traveling elastic ships. S. B. R., No.4 CSSSRC, 1987.
    [17] De Kat, J. O. and Paulling, J. R.. The simulation of ship motions and capsizing in severe seas, Trans. SNAME., 1989, 97:139-168.
    [18] Fonseca, N. and Soares, C. G. Time-domain analysis of large-amplitude vertical motions and wave loads. Journal of Ship Research, 1998, 42(2):139-153.
    [19] Cummins, W. E.. The impulse response function and ship motions. Schiffstechnik, 1962,9:101-109.
    [20] Tick, J. L.. Differential equations with frequency-dependent coefficients. Journal of Ship Research, 1959:45-46.
    [21] Xia, J., Wang, Z. and Jensen, J. J.. Nonlinear wave loads and ship responses by a time-domain strip theory. Marine Structure, 1998, 11(3):101-123.
    [22] Chapman, R. B.. Numerical solution for hydrodynamic forces on a surface-piercing plate oscillating in yaw and sway. Proc. 1st International Symp. Numer. Hydrodyn., 1975:333-350.
    [23] Faltinsen O., Zhao R.. Numerical prediction of ship motions at high forward speed. Philosophical Transactions of the Royal Society of London, 1991, 334:241-252.
    [24] Faltisen, O.. On the seakeeping of conventional and high-speed vessels. Journal of Ship Research, 1993, 37(2):87-101.
    [25]段文洋,贺五洲.高速排水型船的运动性能预报.清华大学学报, 2001, 41(12):82-85.
    [26] St. Denis, M. and Pierson, W. J. Jr.. On the motions of ships in confused seas. Trans. SNAME, 1953, 61:280-358.
    [27] Hess J. L., Smith A. M. O.. Calculation of non-lifting potential flow about arbitrary three-dimensional bodies. Journal of Ship Research, 1964, 8(2):22-44.
    [28] Kim, W. D.. On the harmonic oscillations of a rigid body on a free surface. Journal of Fluid Mechanics, 1965, 21:427-151.
    [29] Faltinsen; O.M., Michelsen, E.C.. Motions of large structure in waves at zero FroudeNumber. Proc. Int. Symp. On the Dynamics of Marine Vehicles and Structure in waves, University College, London, 1974:91-106.
    [30] Newman, J. N.. Radiation and diffraction analysis of the McIver toroid. Journal of Engineering Mathematics, 1999, 35:135-147.
    [31] Ursell, F.. Irregular frequencies and the motion of floating bodies. Journal of Fluid Mechanics, 1981, 105:143-156.
    [32] Hulme, A.. The wave forces on a floating hemisphere undergoing forced periodic oscillations. Journal of Fluid Mechanics, 1982, 121:443-463.
    [33] Hulme, A.. The heave added-mass and damping coefficients of a submerged torus. Journal of Fluid Mechanics, 1985, 155:511-530.
    [34] Lau, S. M. and Hearn, G. E.. The suppression of irregular frequency effects in fluid-structure interaction problems using a combined boundary integral equation method. Intl. J. Numer. Meth. Fluids, 1989, 9:763-782.
    [35] Lee, C.-H., J. N. Newman, and Zhu, X.. An extended boundary integral equation method for the removal of irregular frequency effects. Intl. J. Numer. Meth. Fluids, 1996, 23: 637-660.
    [36] Wu, G. X. and R. Eatock Taylor. The exciting force on a submerged spheroid in regular waves. Journal of Fluid Mechanics, 1987, 182:411-426.
    [37] Wu, G. X. and R. Eatock Taylor. On the radiation and diffraction of surface waves by submerged spheroids. Journal of Ship Research, 1989, 33(2):84-92.
    [38] Korsmeyer, F. T., Lee, C: H., Newman, J. N., and Sclavounos, P. D.. The analysis of wave interactions with tension leg platforms, OMAE Conference, Houston, 1988.
    [39]方中圣.计算作用在海洋大结构物上水动力的源加偶分布法.上海, 1985.
    [40]孙伯起.不规则波浪中任意三元零航速物体的二阶力计算.水动力学研究与进展,1984, 1:74-78
    [41]董慎言.规则波中半潜平台运动响应的势流理论预报.中国造船, 1986, 2:37-46.
    [42]刘应中,缪国平.船舶在波浪上的运动理论.上海交通大学出版社, 1987.
    [43]王言英,阎德刚.自升式海洋平台波浪荷载谱计算.中国海洋平台, 1995, 10(2):50-58.
    [44] Qian, K. and Wang, Y. Y.. Response characteristics of load on vessel in waves. China Ocean Engineering, 1999, 13(3):301-307.
    [45] Qian, K. and Wang, Y. Y.. Analysis of wave loads on a semi-submersible platform.China Ocean Engineering, 2002, 16(3):395-406.
    [46] Newman J. N.. Double-evaluation of the oscillatory source potential, Journal of Ship Research, 1984, 28(3):151-154.
    [47] Newman J. N.. Algorithms for the free-surface Green function, Journal of Engineering Mathematics, 1985, 19:57-67.
    [48] Newman J. N.. Evaluation of the Wave-Resistance Green Function, Part 1-The Double Integral, Journal of Ship Research, 1987, 31(2):79-90.
    [49] Newman J. N.. Evaluation of the Wave-Resistance Green Function, Part 2 -The Single Integral, Journal of Ship Research, 1987, 31(3):191-204.
    [50] Noblesse F.. The Green function in the theory of radiation and diffraction of regular water waves by a body. Journal of Engineering Mathematics, 1982, 16:137-169.
    [51] Noblesse F.. Integral identities of potential theory of radiation and diffraction of regular water waves by a body. Journal of Engineering Mathematics, 1983, 17:1-13.
    [52] Telste J. G. and Noblesse, F.. Numerical Evaluation of the Green Function of Water-Wave Radiation and Diffration, Journal of Ship Research, 1986, 30(2):69-84.
    [53]贺五洲,戴遗山.简单GREEN函数法求解三维水动力系数.中国造船, 1986, 93(2):1-15.
    [54]贺五洲,戴遗山.求解零航速物体水动力的简单GREEN函数法.水动力学研究与进展, 1992, 7(4):449-454.
    [55]李宜乐,刘应中,缪国平. Rankine源高阶边界元法求解势流问题.水动力学研究与进展, 1999, 14(1):80-89.
    [56] Nakos D. E., and Sclavounos P. D.. On steady and unsteady ship wave patterns. Journal of Fluid Mechanics, 1990, 215:263-288.
    [57] Sclavounos PD., Nakos D.E.. Stability analysis of panel methods for free-surface flows with forward speed. Proc. 17th Symposium on Naval Hydrodynamics, The Hague, The Netherlands, 1988:29-48.
    [58] Nakos D. E., Sclavounos P D.. Ship motions by a three-dimensional Rankine panel method. Proc.18th Symp. On Naval Hydrodynamics, Ann Arbor, Michigan, USA, 1990:21-40.
    [59] Sclavounos, P. D.. Computation of wave ship interactions. Advances in Marine Hydrodynamics, edited by M. Ohkusu, Computational Mechanics Publications, 1995.
    [60] Chang,M.S.. Computations of three-dimensional ship motions with forward speed. Proc.Int. Conf. Numer. Ship Hydrodyn., Univ. California, Berkeley, 1977, 2:124-135.
    [61] Inglis R. B., Price W. G.. Calculations of the velocity potential of a translating, pulsating source. Trans. RINA, 1980:76-87.
    [62] Inglis R. B., Price, W G.. A three-dimensional ship motion theory: Comparison between theoretical predictions and experimental data of the hydrodynamic coefficients with forward speed. Trans. RINA, 1981:123-137.
    [63] Ohkusu Makoto. Effect of interaction of wave and forward speed on hydrodynamic forces on marine structures. International Journal of Offshore and Polar Engineering, 1991, 1(l):58-63.
    [64] Iwashita Hidersugu, Ohkusu Makoto. The Green function method for ship motions at forward speed. Ship Technology Research, 1992, 39(1):3-21.
    [65] Beck, R. F. and Loken, K.. Three dimensional effects in ship relative motion problems.JSR,Vol.33,1989.Vol. 33, 1989.
    [66]周正全,顾愁样,孙伯起,董慎言.预报船舶在波浪中航行时相对运动的三维模型.中国造船,1992, 117:1-10.
    [67]邹元杰,段文洋,任慧龙,宋竞正.船舶在波浪中脉动压力预报的三维方法.哈尔滨工程大学学报, 2002, 3(1):20-25.
    [68] Finkelstein, A.. The initial value problem for transient water waves. Comm. Pure App. Math., 1957, 10: 511-522.
    [69] Ogilvie T. F.. Recent progress toward the understanding and prediction of ship motions. Proc. 5th Symposium on Naval Hydrodynamics, Bergen, Norway, 1964:3-80.
    [70] Wehausen J V.. Initial Value Problem for the Motion in an Undulating Sea of a Body with Fixed Equilibrium Position. Journal of Engineering Mathematics, 1967, 1(1):1-19.
    [71] Van Oortmerssen G.. The Motion of a Moored Ship in Waves. NSMB Publication No.510, Netherlands Ship Model Basin, Wageningen, the Netherlands, 1979.
    [72] Chapman R B.. Large Amplitude Transient Motion of Two-Dimensional Floating Bodies. Journal of Ship Research, 1979, 29(1):20-31.
    [73] Beck, R.F., Liapis, S.. Transient motions of floating bodies at zero forward speed. Journal of Ship Research, 1987, 31(3):164-176.
    [74] Beck, R.F.. Time-domain computations for floating bodies. Application Ocean Research, 1994, 16(5):267-282.
    [75] Beck R. F.. Time-domain computations for floating bodies. Application Ocean Research,1994, 16(5):267-282.
    [76] King B. K., Beck R. F., Magee A. R.. Seakeeping calculations with forward speed using time domain analysis, Proc. 17th Symposium on Naval Hydrodynamics, The Hague, The Netherlands, 1988:577-596.
    [77]张亮,戴遗山.近水面航行物体绕射问题的时域解.中国造船, 1992, 119:1-16.
    [78]周正全,张亮,戴遗山.船舶在波浪中航行时绕射问题的线性时域解.中国造船,1993, 122:1-25.
    [79]王大云.三维船舶水弹性力学的时域分析方法.博士论文,中国船舶科学研究中心, 1996.
    [80] Beck R F , Liapis S J.. Transient motions of floating bodies at zero forward speed. Journal of Ship Research, 1987, 31(3):164-176.
    [81] Beck, R.F.. Time-Domain Computations for Floating Bodies. Applied Ocean Research,1994, 16:267-282.
    [82] Inglis, R.B. and Price, W. G.. A three-dimensional ship motion theory: Comparison between theoretical predictions and experimental data of the hydrodynamic coefficients with forward speed. Trans. RINA, 1981:123-137
    [83] Newman, J. N.. The approximation of free-surface Green functions. Retirement Meeting for Professor F. J. Ursell, Manchester, UK. Published in Wave Asymptotics, edited by P. A. Martin and G. R. Wickham, Cambridge, University, 1992:107-135.
    [84]黄德波.时域格林函数及其导数的数值计算.中国造船, 1992, 119:16-25.
    [85]叶恒奎.三维时域波动函数的一种数值处理方法.华中理工大学学报, 1994, 22(4):58-63.
    [86] Clement, A. H.. An ordinary differential equation for the Green function of time-domain free-surface hydrodynamics. Journal of Engineering Mathematics, 1998, 33:201-217.
    [87] DUAN Wen-yang, DAI Yi-shan. New Derivation of Ordinary Differential Equations for Transient Free-Surface Green Functions. China Ocean Engineering, 2001, 15(4):499-507.
    [88] ZHU Ren-chuan, ZHU Hai-rong, SHEN Liang etc. Numerical Treatments and Applications of the 3D Transient Green Function. China Ocean Engineering, 2007, 21(4):637-646.
    [89] Lin W. M., Yue D. K.. Numerical solutions for large amplitude ship motions in the time domain. Proc. 18th Symposium on Naval Hydrodynamics, Ann Arbor, Michigan, USA,1990:41-66.
    [90]段文洋,戴遗山.浮体大幅运动水动力物面条件非线性时域解.哈尔滨工程大学学报, 1997, 18(5):1-7.
    [91]戴遗山,张亮,倪绍毓.作用于运动潜体的波浪力.中国造船, 1993, 123:1-15.
    [92]张亮,李云波,黄德波.水线积分项对运动浮体波浪绕射力的影响.哈尔滨工程大学学报, 1998, 19(2):1-7.
    [93] Qiu, W. and Peng, H..Computation of Large-Amplitude Ship Motions in the Time Domain. Proceedings of 9th International Conference on Numerical Ship Hydrodynamics, Ann Arbor, Michigan, 2007.
    [94]蔡泽伟,刘应中,严乃长.近水面三维物体运动的时域计算.水动力学研究与进展, 1989, 4(l):32-41.
    [95]蔡泽伟,陈耀松,刘应中.三维水面波动过程的计算方法.水动力学研究与进展, 1989, 4(1):43-49.
    [96] Kring D. C.. Ship seakeeping through theτ=1/4 critical frequency. Journal of Ship Research, 1998, 42(2):113-119.
    [97] Ferrant P.. Three-dimensional unsteady wave-body interactions by a Rankine boundary element method. Ship Technology Research, 1993, 40(3):165-175.
    [98] Kring D. C., Sclavounos P. D.. Numerial stability analysis for time-domain ship motion simulations. Journal of Ship Research, 1995, 39(4):313-320.
    [99] Longuet-Higgins, M. S. and Cokelet, C. D.. The deformation of steep surface waves:I. A numerical method of computation. Proc. R. Soc., London, 1976, A350:1-26.
    [100] Isaacson, M.. Nonlinear-wave effects on fixed and floating bodies. Journal of Fluid Mechanics, 1982, 120:267-281.
    [101] Tanizawa K.. A nonlinear simulation method of 3D body motions in waves. Journal of Society of Naval Architecture Japan, 1995, 178:179-191.
    [102] Tanizawa K.. Long time fully nonlinear simulation of floating body motions with artificial damping zone. Journal of Society of Naval Architecture Japan, 1996, 180:311-319.
    [103] Tanizawa K., Minami M.. Development of a 3D-NWT for simulation of running ship motions in waves. 16th International Workshop on Water Waves and Floating Bodies, Hiroshima, Japan, 2001:22-25.
    [104] Lin, W. M., Newman, J. N. and Yue, D. K. P.. Nonlinear forced motions of floatingbodies. 15th ONR, 1984.
    [105] Dommermuth, D. G. and Yue, D. K. P.. Numerical simulations of nonlinear axisymmerric flows with a free surface. Journal of Fluid Mechanics, 1987, 178:195-219.
    [106] Yang, C.. Time domain computation of nonlinear wave forces on 3-D body. Ph. D. thesis, Shanghai Jiao Tong University, 1987.
    [107]周正全.三维物体与非线性波浪的相互作用.中国船舶研究中心博士论文,1988.
    [108] Celebi M. S., Kim M. H., Beck R. F.. Fully nonlinear 3D numerical wave tank simulation, Journal of Ship Research, 1998, 42(1):33-45.
    [109] Celebi M. S., Beck R. F.. Geometric modeling for fully nonlinear ship-wave interactions, Journal of Ship Research, 1997, 41(1):17-25.
    [110] Kim M. H., Celebi M. S., Kim D. J.. Fully nonlinear interactions of waves with a three-dimensional body in uniform currents, Applied Ocean Research, 1998, 20(4):309-321.
    [111] Kim C. H., Clement A. H., Tanizawa K.. Recent research and development of numerical wave tanks-a review. International Journal of Offshore and Polar Engineering, 1999, 9(4):241-256.
    [112]詹成胜,邹早建,郑伟涛.一种三维时域Green函数计算方法.船舶力学, 2005, 9(1):18-22.
    [113]韩凌,滕斌,勾莹.时域有限水深Green函数的多项式展开计算方法.水动力学研究与进展, 2004, 19(5):629-636.
    [114]滕斌,韩凌.应用时域Green函数方法模拟有限水深中波浪对结构物的作用.水动力学研究与进展, 2006, 21(2):161-170.
    [115] Liapis S J.. Time-domain analysis of ship motions. PhD thesis. The Univ Michigan, 1986.
    [116] Ferrant P.. A coupled time and frequency approach for nonlinear wave radiation. Proc 18th Symp in Naval Hydrodyn, Ann Arbor, 1990:26-41.
    [117] Magee A R.. Large amplitude ship in the time domain. PhD thesis, The University of Michigan, 1991.
    [118]戴遗山.舰船在波浪中运动的频域与时域势流理论.国防工业出版社,北京, 1998.
    [119] Beck R.F. and Magee A.R.. Time Domain Analysis for Predicting Ship Motions. Proceedings of the IUTAM Symposium on the Dynamics of Marine Vehicles andStructures in Waves, Brunel University, 1991:49-64.
    [120] Fuat Kara.. Time Domain Hydrodynamics and Hydroelastic Analysis of Floating Bodies with Forward Speed. Ph.D. thesis, University of Strathclyde, Glasgow, Scotland, UK. , 2000.
    [121] Bingham H.B., Korsmeyer F.T., Newman J.N., and Osborne G.E.. The Simulation of the Ship Motions. Proceedings of the 6th International Symposium on Numerical Hydrodynamics, Iowa City, I.A., 1993:561-579.
    [122] Journée, J.M.J.. Experiments and Calculations on Four Wigley Hull forms. Faculty of Mechanical Engineering and Marine Technology, Delft University of Technology, Report 0909, 1992.
    [123] Ohkusu M.. Ship motions in vicinity of a structure. Proc. of International Conference on the Behavior of Offshore Structures. Trondheim, 1976, 1:284-306.
    [124] Oortmerssen G V.: Hydrodynamic interaction between two structures floating in waves. Proc. Boss Conference, London, 1979:339-356.
    [125]谢楠,郜焕秋.波浪中两个浮体水动力相互作用的数值计算.船舶力学, 1999, 3(2):7-15.
    [126]吴广怀,沈庆,陈徐均,吴培德,浮体间距对多浮体系统水动力系数的影响.海洋工程, 2003, 121(14):29-34.
    [127] Miao, G. P., Ishida, H. and Saitoh, T.: Water wave Interaction of Twin Large Scale Caissons with Small Gaps Between, Coastal Engineering Journal, 2001, 43(1):39-58.
    [128] Miao, G. P., Ishida, H. and Saitoh, T.: Influence of Gaps Between Multiple Floating Bodies on Wave Forces, China Ocean Engineering, 2000, 14(4):407-422.
    [129] Saitoh, T., Miao, G. P., and Ishida, H.: Resonance in a narrow gap due to nearby rectangular cylinders under water waves, Proc. of Asian and Pacific Coastal Engineering, Dalian, China, 2001, 2:613-623.
    [130] Zhu, R. C., Miao, G. P., You, Y. X.. Influence of Gaps Between 3-D Multiple Floating Structures on Wave Forces. Journal of Hydrodynamics, 2005,17(2):141- 147.
    [131] Miao, G. P., Ishida, H. and Saitoh, T.. A note on the narrow open channelresonance.Journal of Hydrodynamics, 2002, 14(1):29-37.
    [132] Mei, C. C.. The applied dynamics of ocean surface waves. Wiley-Interscience Publication, New York, USA, 1983:199-206.
    [133] Journée, J.M.J.. Discrepancies in hydrodynamic coefficients of Wigley Hull forms. Faculty of Mechanical Engineering and Marine Technology, Delft University of Technology, Report 1275-P, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700