用户名: 密码: 验证码:
纳米薄膜作为锂离子电池电极材料的性能与反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寻找新型的高性能储锂材料是当今研究发展锂离子电池的主要方向之一。而纳米材料由于其尺寸效应和比表面积大的优势,被认为最有可能成为下一代锂离子电池的电极材料。本文主要通过脉冲激光沉积技术制备了一系列纳米薄膜材料,将其作为锂离子电池的电极,通过恒电流充放电和循环伏安法测量了这些薄膜电极的充放电性能和电化学反应特性。利用X射线衍射(XRD),高分辨电子显微镜(HRTEM),选区电子衍射(SAED)以及X射线光电子能谱(XPS)等多种手段对其电化学过程中物质的组成和结构进行了测试和表征,从而探讨了这些纳米薄膜的电化学反应机理。主要包括以下体系:
     一.纳米复合LiF-M(M=Co,Ni……)薄膜的制备及其电化学特性研究。我们首次采用脉冲激光沉积技术,通过调节靶的组成与脉冲激光沉积的参数,制备颗粒在纳米尺度的一系列LiF-M复合薄膜电极。通过对其电化学过程的表征和充放电中薄膜组分及结构的变化,发现该类纳米薄膜在充放电循环过程中都包含了含锂惰性基质LiF可逆的分解和生成的过程。充放电反应机理有别于传统的锂离子脱嵌过程,而是一种可逆转换反应,主要包含了金属氟化物MF_2和LiF的可逆转换反应。
     二.纳米复合Li_2S-M薄膜的制备及其电化学特性研究。采用脉冲激光沉积技术,制备了纳米复合Li_2S-M薄膜电极,并研究了其电化学性能和反应机理。以Li_2S-Co为例,通过调节靶材组分和优化制备条件,我们发现在Li_2S和Co的摩尔比为2:1时具有最佳的电化学性能。在以28μA/cm~2的电流密度循环时,首次放电容量达到1257 mAh/g,而第二次循环容量衰减较大,放电容量为819mAh/g,但在随后的循环中,可逆性明显改善,容量衰减减小。通过对充放电过程中薄膜组分和结构的表征。我们发现Li_2S-Co薄膜在充放电过程中包括了多步电化学反应。在首次充电过程中,不但有CoS_2生成,还有单质S生成。在放电过程中,CoS_2转化成三元化合物LiCoS,而单质S转化成Li_2S。
     三.纳米复合Li_3N-M薄膜的制备及其电化学特性研究。首次采用脉冲激光沉积法制备了Li_3N-Co纳米复合薄膜电极。电化学表征结果显示其首次放电可得到515 mAh/g的比容量,随后的可逆容量为约为400 mAh/g,平均每次循环容量衰减小于0.2%。研究发现其在可逆过程中发生的电化学反应,既包括Li_3N和Co_2N的可逆转化反应,也包括Li_(2.57)Co_(0.43)N和Co_2N的可逆转化反应。
     四.纳米复合Li_3N-Si薄膜的制备及其电化学特性研究。经过前面的研究,我们对LiX-M(X=F,S,N;M=Co,Ni……)作为锂离子电池电极材料的电化学反应机理的认识逐步深化。于是我们考虑纳米化的ⅣA族Si是否也可以驱动LiX发生可逆的分解和形成?同样通过脉冲激光沉积法制备了Li_3N-Si(摩尔比为1:1)纳米复合薄膜,电化学表征结果显示该薄膜除了首次循环容量衰减较大外,具有良好的循环性能。其可逆容量约为700 mAh/g,平均每次循环容量衰减约0.7%。通过对充电过程中薄膜组分和结构的表征,我们发现在首次充电过程中,纳米Si颗粒驱动了Li_3N分解,形成六方结构的多晶Si_3N_4。在随后的可逆过程中,Si_3N_4可逆地和Li_5N_3Si相互转化。
     五.纳米结构In_2O_3和GeO_2薄膜的制备及其电化学特性研究。Tarascon等提出了纳米颗粒的过渡金属能够驱动Li_2O可逆地分解和形成。那么,主族金属纳米颗粒能否具有同样的效应呢?我们尝试用脉冲激光沉积法制备了ⅢA族和ⅣA族金属氧化物——纳米结构In_2O_3和GeO_2薄膜电极,并进行了电化学特性表征。结果显示In_2O_3和GeO_2在首次放电中都有较大的比容量,分别为1083mAh/g和2073 mAh/g。第二次放电容量都有较严重衰减,分别降为883 mAh/g和1336 mAh/g,但随后的循环容量衰减很小,显示出良好的可逆性。通过对充电过程中薄膜组分和结构的表征,我们发现可逆过程中的反应主要为In_2O_3,GeO_2和Li_2In,Li_(15)Ge_4的相互转化。这说明纳米金属颗粒(In,Ge)不但能够在充放电过程中驱动Li_2O的分解和形成,还能够和Li发生可逆的合金化反应,从而得到更大的可逆容量。
     六、纳米结构NiF_2薄膜的制备及其电化学特性研究。首次采用脉冲激光沉积技术,成功制备了NiF_2纳米薄膜。电化学性能的表征显示这类薄膜都有较大的首次不可逆容量,但从第二周循环开始,可以保持较好的循环性能。NiF_2纳米薄膜在0~3.5V范围的可逆容量可达到540 mAh/g,经过40次循环,容量仍能够保持在450 mAh/g。电化学表征和结构表征结果表明,NiF_2的可逆转换过程包含多步反应,在1.0-3.5 V区间,为NiF_2和Li_2NiF_4的可逆转换过程,在0.01-1.0V区间,为Li_2NiF_4和LiF/Ni的可逆转换过程。
     本论文对纳米薄膜材料电化学特性的系统研究有助于澄清纳米金属及非金属驱动含锂惰性基质LiX(X=F,O,S,N)分解产生锂源的电化学反应本质,对制备和研究新型的高性能储锂材料具有一定的指导意义。
     另外,附录中介绍了在美国Brookhaven国家实验室交流的一年里主要的工作内容,包括两个方面:
     一.新型高温高电位电解质的研究。首次利用二甲基聚乙烯乙二醇(DMPEG)(分子量:500g/mol)作为电解液溶剂。用LiPF_6作为锂盐,制备了高沸点电解液,用循环伏安测得其电化学窗口可达到5.3 V,但由于其粘度较高,室温电导率仅为0.48×10~(-3)S/cm。但随着温度的升高,其电导率显著增大。
     二.锂离子电池正极材料热稳定性的研究。用原位透射电子显微镜和选区电子衍射研究了LiNi_(0.8)Co_(0.15)Al_(0.05)O_2在充电态下的热稳定特性。我们在从室温到400℃的升温过程中,实时观察到了正极材料经过从层状结构(R3m)到尖晶石结构(Fd3m),再到NaCl结构(Fm3m)的变化过程。并发现室温下的LiNi_(0.8)Co_(0.15)Al_(0.05)O_2颗粒边缘已存在少量尖晶石结构(Fd3m)和NaCl结构(Fm3m)。在升温过程中,这两种结构逐渐向内部扩散长大。最后全部转变为NaCl结构(Fm3m)。
     该部分结果对车载动力锂离子电池的安全性和可靠性研究具有一定的意义和参考价值。
Pursuing high performance lithium storage materials is one of the primary directions in lithium battery development.Due to their particular dimension effect and large specific surface area,nano-materials are considered as next generation electrode materials for lithium ion batteries.This thesis will focus on the investigations of a series of nano-sized thin film materials fabricated by pulsed laser deposition(PLD) technology.Charge/discharge measurements and cyclic voltammograms were used to investigate cycle performance and electrochemical properties of the materials.X-ray diffraction(XRD),high resolution transmission electron microscopy(HRTEM), selected area electron diffraction(SAED) and X-ray photoelectron spectroscopy(XPS) were employed to detect the composition and structure information of the materials in certain electrochemical states.Thereby the electrochemical reaction mechanism were discussed.The following systems were included:
     1.Fabrication and electrochemical properties of LiF-M(M = Co,Ni,Fe……) nanocomposite thin films.A series of LiF-M nanocomposite thin films were successfully fabricated by pulsed laser deposition for the first time by adjusting composition of targets and deposition parameters.After characterize their electrochemical properties and detecting composition and structure changes in charge and discharge,we found this system contained an electrochemical process of reversible decomposition and formation of inert LiF in charge and discharge.This kind of electrochemical reaction mechanism is different from the traditional lithium ion insertion and extraction mechanism.It is a reversible conversion reaction based on the reversible transformation between MF_2 and LiF in charge and discharge.
     2.Fabrication and electrochemical properties of Li_2S-M nanocomposite thin films.We fabricated Li_2S-M nanocomposite thin films by pulsed laser deposition. Electrochemical performance and reaction mechanism were investigated.For Li_2S-Co, we found this thin film yielded best electrochemical performance when the mole ratio of Li_2S and Co was 2:1.It exhibited large first discharge capacity up to 1257 mAh/g in a current density of 28μA/cm~2.The capacity in second cycle faded quickly. Discharge capacity was 819 mAh/g.However,in the subsequence cycles,capacity fading decreased significantly with better reversibility.After characterize the composition and structure of thin films in charge and discharge,we found it contained multi-step electrochemical reactions.In first charging,not only CoS_2 was formed,but also simple substance S was produced.In the discharging process,CoS_2 transformed to a ternary compound LiCoS,as well as S transformed to Li_2S.
     3.Fabrication and electrochemical properties of Li_3N-M nanocomposite thin films.Li_3N-M nanocomposite thin films were fabricated by pulsed laser deposition for the first time.Electrochemical characterization results showed that it produced a specific capacity of 515 mAh/g in the first discharge.The reversible capacity in subsequent cycles was about 400 mAh/g.The capacity fading per cycle was less than 0.2%.The results revealed that the conversion between Li_3N and CO_2N was involved. Furthermore,the reversible transformation between Li_(2.57)Co_(0.43)N and Co_2N was also discovered.
     4.Fabrication and electrochemical properties of Li_3N-Si nanocomposite thin films.After the research work above,we have got a deep understanding on the electrochemical reaction mechanism of LiX-M(X = F,S,N;M = Co,Ni,Fe……) as electrode materials for lithium ion batteries.So we started to think about whether Si could also drive the reversible decomposition and formation of LiX.Using pulsed laser deposition technology we fabricated Li_3N-Si nanocomposite thin films with a mole ratio 1:1 of Li_3N and Si.Electrochemical characterization showed good cycle performance except large capacity fading in the first cycle.Li_3N-Si exhibited a large reversible capacity of 700 mAh/g.Capacity fading per cycle was about 0.7%.After charactering the composition and structure of the thin film after charging and discharging,we found the nanosized Si particles drove the decomposition of Li_3N in charging process,then polycrystalline hexagonal Si_3N_4 was formed.In the subsequent cycles,It was a reversible conversion process between Si_3N_4 and Li_5N_3Si.
     5.Fabrication and electrochemical properties of nanostructured In2O_3 and GeO_2 thin films.Tarascon et al.found the reversible decomposition and formation of Li_2O could be driven by nanosized transition metal particles.Is it possible that nanosized main group metal particles also have this effect? We fabricated nanostructuredⅢA metal oxide(In_2O_3) and IVA metal oxide(GeO_2) thin films by pulsed laser deposition, then characterized their electrochemical properties.The results showed that they both exhibited large specific capacity in first discharge,which were 1083 mAh/g and 2073 mAh/g for In_2O_3 and GeO_2,respectively.There is large capacity fading in the second cycle.The discharging capacity decreased to 883 mAh/g and 1336 mAh/g, respectively.However,in the subsequent cycles,the capacity could be maintained very well with excellent reversibility.After characterizing the composition and structure of thin films in charge and discharge,we found the reversible reaction process was mainly due to the reversible conversion between In_2O_3(GeO_2) and Li_2In (Li_(15)Ge_4).This indicated that nanosized metal particles(In and Ge) could drive the decomposition and formation of Li_2O in charging and discharging.Furthermore,they could participate the reversible alloying/dealloying reactions with lithium.This contributed extra reversible capacity for this system.
     6.Fabrication and electrochemical properties of nanostructured NiF_2 thin films. Nanostructured NiF_2 thin films were fabricated by pulsed laser deposition for the first time.Electrochemical characterization showed a large irreversible capacity in the first cycle.However,the capacity could be well kept from second cycle.The reversible capacity was about 540 mAh/g in the potential range from 0.01 to 3.5 V.After 40 cycles,the specific capacity was around 450 mAh/g.Electrochemical and structural characterizations indicated that the reversible process of nanostructured NiF_2 thin film in charging and discharging contained multi-step reactions.In the range of 1.0 to 3.5 V, it was the reversible conversion between NiF_2 and Li_2NiF_4.In the range of 0.01 to 1.0V,it was the reversible conversion between Li_2NiF_4 and LiF/Ni.
     The in-depth and systemic investigations of electrochemical properties on nanosized thin films in this paper are very helpful to uncover electrochemical reaction essences,which is on the decomposition of inert matter LiX(X = F,O,S,N) driven by nanosized metal and nonmetal.It has certain directive significance for preparing and developing new kinds of high performance lithium storage materials.
     In addition,appendix introduced the research work I made as a visiting student in Brookhaven National Laboratory(BNL) last year.It contains two topics:
     1.Investigations of new high temperature and high voltage electrolyte
     Dimethyl poly(ethylene glycol)(MW=500) was used as electrolyte solvent for the first time.Combining with salt LiPF_6,we prepared a new electrolyte with high boiling point.Cyclic voltammogram test showed a large electrochemical window up to 5.3 V.The conductivity of this electrolyte at room temperature was about 0.39×10~(-3) S/cm,which was low due to its high viscosity,but it increased quickly during temperature increasing.
     2.Thermal stability investigations of cathode materials for lithium battery
     By using in-situ transmission electron microscopy and selected area electron diffraction,we have studied the thermal stability properties of overcharged LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 cathode material.During heating from room temperature to 400℃,we observed the local structure changes of LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 in the real time.It was a process from layered structure(R3m) to spinel structure(Fd3m),then to NaCl structure(Fm3m).We found that a little spinel structure and NaCl structure existed at the room temperature.During heating,both of the structures diffused and expanded from surface to the bulk.Eventually,all of the particles convert to NaCl structure.
     These results provide some significance and reference value for the safety and reliability for high power lithium ion battery used in HEV and EV.
引文
[1]郭炳焜,徐徽,王先友等.锂离子电池[M].长沙:中南大学出版社,2002年
    [2]吕鸣祥,黄长保,宋玉瑾,化学电源[M].天津:天津大学出版社,1992年
    [3]马树华,李季,景遐斌等.作为锂二次电池负极的炭材料[J].炭素技术,1995,3:19-24.
    [4]Abraham K M.Recent Developments in Secondary Lithium Battery Technology [J].J.Power Sources,1985,14:179-191.
    [5]Gay E C,Vissers D R,Martino F Jet al.Performance Characteristics of Solid Lithium-Aluminum Alloy Electrodes[J].J.Electrochem.Soc.,1976,123:1591-1596.
    [6]Mizushima K,Jones P C,Wiseman P J,et al.Li_xCoO_2-A New Cathode Material for Batteries of High-Energy Density[J].Mater.Res.Bull.,1980,15:783-789.
    [7]Thackeray M M,David W I F,Bruce P G,et al.Lithium Insertion into Manganese Spinels[J].Mat.Res.Bull.,1983,18:461-472.
    [8]Thomas M,Bruce P G;Goodenough J B.Lithium Mobility in the Layered oxide Li_(1-x)CoO_2[J].Solid State Ionics,1985,17:13-19.
    [9]Aubom J J,Barberio Y L.Lithium Intercalation Cells Without Metallic Lithium[J]J.Electrochem.Soc.,1987,134:638-641.
    [10]Scrosati B.Lithium Rocking Chair Batteries:An Old Concept?[J].J.Electrochem.Soc.,1992,139:2776-2781.
    [11]Herold A.Recherches Sur Les Composes Dinsertion Du Graphite[J].Bull.Soc.Chim.Fr.,1955,7:999-1012.
    [12]Dey A N,Sullivan B P.The Electrochemical Decomposition of Propylene Carbonate on Graphite[J].J,Electorchem.Soc.,1970,117:222-224.
    [13]Yazami R,Touzain P.A Reversible Graphite Lithium Negative Electrode for Electrochemical Generators[J].J.Power Sources,1983,9:365-371.
    [14]Ogumi Z,in Abstracts of the 42th Battery Symposium in Japan,Yokohama,2001,p2.
    [15]Nishi Y.Lithium Ion Secondary Batteries;Past 10 Years and the Future[J].J.Power Sources,2001,100:101-106.
    [16]Yarascon J M,Armand M.Issues and Challenges Facing Rechargable Lithium Batteries[J].Nature,2001,414:359-367.
    [17]赵健,杨维芝,赵佳明.锂离子电池的应用开发[J].电池工业,2000,1:31-35.
    [18]Han K N,Seo H M,Kim J K,et al.Development of a Plastic Li-ion Battery Cell for EV Applications[J].J.Power Sources,2001,101:196-200.
    [19]Tanaka T,Ohta K,Arai N.Year 2000 R&D Status of Large-Scale Lithium Ion Secondary Batteries in the National Project of Japan[J].J.Power Sources,2001,97:2-6.
    [20]Howell D.Energy Storage R&D Review[R].Washington D.C.:Department of Energy,USA,2009.
    [21]Yao N P,Heredy L A,Saunders R C.Emf Measurements of Electrochemically Prepared Lithium-Aluminum Alloy[J].J.Electrochem.Sot.,1971,118:1039-1042.
    [22]Gay E C,Vissers D R,Martino F J et al.Performance Characteristics of Solid Lithium-Aluminum Alloy Electrodes[J].J.Electrochem.Soc.,1976,123:1591-1596.
    [23]Wen C J,Boukamp B A,Huggins R A.Thermodynamic and Mass Transport Properties of"LiAl"[J].J.Electrochem.Soc.,1979,126:225.8-2266.
    [24]Wen C J,Ho C,Boukamp B A et al.Use of Electrochemical Methods to Determine chemical-Diffusion Coefficients in Alloys:Application to 'LiAl'[J].Int.Metals Rev.,1981,26(5):253-268.
    [25] Suresh P, Shukla A K, Shivashankar S A et al. Rechargeable Lithium Cells with Dendrite-Free Electrodeposited Lithium on Aluminum as Negative Electrode [J].J. Power Sources, 2004,132: 166-171.
    [26] Lai S C. Solid lithium-Silicon Electrode [J]. J.Electrochem. Soc, 1976, 123:1196-1197.
    [27] Sharma R A, Seefurth R N. Thermodynamic Properties of the Lithiium-Silicon System [J]. J. Electrochem. Soc, 1976,123: 1763-1768.
    [28] Seefurth R N, Sharma R A. Investigation of Lithium Utilization from A Lithium-Silicon Electrode [J]. J. Electrochem. Soc, 1977,124: 1207-1214.
    [29] Wen C J, Huggins R A. Chemical Diffusion in Intermediate Phases in the Lithium-Sillicon System [J]. J. Solid State Chem. 1981, 37: 271-278.
    [30] Li H, Huang X J, Chen L Q et al. A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries [J]. Electrochem. Solid-State Lett.,1999,2(11): 547-549.
    [31] Ding N, Xu J, Yao Y X et al. Improvement of Cyclability of Si as Anode for Li-ion Batteries [J]. J. Power Sources, 2009,192: 644-651.
    [32] Kim H, Han B, Choo J, et al. Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries [J]. Angew. Chem. Int. Ed.,2008,47:10151-10154..
    [33] Zhang T, Fu L J, Takeuchi H, et al. Studies of the structure of vacuum deposited silicon films on metal substrates as anode materials for Li-ion batteries [J]. J.Power Sources, 2006,159: 349-352.
    [34] Maranchi J P, Hepp A F, Kumta P N. High capacity, reversible silicon thin-film anodes for lithium-ion batteries [J]. Electrochem. Solid State Lett., 2003, 6:A198-A201.
    [35] Weppner W, Huggins R A. Thermodynamic Properties of the Intermetallic Systems Lithium-Antimony and Lithium-Bismuth [J]. J. Electrochem. Soc, 1978,125: 7-14.
    [36] Weppner W, Huggins R A. Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li_3Sb [J]. J.Electrochem. Soc, 1978, 125: 7-14.
    [37] Weppner W, Huggins R A. Electrochemical Investigation of the Chemical Diffusion, Partial Ionic Conductivities, and Other Kinetic Parameters in Li_3Sb and Li_3Bi [J]. J. Solid State Chem., 1977,22: 297-308.
    [38] Wen C J, Huggins R A. Chemical Diffusion in Intermediate Phases in the Lithium-Tin System [J]. J. Solid State Chem., 1980, 35: 376-384.
    [39] Wen C J, Huggins R A. Thermodynamic Study of Lithium-Tin System [J]. J.Electrochem.Soc.,1981,128:1181-1187.
    [40] Idota Y, Kubota T, Matsufuji A, et al. Tin-based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material [J]. Science, 1997,276: 1395-1397.
    [41] Whitehead A H, Elliott J M, Owen J R et al. Nanostructured tin for use as a negative electrode material in Li-ion batteries [J]. J. Power Sources, 1999, 81:33-38.
    [42] Wang C S, Appleby A J, Little F E. Electrochemical study on nano-Sn, Li_(4.4)Sn and AlSi_(0.1) powders used as secondary lithium battery anodes [J]. J. Power Sources, 2001, 93: 174-185.
    [43] Wachtler M, Besenhard J O, Winter M. Tin and tin-based intermetallics as new anode materials for lithium-ion cells [J]. J. Power Sources, 2001, 93: 174-185.
    [44] Noh M, Kwon Y, Lee H, et al. Amorphous carbon-coated tin anode material for lithium secondary battery [J]. Chem. Mater., 2005,1926-1929.
    [45] Inaba M, Uno T, Tasaka A. Irreversible capacity of electrodeposited Sn thin film anode [J]. J. Power Sources, 2005, 146: 473-477.
    [46] Park JW, Rajendran S, Kwon H S. Effects of substrate morphology and ageing on cycle performance of a Sn-anode fabricated by electroplating [J]. J. Power Sources, 2006,159:1409-1415.
    [47] Naille S, Ionica-Bousquet C M, Robert F, et al. Sn-based intermetallic materials performances and mechanisms [J]. J. Power Sources, 2007,174: 1091-1094.
    [48] Ehinon K K D, Naille S, Dedryvere R, et al. Ni_3Sn_4 Electrodes for Li-Ion Batteries: Li-Sn Alloying Process and Electrode/Electrolyte Interface Phenomena [J]. Chem. Mater., 2008, 20: 5388-5398.
    [49] Wen C J, Huggins R A. Thermodynamic and Mass Transport Properties of "Liln" [J]. J. Mat. Res. Bull., 1980, 15: 1225-1234.
    [50] Johnson C S, Vaughey J T, Thackeray M M, et al. Electrochemistry and in-situ X-ray diffraction of InSb in lithium batteries [J]. Electrochem. Commun., 2000, 2:595-600.
    [51] Kropf A J, Tostmann H, Johnson C S, et al. An in situ X-ray absorption spectroscopy study of InSb electrodes in lithium batteries [J]. Electrochem.Commun, 2001, 3: 244-251.
    [52] Honda H, Sakaguchi H, Fukunaga T, et al. Neutron diffraction study on local structure of lithium storage intermetallic compound [J]. Electrochem, 2002, 70:99-103.
    [53] Lee H, Kim M G, Choi C H, et al. Surface-stabilized amorphous germanium nanoparticles for lithium-storage material [J]. J Phys. Chem. B, 2005, 109:20719-20723.
    [54] Chan C K, Zhang X F, Cui Y. High capacity Li ion battery anodes using Ge nanowires [J]. Nano Lett, 2008, 8: 307-309.
    [55] Kim M G, Cho J. Nanocomposite of Amorphous Ge and Sn Nanoparticles as an Anode Material for Li Secondary Battery [J]. J. Electrochem. Soc., 2009, 156:A277-A282.
    [56] Loutfy R O, Davis H J. Lithium-Zinc Alloys in Water-Activated batteries [J]. J.Electrochem. Soc, 1977,124: C273-C273.
    [57] Fujieda T, Takahashi S, Higuchi S. Cycling Behavior of Electrodeposited Zinc Alloy Electrode for Secondary Lithium Batteries [J] J. Power Sources, 1992, 40:283-289.
    [58] Shi Z, Liu M L, Gole J L. Electrochemical properties of Li-Zn alloy electrodes prepared by kinetically controlled vapor deposition for lithium batteries [J] Electrochem. Solid State Lett, 2000, 3: 312-315.
    [59] Huggins R A. Lithium Alloy Negative Electrodes [J]. J. Power Sources, 1999,81:13-19.
    [60] Hatchard T D. Study of the Electrochemical Performance of Sputtered Si_(1-c)Sn_x films [J]. J Electrochem Soc, 2004, 151: A1628-A1635.
    [61] Bong-Chull K, Hiroyuki U , Tomohiro S, et al. Cyclic Properties of Si_2Cu/Carbon Nanocomposite Anodes for Li-ion Secondary Batteries [J]. J. Electrochem Soc.,2005,152:A523-A526,
    [62]Beaulieu L Y,Hewitt K C,Turner R L,et al.The Electrochemical Reaction of Li with Amorphous Si_2Sn Alloys[J].J.Electrochem Soc.,2003,150:A1491-A1496.
    [63]路密,尹鸽平,史鹏飞.锂离子电池负极石墨材料的修饰与改性[J].电池,2001,31(4):195-197.
    [64]马树华,国汉举,李季,等.锂离子电池负极炭材料的表面改性与修饰[J].电化学,1996,(2):413-419.
    [65]李建军,万春荣,姜长印,等.锂离子电池负极材料包覆型天然石墨的研究[J].清华大学学报,2001,41(6):68-70.
    [66]Kuribayashi I,Yokoyama M.,Yamashita M.Battery Characteristics with Various Carbonaceous Materials[J].J.Power Sources,1995,54:1-5.
    [67]EinEli Y,Koch V R.Chemical Oxidation:A Route to Enhanced Capacity in Li-ion Graphite Anodes[J].J.Electrochem.Sot.,1997,144:2968-2973.
    [68]Menachem C,Peled E,Burstein L,et al.Characterization of Modified NG7Graphite as an Improved Anode for Lithium-ion Batteries[J].J.Power Sources,1997,68(2):227-282.
    [69]Wu Y P,Jiang C,Wan C,et al.Mild preparation of anode materials by a salt-free green method[J].Electrochem.Commun.,2002,4:483-487.
    [70]时志强,王成杨,樊丽萍等.双氧水氧化天然石墨作锂离子蓄电池负极[J].电源技术,2004,28(10):609-617.
    [71]吴国良.锂离子电池及其电极材料的研制[J].电池,1998,28(6):258-262.
    [72]西美绪,胡慧敏.用作锂离子二次电池负极的活性物质炭[J].新型炭材料,1993,33(3):46-51.
    [73]冯熙康,陈益奎,刘党均,等.锂离子在石墨中的嵌入特性研究[J].电源技术,1997,21(40):139-142.
    [74]吴宇平,万春荣,姜长印.锂离子二次电池[M]北京:化学工业出版社,2004.
    [75]Ajayan P M,Iijima S.Smallest Carbon Nanotube[J].Nature,1992,358:23-23.
    [76]Ugarte D,Chatelain A,deHeer W A.Nanocapillarity and chemistry in carbon nanotubes[J].Science,1996,274:1897-1899.
    [77]Ajayan P M,Tour J M.Materials Science-Nanotube Composites[J].Nature,2007,447:1066-1068.
    [78] Sharon M, Hsu W K, Kroto H W, et al. Camphor-based carbon nanotubes as an anode in lithium secondary batteries [J]. J. Power Sources, 2002, 104: 148-153.
    [79] Meunier V, Kephart J, Roland C, et al. Ab initio investigations of lithium diffusion in carbon nanotube systems[J]. Phys. Rev. Lett., 2002, 88: 075506.
    [80] Dominko R, Arcon D, Mrzel A, et al. Dichalcogenide nanotube electrodes for Li-ion batteries [J]. Adv. Mater., 2002, 14: 1531-1534.
    [81] Garau C, Frontera A, Quinonero D, et al.. Lithium diffusion in single-walled carbon nanotubes: a theoretical study [J]. Chem. Phys. Lett., 2003, 374: 548-555.
    [82] Morris R S, Dixon B G, Gennett T, et al. High-energy, rechargeable Li-ion battery based on carbon nanotube technology [J]. J. Power Sources, 2004, 138:277-280.
    [83] Tenne R. Inorganic nanotubes and fullerene-like nanoparticles [J]. Nature Nanotech.,2006,1: 103-111.
    [84] Zhang J, Hu Y S, Tessonnier J P, et al. CNFs@CNTs: Superior carbon for electrochemical energy storage [J]. Adv. Mater., 2008,20: 1450-1453.
    [85] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for Rechargeable Lithium Batteries [J]. Angew. Chem. Int. Ed., 2008,47: 2930-2946.
    [86] Landi B J, Ganter M J, Cress C D, et al. Carbon nanotubes for lithium ion batteries [J]. Energy & Environ. Sci. 2009,2: 638-654.
    [87] Landi B J, Dileo R A, Schauerman C M, et al. Multi-Walled Carbon Nanotube Paper Anodes for Lithium Ion Batteries [J]. J. Nanosci. Nanotech., 2009, 9:3406-3410
    [88] Sakamoto J S, Huang C K, Surampudi S, et al. The effects of particle size on SnO electrode performance in lithium-ion cells [J]. Mater. Lett., 1998, 33:327-329.
    [89] Li H, Huang X J, Chen L Q. Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries [J]. Solid State Ionics, 1999,123: 189-197.
    [90] Morimoto H, Nakai M, Tatsumisago M, et al. Mechanochemical synthesis and anode properties of SnO-based amorphous materials [J]. J. Electrochem. Soc.,1999, 146: 3970-3973.
    [91] Kumagai N, Abe M, Tanno K, et al. Kinetics of Electrochemical Insertion of Lithium Into WO [J]. Solid State Ionics, 1994, 70: 451-457.
    [92] Liang Y G, Yang S J, Yi Z H, et al. Low Temperature Synthesis of a Stable MoO_2 as Suitable Anode Materials for Lithium Batteries [J]. Mater. Sci. Eng. B, 2005,121:152-155.
    [93] Tsang C, Manthiram A. Synthesis of nanocrystalline VO_2 and its electrochemical behavior in lithium batteries [J]. J. Electrochem. Soc, 1997, 144:520-524.
    [94] Nuspl G, Yoshizawa K, Yamabe T. Lithium intercalation in TiO_2 modifications [J]. J. Mater. Chem., 1997, 3: 2529-2536.
    [95] Noailles L D, Johnson C S, Vaughey J T, et al. Lithium insertion into hollandite-type TiO_2 [J]. J. Power Sources, 1999, 81: 259-263.
    [96] Kuhn A, Amandi R, Garcia-Alvarado F. Electrochemical lithium insertion in TiO_2 with the ramsdellite structure [J]. J. Power Sources, 2001, 92: 221-227.
    [97] Wagemaker M, Kentgens A P M, Mulder F M. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO_2 anatase[J]. Nature, 2002,418:397-399.
    [98] Peramunage D, Abraham K M. Preparation of micron-sized Li_4Ti_5O_(12) and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells [J]. J.Electrochem. Soc, 1998, 145: 2609-2615.
    [99] Kavan L, Gratzel M. Facile synthesis of nanocrystalline Li_4Ti_5O_(12) (spinel) exhibiting fast Li insertion [J]. Electrochem. Solid State Lett., 2002, 5: A39-A42.
    [100] Kavan L, Prochazka J, Spitler T M, et al. Li insertion into Li_4Ti_5O_(12) p(Spinel)- Charge capability vs. particle size in thin-film electrodes [J]. J. Electrochem.Soc., 2003,150:A1000-A1007.
    [101] Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Nano-sized Transition-metal Oxides as Negative-electrode Materials for Lithium-ion Batteries [J]. Nature, 2000,407: 496-499.
    [102] Nishijima M, Kagohashi T, Imanishi N, et al. Synthesis and Electrochemical Studies of a New Anode Material, Li_(3-x)Co_xN [J]. Solid State Ionics, 1996, 83:107-111.
    [103] Shodai T, Okada S, Tobishima S, et al. Study of Li_(3-x)M_xN (M: Co, Ni or Cu) System for Use as Anode Material in Lithium Rechargeable Cells [J]. Solid State Ionics, 1996, 86: 785-789.
    [104] Shodai T, Okada S, Tobishima S, et al. Anode performance of a new layered nitride Li_(3-x)Co_xN (x = 0.2-0.6) [J]. J. Power Sources, 1997, 68: 515-518.
    [105] Takeda Y, Nishijima M, Yamahata M, et al. Lithium secondary batteries using a lithium cobalt nitride, Li_(2.6)Co_(0.4)N, as the anode [J]. Solid State Ionics, 2000, 130:61-69.
    [106] Pereira N, Klein L C, Amatucci G G. The Electrochemistry of Zn_3N_2 and LiZnN [J]. J. Electrochem. Soc, 2002,149: A262-A265.
    [107] Cabana J, Dupre N, Rousse G, et al. Ex situ NMR and neutron diffraction study of structure and lithium motion in Li_7MnN_4 [J]. Solid State Ionics, 2005,176:2205-2218.
    [108] Dahn J R, Vonsacken U, Juzkow M W, et al. Rechargeable LiNiO_2 Carbon Cells [J]. J. Electrochem. Soc, 1991,138: 2207-2211.
    [109] Broussely M, Perton F, Biensan P, et al. Li_xNiO_2, A Promising Cathode for Rechargeable Lithium Batteries [J]. J. Power Sources, 1995, 54: 109-114.
    [110] Barker J, Koksbang R, Saidi M Y. An electrochemical investigation into the lithium insertion properties of LixNiO_2 (0<=x<=1) [J]. Solid State Ionics, 1996,89:25-35.
    [111] Muto S, Sasano Y, Tatsumi K, et al. Capacity-Fading Mechanisms of LiNiO_2-Based Lithium-Ion Batteries [J]. J. Electrochem. Soc, 2009, 156:A371-A377.
    [112] Itou Y, Ukyo Y. Performance of LiNiCoO_2 materials for advanced lithium-ion batteries [J]. J. Power Sources, 2005,146: 39-44.
    [113] Weaving J S, Coowar F, Teagle D A, et al. Development of High Energy Density Li-Ion Batteries based on LiNi_)(1-x-y)Co_xAl_yO_2 [J]. J. Power Sources, 2001,97: 733-735.
    [114] Lee K K, Yoon W S, Kim K B, et al. Characterization of LiNi_(0.85)Co_(0.10)M_(0.05)O_2 (M=A1, Fe) as a Cathode Material for Lithium Secondary Batteries [J]. J. Power Sources, 2001,146: 308-312.
    [115]Chen C H,Liu J,Stoll M E,et al.Aluminum-Doped Lithium Nickel Cobalt Oxide Electrodes for High-Power Lithium-Ion Batteries[J].J.Power Sources,2004,128:278-285.
    [116]Hwang B J,Tsai Y W,Carlier D,et al.A combined computational/experimental study on LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2[J].Chem.Mater.,2003,15:3676-3682.
    [117]Wang Z X,Sun Y C,Chen L Q,et al.Electrochemical characterization of positive electrode material LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 and compatibility with electrolyte for lithium-ion batteries[J].J.Electrochem.Soc.,2004,151:A914-A921.
    [118]Yabuuchi N,Koyama Y,Nakayama N,et al.Solid-state chemistry and electrochemistry of LiCo_(1/3)Ni_(1/3)Mn-(1/3)O_2 for advanced lithium-ion batteries[J].J.Electrochem.Soc.,2005,152:A1434-A1440.
    [119]Shokoohi F K,Tarascon J M,Wilkens B J,et al.Fabrication of Thin-Film LiMn_2O_4 Cathodes for Rechargeable Microbatteries[J].Appl.Phys.Lett.,1991,59:1230-1262.
    [120]Tarascon J M,Wang E,Shokoohi F K,et al.The Spinel Phase of LiMn_2O_4 as a Cathode in Secondary Lithium Cells[J].J.Electrochem.Soc.,1991,138:2859-2864.
    [121]Zhang S S,Jow T R.Optimization of synthesis condition and electrode fabrication for spinel LiMn_2O_4 cathode[J].J.Power Sources,2002,109:172-177.
    [122]Padhi A K,Nanjundaswamy K S,Goodenough J B.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J].J.Electrochem.Soc.,1997,144:1188-1194.
    [123]Padhi A K,Nanjundaswamy K S,Masquelier C,et al.Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphates[J].J.Electrochem.Soc.,1997,144:1609-1613.
    [124]钟参云,曲涛,田彦文.锂离子电池正极材料LiFePO_4的研究进展[J].稀有金属与硬质合金,2005,33(2):38-42.
    [125]Chung S Y,Bloking J T,Chiang Y M.Electronically conductive phospho-olivines as lithium storage electrodes[J].Nature Mater.,2002,1:123-128.
    [126] Ravet N, Abouimrane A, Armand M. From our readers - On the electronic conductivity of phosphoolivines as lithium storage electrodes [J]. Nature Mater.,2003,2: 702-702.
    [127] Sakurai Y, Okada S, Yamaki J, et al. Electrochemical Behavior of Amorphous V_2O_5(-P_2O_5) Cathodes for Lithium Secondary Batteries. [J]. J Power Sources,1987,20: 173-177.
    [128] Levy M, Duclot M J, Rousseau F. V_2O+5-based Glassed as Cathodes for Lithium Batteries [J]. J Power Sources, 1989,26: 381-388.
    [129] Delmas C, Brethes S, Menetrier M. Omega-Li_xV_2O_5 - a New Electrode Material for Rechargeable Lithium Batteries [J]. J Power Sources, 1991, 34:113-118.
    [130] Gourier D, Tranchant A, Baffler N, et al. Epr Study of Electrochemical Lithium Intercalation in V_2O_5 Cathodes [J]. Electrochim. Acta, 1992, 37:2755-2764.
    [131] McGraw J M, Perkins J D, Zhang J G, et al. Next generation V2O5 cathode materials for Li rechargeable batteries [J]. Solid State Ionics, 1998,113: 407-413.
    [132] Koyama Y, Tanaka I, Adachi H. New fluoride cathodes for rechargeable lithium batteries [J]. J. Electrochem. Soc., 2000, 147: 3633-3636..
    [133] Badway F, Pereira N, Cosandey F et al. Carbon-Metal Fluoride Nanocomposites [J]. J. Electrochem. Soc, 2003,150: A1209-A1218.
    [134] Badway F, Cosandey F, Pereira N et al. Carbon Metal Fluoride Nanocomposites [J]. J. Electrochem. Soc, 2003, 150: A1318-1327.
    [135] Uchida T, Fuji Y, Wakihara M, et al. Lithium Secondary Batteries Using . Thin-Films of Titanium Sulfide as the Cathode [J]. J. Electrochem. Soc, 1987,134: C405-C405.
    [136] Exnar I, Hep J. Copper(II) Sulfide as Cathode Active Material in Secondary Lithium Batteries [J]. J. Power Sources, 1993,44: 701-705.
    [137] Miki Y, Nakazato D, Ikuta H, et al. Amorphous MoS_2 as the Cathode of Lithium Secondary Batteries [J]. J. Power Sources, 1995, 54: 508-510.
    [138] Panero S, Spila E, Scrosati B. A new type of a rocking-chair battery family based on a graphite anode and a polymer cathode [J]. J. Electrochem. Soc, 1996, 143:L29-L30.
    [139] Posudievsky 0 Y, Biskulova S A, Pokhodenko V D. Cathode performance of new hybrid guest-host nanocomposites based on poly(2,5-dimercaptothiophene) [J]. J. Electrochem. Soc., 1996,143: L29-L30.
    [140] Nishide H, Iwasa S, Pu Y J, et al. Organic radical battery: nitroxide polymers as a cathode-active material [J]. Electrochim. Acta, 2004, 50: 827-831.
    [141] Lim S Y, Yoon C S, Cho J P. Synthesis of nanowire and hollow LiFePO_4 cathodes for high-performance lithium batteries [J]. Chem. Mater., 2008, 20:4560-4564.
    [142] Li X X, Cheng F Y, Guo B, et al. Template-synthesized LiCoO_2, LiMn_2O_4,and LiN_(0.8)Co_(0.2)O_2 nanotubes as the cathode materials of lithium ion batteries [J]. J. Phys. Chem. B, 2005,109:14017-14024.
    [143] Lu H W, Yu L, Zeng W, et al. Fabrication and electrochemical properties of three-dimensional structure of LiCoO_2 fibers [J]. Electrochem. Solid State Lett.,2008,11:A140-A144.
    [144] Kanehori K, Matsumoto K, Miyauchi K et al. Thin-Film Solid Electrolyte and Its Application to Secondary Lithium Cell [J]. Solid State Ionics, 1983, 9:1445-1448.
    [145] Ohtsuka H, Yamaki J. Electrical Characteristics of Li_2O-V_2O_5-SiO_2. Thin Films [J]. Solid State Ionics, 1989, 3: 201-206.
    [146] Mantoux A, Groult H, Balnois E, et al. Vanadium oxide films synthesized by CVD and used as positive electrodes in secondary lithium batteries [J]. J.Electrochem. Soc, 2004,151: A368-A373.
    [147] Mien C, Camacho-Lopez M A, Escobar-Alarcon L, et al. Fabrication of LiCoO_2 thin-film cathodes for rechargeable lithium microbatteries [J]. Mater.Phys. Chem., 2001, 68: 210-216.
    [148] Yoon W S, Ban S H, Lee K K, et al. Electrochemical characterization of layered LiCoO_2 films prepared by electrostatic spray deposition [J]. J. Power Sources, 2001, 97: A282-A286.
    [149] Park H Y, Lee S R, Lee Y J, et al. Bias sputtering and characterization of LiCoO_2 thin film cathodes for thin film microbattery [J]. Mater. Phys. Chem., 2005,93:70-78.
    [150] Singh D, Kim W S, Craciun V, et al. Microstructural and electrochemical properties of lithium manganese oxide thin films grown by pulsed laser deposition [J]. Appl. Surf. Sci., 2002, 197: 516-521.
    [151] Chen G S, Chen G S, Hsiao H H, et al. Improving thermal stability of LiMn_2O_4 thin films by in situ coating of alpha-MnO_2 using high-pressure and high-temperature sputtering [J]. Electrochem. Solid State Lett., 2004, 7:A235-A238.
    [152] Goldner R B, Liu T Y, Slaven S. A transient method for measuring diffusion coefficients of thin film battery electrodes - Results for Li_yCoO_2 and Li_xC_6 thin films [J]. J. Electrochem. Soc., 1996,143: L129-L130.
    [153] Abe T, Takeda K, Fukutsuka T, et al. Electrochemical properties of graphitized carbonaceous thin films prepared by PACVD [J]. J. Electrochem. Soc.,2004, 151:C694-C697.
    [154] Lee K L, Jung J Y, Lee S W, et al. Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries [J]. J. Power Sources, 2004, 129:270-274.
    [155] Kim Y L, Lee H Y, Jang S W, et al. Electrochemical characteristics of Co-Si alloy and multilayer films as anodes for lithium ion microbatteries [J].Electrochim. Acta, 2003,48: 2593-2597.
    [156] Kim Y L, Lee H Y, Jang S W, et al. Nanostructured Ni_3Sn_2 thin film as anodes for thin film rechargeable lithium batteries [J]. Solid State Ionics, 2003,160: 235-240.
    [157] Taillades G, Sarradin J. Silver: high performance anode for thin film lithiumion batteries [J]. J. Power Sources, 2004,125: 199-205.
    [158] Song S W, Reade R P, Cairns E J, et al. Cu_2Sb thin-film electrodes prepared by pulsed laser deposition for lithium batteries [J]. J. Electrochem. Soc, 2004,151:A1012-A1019. '
    
    [159] Rho Y H, Kanamura K. Preparation of Li_(4/3)Ti_(5/3)O_4 thin film electrodes by a PVP sol-gel coating method and their electrochemical properties [J]. J.Electrochem. Soc, 2004,151: A106-A110.
    [160] Wang C L, Liao Y C, Hsu F C, et al. Preparation and characterization of thin film Li_4Ti_5O_(12) electrodes by magnetron sputtering [J]. J. Electrochem. Soc., 2005,152:A653-A657.
    [161] Bates J B, Dudney N J, Gruzalski G R, et al. Electrical-Properties of Amorphous Lithium Electrolyte Thin-Films [J]. Solid State Ionics, 1992, 53:647-654.
    [162] Dudney N J, Bates J B, Zuhr R A, et al. Sputtering of Lithium Compounds for Preparation of Electrolyte Thin-Films [J]. Solid State Ionics, 1992, 53:655-661.
    [163] Choi C H, Cho W I, Cho B W, et al. Radio-frequency magnetron sputtering power effect on the ionic conductivities of upon films [J]. Electrochem. Solid State Lett., 2002, 5:A14-A17.
    [164] Lee S J, Bae J H, Lee H W, et al. Electrical conductivity in Li-Si-P-O-N oxynitride thin-films [J]. J. Power Sources, 2003,123: 61-64.
    [165] Kuwata N, Kawamura J, Toribami K, et al. Thin-film lithium-ion battery with amorphous solid electrolyte fabricated by pulsed laser deposition [J]. Electrochem.Commun., 2004, 6: 417-421.
    [166] Joo K H, Sohn H J, Vinatier P, et al. Lithium ion conducting lithium sulfur oxynitride thin film [J]. Electrochem. Solid State Lett., 2004, 7: A256-A258.
    [167] Ahn J K, Yoon S G. Characteristics of Amorphous Lithium Lanthanum Titanate Electrolyte Thin Films Grown by PLD for Use in Rechargeable Lithium Microbatteries [J]. Electrochem. Solid State Lett., 2005, 8: A75-A78.
    [168] Li H, Richter G, Maier J. Reversible Formation and Decompositon of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries [J]. Adv. Mater., 2003, 15: 736-739.
    [169] Qin Q Z, Fu Z W. Processing and characterization of Ta_2O_5 films deposited by pulsed laser ablation [J]. Adv. Mater., 1999, 11: 736-739.
    [170] Fu Z W, Qin Q Z. Lithium intercalation and transport behavior in a Ta_2O_5 film fabricated by pulsed laser deposition [J]. J. Electrochem. Soc, 2000, 147:4610-4614.
    [171] Fu Z W, Huang F, Chu Y Q, et al. Characterization of amorphous Ta_2O_5 film as a novel anode material [J]. J. Electrochem. Soc, 2003,150: A776-A782.
    [172] Fu Z W, Qin Q Z. Lithium ion diffusion behavior in laser-deposited TiO_2 films [J]. J. Phys. Chem. B, 2000,104: 5505-5510.
    [173] Fu Z W, Lu Q, Zhang W, et al. Electrochemical property of ordered mesoporous TiO_2 films [J]. Acta Chim. Sin., 2000, 58: 1226-1229.
    [174] Fu Z W, Huang F, Zhang Y, et al. The electrochemical reaction of zinc oxide thin films with lithium [J]. J. Electrochem. Soc, 2003,150: A714-A720.
    [175] Wang Y, Fu Z W, Qin Q Z. A nanocrystalline Co_3O_4 thin film electrode for Li-ion batteries [J]. Thin Solid Film, 2003,441: 19-24.
    [176] Fu Z W, Wang Y, Zhang Y, et al. Electrochemical reaction of nanocrystalline Co_3O_4 thin film with lithium [J]. Solid State Ionics, 2004,170: 105-109.
    [177] Fu Z W, Wang Y, Yue X L, et al. Electrochemical reactions of lithium with transition metal nitride electrodes [J]. J. Phys. Chem. B, 2004,108: 2236-2244.
    [178] Wang Y, Fu Z W, Yue X L, et al. Electrochemical reactivity mechanism of Ni_3N with lithium [J]. J. Electrochem. Soc, 2004,151: E162-E167.
    [179] Huang F, Fu Z W, Qin Q Z. A novel Li_2Ag_(0.5)V_2O_5 composite film cathode for all-solid-state lithium batteries [J]. Electrochem. Commun, 2003, 5: 262-266.
    [180] Liu H R, Chu Y Q, Fu Z W, et al. Characterization and preparation of NiO-V_2O_5 composite film cathodes [J]. J. Power Sources, 2003,124: 163-169.
    [181] Zhao S L, Fu Z W, Qin Q Z. A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition [J]. Thin Solid Film. 2002,415:108-113.
    [182] Fu Z W, Liu W Y, Li C L, et al. High-k lithium phosphorous oxynitride thin films [J]. Appl. Phys. Lett, 2003, 83: 5008-5010.
    [1]Smith H M,Tumer A F.Vacuum Deposited Thin Films Using a Ruby Laser[J].Appl.Opt.,1965,4:147-149.
    [2]Wu X D,Dijkkamp D,Ogale S B,et al.Epitaxial Ordering of Oxide Superconductor Thin-Films on(100) SrTiO_3 Prepared by Pulsed Laser Evaporation[J].Appl.Phys.Lett.,1987,51:861-863.
    [3]Fogarassy E,Fuchs C,Siffert P,et al.Deposition of High-Tc YBaCuO and BiSrCaCuO Superconducting Thin-Films by Pulsed Eximer Laser Evaporation[J].Solid State Commun.,1988,67:975-979.
    [4]Yamagata Y,Choi C S,Fujishima T,et al.Orientation Control of YBaCuO Film on Flexible Metallic Substrates with Buffer Layers Using Pulsed-Laser Deposition[J].IEEE Trans.Appl.Supercond.,1995,5:1932-1935.
    [5]Abert A,Contour J P,Defossez A,et al.Critical thickness of YBaCuO(123)strained thin films and superlattices grown by pulsed laser deposition[J].Appl.Sur.Sci.,1996,96:703-707.
    [6]Duhalde S,Lamagna A,Villafuerte M,et al.Influence of the Deposition Parameter on the Structural and Transport Properties of YBaCuO Thin Films Prepared by Pulsed Laser Deposition[J].Appl.Sur.Sci.,1998,127:520-524.
    [7]Okunev V D,Samoilenko Z A,Svistunov V M,et al.Amorphous state and pulsed laser deposition of YBa2Cu307-delta thin films[J].J.Appl.Phys.,1999,85:7282-7290.
    [8]Di Trolio A,Morone A,De Cesare N,et al.Compositional analysis of SmBa_2Cu_3O_(7-x) films produced by laser ablation[J].Appl.Sur.Sci.,2000,154:244-248.
    [9]Huhtinen H,Jarvinen J,Laiho R,et al.Laser deposition from a nanostructured YBaCuO target: Analysis of the plume and growth kinetics of particles on SrTiO_3 [J]. J. Appl. Phys., 2001, 90: 1521-1528.
    [10] Feiler D, Williams R S, Talin A A, et al. Pulsed laser deposition of epitaxial AlN,GaN, and InN thin films on sapphire(OOOl) [J]. J. Crys. Growth, 1997, 171:12-20.
    [11] Suda Y, Nakazono T, Ebihara K, et al. Properties of WC films synthesized by pulsed YAG laser deposition [J]. Mater. Chem. Phys., 1998, 54: 177-180.
    [12] Hu W S, Liu Z G, Feng D. The role of an electric field applied during pulsed laser deposition of LiNbO_3 and LiTaO_3 on the film orientation[J]. J. Appl. Phys,, 1996,80:7089-7093. ;
    
    [13] Ando S, Nakamura Y, Togami T, et al. Ba_5NaNb_5O_(15) thin films prepared by the pulsed laser ablation method [J]. Jap. J. Appl. Phys., 1996, 35: 4956-4959.
    [14] Desu S B, Cho H S, Joshi P C. Highly oriented ferroelectric CaBi_2Nb_2O_9 thin films deposited on Si(100) by pulsed laser deposition [J]. Appl. Phys. Lett., 1997,70:1393-1395.
    [15] Reisse G, Weissmantel S, Keiper B, et al. Deposition of optical coatings by pulsed laser ablation [J]. Appl. Sur. Sci., 1996, 96: 752-759.
    [16] Guo X L, Liu Z G, Zhu S N, et al. Excimer laser ablation of Ba_2NaNb_5O_(15) optical waveguide films on MgO(001) substrate [J]. Mater. Lett., 1996,29: 155-158.
    [17] Lawler J F, Coey J M D, Lunney J G, et al. Pulsed laser deposition of thin films of (La_(1-x)Ca_x)MnO_3 [J]. J. Phys. Cond. Matt., 1996, 8: 10737-10752.
    [18] Horwitz J S, Chrisey D B, Dorsey P C, et al. Pulsed laser deposition of electronic ceramics [J]. Nucl. Instr. Mem. Phys. Res.Sect. B, 1997,1: 371-377.
    [19] Craciun V, Elders J, Gardeniers J G E, et al. Characteristics of High-Quality ZnO Thin-Films Deposited by Pulsed Laser Deposition [J]. Appl. Phys. Lett., 1994,65: 2963-2965.
    [20] Chang W S, Park J W, Rawat V, et al. Templated synthesis of gold-iron alloy nanoparticles using pulsed laser deposition [J]. Nanotech., 2006, 17: 5131-5135.
    [21] Meyerheim H L, Soyka E, Kirschner J. Alloying and dealloying in pulsed laser deposited Pd films on Cu(100) [J]. Phys. Rev. B, 2006, 74: 085405.
    
    [22] Luo Q, Chen X Y, Liu Z G, et al. Deposition of oriented polymer films for liquid crystal alignment by pulsed laser ablation [J]. Appl. Surf. Sci., 1997, 108: 89-93.
    [1]Poizot P,Laruelle S,Grugeon S,Dupont L,Tarascon J M.Nano-sized Transition-metal Oxides as Negative-electrode Materials for Lithium-ion Batteries [J].Nature,2000,407:496-499.
    [2]Denis S,Baudrin E,Orsini F,Ouvrard G,Touboul M,Tarascon J M.Synthesis and Electrochemical Properties of Numerous Classes Of Vanadates[J].J.Power Sources,1999,81:79-84.
    [3] Li H, Richter G, Maier J. Reversible Formation and Decompositon of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries [J]. Adv. Mater. (Weinheim, Ger.), 2003,15: 736-739.
    [4] Fu Z W, Li C L, Liu W Y, Ma J, Wang Y, Qin Q Z. Electrochemical Reaction of Lithium with Cobalt Fluoride Thin Film Electrode [J]. J. Electrochem. Soc., 2005,152:E50-E55.
    [5] Pereira N, Klein L C, Amatucci G G. The Electrochemistry of Zn_3N_2 and LiZnN [J]. J. Electrochem. Soc, 2002,149: A262-A271.
    [6] Badway F, Pereira N, Cosandey F, Amatucci G G. Carbon-Metal Fluoride Nanocomposites [J]. J. Electrochem. Soc, 2003,150: A1209-A1218.
    [7] Badway F, Cosandey F, Pereira N, Amatucci G G. Carbon Metal Fluoride Nanocomposites [J]. J. Electrochem. Soc, 2003,150: A1318-1327.
    [8] Obrovac M N, Dunlap R A, Sanderson R J, Dahn J R. The Electrochemical Displacement Reaction of Lithium with Metal Oxides [J]. J. Electrochem. Soc.,2001, 148:A576-A588.
    [9] Obrovac M N, Dahn J R. Electrochemically Active Lithia/Metal and Lithium Sulfide/Metal Composites [J]. Electrochem. Solid-State Lett., 2002, 5(4):A70-A73.
    [10] Neudecker B J, Zuhr R A, Kwak B S, et al. Li-ion Thin-film Batteries with Tin and Indium Nitride and Subnitride Anodes MeN_x (Me = Sn, In) [J]. Intercalation Compounds for Battery Materials Proceedings, 2000, 99(24): 295-304.
    [11] Leroux F, Ouvrard G R, Power W P, Nazar L F. Understanding the Nature of Low-Potential Li Uptake into High Volumetric Capacity Molybdenum Oxides [J].Electrochem. Solid-State Lett., 1998, 1(6): 255-258.
    
    [12] Badway F, Mansour A N, Pereira N et al. Structure and Electrochemistry of Copper Fluoride Nanocomposites Utilizing Mixed Conducting Matrices [J].Chem. Mater, 2007,19: 4129-4141.
    
    [13] Courtney I A, Dahn J R. Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO_2 and Sn_2BPO_6 Glass [J]. J. Electrochem. Soc.,1997,144: 2943-2948.
    
    [14] Amatucci G G, Pereira N. Fluoride based electrode materials for advanced Energy storage devices [J]. J Fluorine Chem., 2007,128: 243-262.
    [15] Pereira N, Balasubramanian M, Dupont L, et al. The Electrochemistry of Germanium Nitride with Lithium [J]. J. Electrochem. Soc., 2003, 150:A1118-A1128.
    [16] Pereira N, Dupont L, Tarascon J M, et al. Electrochemistry of Cu_3N with Lithium [J]. J. Electrochem. Soc, 2003,150: A1273-A1280.
    [17] Wang Y, Fu Z W, Yue X L, et al. Electrochemical Reactivity Mechanism of Ni_3N with Lithium [J]. J. Electrochem. Soc, 2004,151: E162-E167.
    [18] Takeda Y, Nishijima M, Yamahata M, et al. Lithium secondary batteries using a lithium cobalt nitride, Li_(2.6)Co_(0.4)N, as the anode [J]. Solid State Ionics, 2000, 130:61-69.
    [1]Marmorstein D,Yu T H,Striebel K A,et al.Electrochemical Performance of Lithium/Sulfur Cells with Three Different Polymer Electrolytes[J].J.Power Sources,2000,89:219-226.
    [2]Shim J,Striebel K A,Cairns E J.The Lithium/Sulfur Rechargeable Cell - Effects of Electrode Composition and Solvent on Cell Performance[J].J.Electrochem.Sot.,2002,149:A1321-A1325.
    [3]Song M S,Han S C,Kim H S,et al.Effects of Nanosized Adsorbing Material on Electrochemical Properties of Sulfur Cathodes for Li/S Secondary Batteries[J].J.Electrochem.Soc.,2004,151:A791-A795.
    [4]Wang J L,Yang J,Xie J Y,et al.Sulfur-carbon Nano-composite as Cathode for Rechargeable Lithium Battery Based on Gel Electrolyte[J].Electrochem.Commun.,2002,4:499-502.
    [5]Zheng W,Hu X G,Zhang C F.Electrochemical impedance spectroscopy study on novel carbon-sulfur nano-composite cathodes in lithium rechargeable batteries[J]. J. Rare Earths, 2004, 22: 89-94.
    [6] Hayashi A, Ohtomo T, Mizuno F, et al. All-solid-state Li/S Batteries with Highly Conductive Glass-ceramic Electrolytes [J]. Electrochem. Commun., 2003, 5:701-705.
    [7] Jeon B H, Yeon J H, Chung I J, Preparation and Electrical Properties of Lithium-sulfur-composite Polymer Batteries [J]. J. Mater. Process. Technol., 2003,143:93-97.
    [8] Zhu X, Wen Z, Gu Z, et al. Electrochemical Characterization and Performance Improvement of Lithium/Sulfur Polymer Batteries [J]. J. Power Sources, 2005,139: 269-273.
    [9] Horn Y S, Osmialowski S, Horn Q C. Reinvestigation of Lithium Reaction Mechanisms in FeS_2 Pyrite at Ambient Temperature [J]. J. Electrochem. Soc.,2002,149:A1547-A1555.
    [10] Takada K, Iwamoto K, Kondo S. Lithium Iron Sulfide as an Electrode Material in a Solid State Lithium Battery [J]. Solid State Ionics, 1999,117: 273-276.
    [11] Hayashi A, Ohtomo T, Mizuno F, et al. Rechargeable Lithium Batteries, Using Sulfur-based Cathode Materials and Li_2S-P_2S_5 Glass-ceramic Electrolytes [J].Electrochim. Acta, 2004, 50: 893-897.
    [12] Yan J M, Huang H Z, Zhang J, et al. A Study of Novel Anode Material CoS_2 for Lithium Ion battery [J]. J. Power Sources, 2005,146: 264-269.
    [13] Zhu X J, Wen Z Y, Gu Z H, et al. Room-temperature mechanosynthesis of Ni_3S_2 as cathode material for rechargeable lithium polymer batteries [J]. J. Electrochem.Soc., 2006,153:A504-A507.
    [14] Han S C, Kim K W, Ahn H J, et al. Charge-discharge mechanism of mechanically alloyed NiS used as a cathode in rechargeable lithium batteries [J]. J. Alloy Comp.,2006,361:247-251.
    [15] Debart A, Dupont L, Patrice R, et al. Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide [J]. Solid State Sci., 2006, 8:640-651.
    [16] Moon S I, Kim J U, Jin B S, et al. Characterization of TiS_2 composite cathodes with solid polymer electrolyte [J]. J. Power Sources, 1997, 68: 660-663.
    [17] Obrovac M N, Dahn J R. Electrochemically Active Lithia/Metal and Lithium Sulfide/Metal Composites [J]. Electrochem. Solid-State Lett., 2002, 5(4):A70-A73.
    
    [18] Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-ray Photoelectron Spectroscopy [M]. Perkin-Elmer Corp., Eden Prairie, 1975.
    [1]Nishijima M,Takeda Y,Imanishi N,et al.Li Deintercalation and Structural Change in the Lithium Transition Metal Nitride Li_3FeN_2[J].J.Solid State Chem.,1994,113:205-210.
    [2]Nishijima M,Tadokoro N,Takeda Y,et al.Li Deintercalation-Intercalation Reaction and Structural Change in Lithium Transition Metal Nitride,Li_7MnN_4[J].J.Electrochem.Soc.,1994,141:2966-2971.
    [3]Nishijima M,Kagohashi T,Imanishi N,et al.Synthesis and Electrochemical Studies of a New Anode Material,Li_(3-x)Co_xN[J].Solid State Ionics,1996,83:107-111.
    [4]Shodai T,Okada S,Tobishima S,et al.Study of Li_(3-x)M_xN(M:Co,Ni or Cu)System for Use as Anode Material in Lithium Rechargeable Cells[J]Solid State Ionics,1996,86:785-789.
    [5]Shodai T,Okada S,Tobishima S,et al.Anode performance of a new layered nitride Li_(3-x)Co_xN(x=0.2-0.6)[J].J.Power Sources,1997,68:515-518.
    [6]Takeda Y,Nishijima M,Yamahata M,et al.Lithium secondary batteries using a lithium cobalt nitride,Li_(2.6)Co_(0.4)N,as the anode[J].Solid State Ionics,2000,130:61-69.
    [7]Bates J B,Dudney N J,Neudecker B J,et al.Thin-film Lithium and Lithium-ion Batteries[J].Solid State Ionics,2000,135:33-45.
    [8]Neudecker B J,Zuhr R A,Bates J B.Lithium Silicon Tin Oxynitride(Li_ySiTON):High-performance Anode in Thin-Film Lithium-ion Batteries for Microelectronics [J].J.Power Sources,1999,81:27-32.
    [9]Pereira N,Klein L C,Amatucci G G.The Electrochemistry of Zn_3N_2 and LiZnN [J].J.Electrochem.Soc.,2002,149:A262-A265.
    [10]Pereira N,Balasubramanian M,Dupont L,et al.The Electrochemistry of Germanium Nitride with Lithium[J].J.Electrochem.Soc.,2003,150:A1118-A1128.
    [11]Pereira N,Dupont L,Tarascon J M,et al.Electrochemistry of Cu_3N with Lithium [J].J.Electrochem.Soc.,2003,150:A1273-A1280.
    [12]Wang Y,Fu Z W,Yue X L,et al.Electrochemical Reactivity Mechanism of Ni_3N with Lithium[J].J.Electrochem.Soc.,2004,151:E162-E167.
    [13]王颖,刘文元,傅正文.Mn_4N薄膜与锂的电化学反应性能[J].物理化学学报,2006,22(1):65-70.
    [14]Ma J,Yu L,Fu Z W.Electrochemical and Theoretical Investigation on the Reaction of Transition Metal with Li_3N[J].Electrochim.Acta,2006,51:4802-4814.
    [15]Fu Z W,Li C L,Liu W Y,Ma J,Wang Y,Qin Q z.Electrochemical Reaction of Lithium with Cobalt Fluoride Thin Film Electrode[J].J.Electrochem.Soc.,2005,152:E50-E55.
    [16]Obrovac M N,Dunlap R A,Sanderson R J,Dahn J R.The Electrochemical Displacement Reaction of Lithium with Metal Oxides[J].J.Electrochem.Soc.,2001,148:A576-A588.
    [1]Sharma R A,Seefurth R N.Thermodynamic Properties of the Lithium-Silicon System[J].J.Electrochem.Soc.,1976,123:1763.
    [2]Boukamp B A,Lesh G C,Huggins R A.All-Solid Lithium Electrodes with Mixed-Conductor Matrix[J].J.Electrochem.Soc,1976,128:725.
    [3]Li H,Huang X J,Chen L Q et al.A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries[J].Electrochem.Solid-State Lett.,1999,2(11):547-549.
    [4]Hatchard T D,Dahn J R.Electrochemical Reaction of the SiAg Binary System with Li[J].J.Electrochem.Soc.,2005,152(7):A1445-A1451.
    [5]Hatchard T D,Dahn J R.Study of the Electrochemical Performance of Sputtered Si_(1-x)Sn_x Films[J].J.Electrochem.Soc.,2004,151(10):A1628-A1635.
    [6]Hatchard T D,Obrovac M N,Dahn J R.Electrochemical Reaction of the Si_(1-x)Zn_x Binary System with Li[J].J.Electrochem.Soc.,2005,152(12):A2335-A2344.
    [7]Hatchard T D,Obrovac M N,Dahn J R.A Comparison of the Reactions of the SiSn,SiAg,and SiZn Binary Systems with Li[J].J.Electrochem.Soc.,2006,153(2):A282-A287.
    [8]Yoshio M,Wang H,Ogumi Z et al.Carbon-Coated Si as a Lithium-Ion Battery Anode Material[J].J.Electrochem.Soc.,2002,149:A1598-A1603.
    [9]Wen Z,Wang K,Chen L et al.A New Ternary Composite Lithium Silicon Nitride as Anode Material for Lithium Ion Batteries[J].Electrochem.Commun.,2006,8:1349-1352.
    [10] Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Nano-sized Transition-metal Oxides as Negative-electrode Materials for Lithium-ion Batteries [J]. Nature, 2000,407: 496-499.
    [11] Li H, Richter G, Maier J. Reversible Formation and Decompositon of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries [J]. Adv. Mater., 2003,15: 736-739.
    [12] Fu Z W, Li C L, Liu W Y, Ma J, Wang Y, Qin Q Z. Electrochemical Reaction of Lithium with Cobalt Fluoride Thin Film Electrode [J]. J. Electrochem. Soc.,2005,152:E50-E55.
    [13] Badway F, Pereira N, Cosandey F, Amatucci G G. Carbon-Metal Fluoride Nanocomposites [J]. J. Electrochem. Soc., 2003,150: A1209-A1218.
    [14] Badway F, Cosandey F, Pereira N, Amatucci G G. Carbon Metal Fluoride Nanocomposites [J]. J. Electrochem. Soc., 2003,150: A1318-1327.
    [15] Zhou Y, Wu C, Zhang H et al. Electrochemical Reactivity of Co-Li_2S Nanocomposite for Lithium-ion Batteries [J]. Electrochim. Acta, 2007, 52:3130-3136.
    [16] Pereira N, Dupont L, Tarascon J M, et al. Electrochemistry of Cu_3N with Lithium [J]. J. Electrochem. Soc., 2003,150: A1273-A1280.
    [1]Poizot P,Laruelle S,Grugeon S,et al.Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J].Nature,2000,407:496-499.
    [2]Li H,Richter G,Maier J.Reversible Formation and Decompositon of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries[J].Adv.Mater.(Weinheim,Ger.),2003,15:736-739
    [3]Nishijima M,Kagohashi T,Irnanishi M,et al.Synthesis and electrochemical studies of a new anode material,Li_(3-x)Co_xN[J].Solid State Ionics,1996,83:107-111.
    [4]Fu Z W,Li C L,Liu W Y,Ma J,Wang Y,Qin Q Z.Electrochemical Reaction of Lithium with Cobalt Fluoride Thin Film Electrode[J].J.Electrochem.Soc.,2005,152:E50-E55.
    [5]Pereira N,Klein L C,Amatucci G G.The Electrochemistry of Zn_3N_2 and LiZnN [J].J.Electrochem.Soc.,2002,149:A262-A271.
    [6]Neudecker B J,Zuhr R A,Kwak B S,et al.Li-ion Thin-film Batteries with Tin and Indium Nitride and Subnitride Anodes MeN_x(Me=Sn,In)[J].Intercalation Compounds for Battery Materials Proceedings, 2000,99(24): 295-304.
    
    [7] Obrovac M N, Dunlap R A, Sanderson R J, et al. The Electrochemical Displacement Reaction of Lithium with Metal Oxides [J]. J. Electrochem. Soc.,2001,148:A576-A588.
    
    [8] Badway F, Pereira N, Cosandey F, et al. High-Capacity Reversible Metal Fluoride Conversion Materials [J]. J. Electrochem. Soc., 2003,150: A1318-A1327.
    
    [9] Korotcenkov G, Brinzari V, Cerneavschi A, et al. The Influence of Film Sturcture on In_2O_3 gas response [J]. Thin Solid Films, 2004,460: 315-323. j
    
    [10]Minami T, Nakatani T, Miyata T, et al. (Y_2O_3-GeO_2) Phosphor Thin-film Electroluminescent Emitting Layers Prepared by Magnetron Sputtering [J]. Surf.Coat. Technol., 2001,146:508-512.
    
    [1 l]Poznyak S K, Kulak A I. Characterization and Photoelectrochemical Properties of Nanocrystalline In_2O_3 Film electrode [J]. Electrochim. Acta, 2000, 45:1595-1605.
    
    [12] Malar P, Mohanty B C, Kasiviswanathan S. Growth and Rutherford Backscattering Spectrometry Study of Direct Current Sputtered Indium Oxide Films [J]. Thin Solid Film, 2005,488: 26-33.
    
    [13]Kurosawa K, Maezono Y, Motoyama T, et al. GeO_2 and SiO_2 Thin Film Preparation with CVD Using Ultraviolet Excimer Lamps [J]. J. de Phys. IV, 2001,11:739-745.
    
    [14] Adurodija F O, Izumi H, Ishihara T, et al. The Electro-optical Properties of Amorphous Indium Tin Oxide Films Prepared at Room Temperature by Pulsed Laser Deposition [J]. Sol. Energy Mater. Sol. Cells, 2002, 71: 1-8.
    
    [15] Li H, Huang X J, Chen L Q. Anode Based on Oxide Materials for Lithium Rechargeable Batteries [J]. Solid State Ionics, 1999,123: 189-197.
    
    [16] Pena J S, Sandu I, Joubet O, et al. Electrochemical Reaction between Lithium and Beta-quartz GeO_2 [J]. Electrochem. Solid-State Lett., 2004, 7(9): A278-A281.
    
    [17] Courtney I A, Dahn J R. Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO_2 and Sn_2BPO_6 Glass [J]. J. Electrochem. Soc.,1997,144: 2943-2948.
    [1]Li H,Richter G,Maier J.Reversible Formation and Decompositon of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries[J].Adv.Mater.(Weinheim,Ger.),2003,15:736-739.
    [2]Badway F,Pereira N,Cosandey F et al.Carbon-Metal Fluoride Nanocomposites [J].J.Electrochem.Soc.,2003,150:A1209-A1218.
    [3]Badway F,Cosandey F,Pereira N et al.Carbon Metal Fluoride Nanocomposites [J].J.Electrochem.Soc.,2003,150:A1318-1327.
    [4]Makimura Y,Rougier A,Laffont L et al.Electrochemical Behaviour of Low Temperature Grown Iron Fluoride Thin Films[J].Electrochem.Communi.,2006,8:1769-1774.
    [5]Makimura Y,Rougier A,Yarascon J M.Pulsed laser deposited iron fluoride thin films for lithium-ion batteries[J].Applied Surface Science,2006,252:4587-4592.
    [6]Amatucci G G,Pereira N.Fluoride based electrode materials for advanced energy storage devices[J].J Fluorine Chem.,2007,128:243-262.
    [7]Cosandey F,Al-Sharab J F,Badway F et al.EELS Spectroscopy of Iron Fluorides and FeFx/C Nanocomposite Electrodes Used in Li-ion Batteries[J].Microscopy and Microanalysis,2007,13:87-95.
    [8] Ma J, Liu W Y, Li C L et al. Electrochemical and Quantum Chemical Studies of the Reactions of Transition Metal M (M= Co, Fe and Ni) with LiF and Li2O [J].Electrochim. Acta, 2006, 51: 2030-2041.
    [9] Fu Z W, Li C L, Liu W Y, Ma J, Wang Y, Qin Q Z. Electrochemical Reaction of Lithium with Cobalt Fluoride Thin Film Electrode [J]. J. Electrochem. Soc., 2005,152:E50-E55.
    [10] Li H, Balaya P, Maier J. Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides [J]. J. Electrochem. Soc., 2004,151: A1878-A1885.
    
    [11] Li H, Huang X J, Chen L Q. Anode Based on Oxide Materials for Lithium Rechargeable Batteries [J]. Solid State Ionics, 1999,123: 189-197.
    
    [12] Fu Z W, Li C L, Liu W Y, Ma J, Wang Y, Qin Q Z. Electrochemical Reaction of Lithium with Cobalt Fluoride Thin Film Electrode [J]. J. Electrochem. Soc.,2005,152:E50-E55.
    [13] Zhou Y, Zhang H, Xue M et al. The Electrochemistry of Nanostructured In_2O_3 with lithium [J]. Journal of Power Sources, 2006,162: 1373-1378.
    [14] Courtney I A, Dahn J R. Key Factors Controlling the Reversibility of the Reaction of Lithium with SnO_2 and Sn_2BPO_6 Glass [J]. J. Electrochem. Soc., 1997,144: 2943-2948.
    [15] Laruelle S, Grugeon S, Poizot P, et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential [J]. J. Electrochem. Soc.,2002,149:A627-A634.
    [16] Badway F, Plitz I, Grugeon S, et al. Metal oxides as negative electrode materials in Li-ion cells [J]. Electrochem. Solid State Lett., 2002, 5: A115-A118.
    [1]Poizot P,Laruelle S,Grugeon S,Dupont L,Tarascon J M.Nano-sized Transition-metal Oxides as Negative-electrode Materials for Lithium-ion Batteries [J].Nature,2000,407:496-499.
    [2]Li H,Richter G,Maier J.Reversible Formation and Decompositon of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries[J].Adv.Mater.(Weinheim,Ger.),2003,15:736-739.
    [1]Hong J S,Maleki H,A1 Hallaj S,et al.Electrochemical-calorimetric studies of lithium-ion cells[J].J.Electrochem.Soc.,1998,145:1489-1501.
    [2]Tobishima S,Yamaki J.A consideration of lithium cell safety[J].J.Power Sources,1999,81:882-886.
    [3]Kaneko F,Masuda Y,Nakayama M.Electrochemical performances of lithium ion battery using alkoxides of group 13 as electrolyte solvent[J].Electrochim.Acta,2007,53:549-554.
    [4]Oh K W,Choi J H,Kim S H,et al.Polymer electrolytes based on poly(ethylene glycol) and cyanoresin[J].J.Appl.Polym.Sci.,2007,103:2402-2408.
    [5]Marcinek M,Zalewska A,Zukowska G,et al.Composite electrolytes based on low molecular weight polyglycols[J].Solid State Ionics,2000,136:1175-1179.
    [6] Kato Y, Ishihara T, Uchimoto Y, et al. Charge-transfer reaction rate of Li+/Li couple in poly(ethylene glycol) dimethyl ether based electrolytes [J]. J. Phys. Chem.B,2004,108:4794-4798.
    [7] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001,414: 359-367.
    [8] McBreen J, Lee H S, Yang X Q, et al. New polymer and liquid electrolytes for lithium batteries [R]. Hawaii: 196~(th) Electrochem. Soc. Meeting, 1999.
    [9] Elmer A M, Wesslen B, Sommer-Larsen P, et al. Ion conductive electrolyte membranes based on co-continuous polymer blends [J]. J. Mater. Chem., 2003,2168-2176.
    
    [10] Noto V D, Longo D, Mnchow V. Ion Oligomer Interactions in Poly ethylene glycol 400(LiCl)x Electrolyte Complexes [J]. J. Phys. Chem. B, 1999, 103:2636-2646.
    
    [11] Yoon W S, Chung K Y, McBreen J, et al. Electronic structural changes of the electrochemically Li-ion deintercalated LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 cathode material investigated by X-ray absorption spectroscopy [J]. J. Power Sources, 2007, 174:1015-1020.
    
    [12] Balasubramanian M, Sun X, Yang X Q, et al. In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries [J]. J. Power Sources, 2007,92: 1-8.
    [1]刘兴江,肖成伟,余冰等.混合动力车用锂离子蓄电池的研究进展[J].电源技术,2007,31:509-514.
    [2]Kalyani P,Kalaiselvi N,Renganathan N G,et al.Studies on LiNi_(0.7)Al_(0.3-x)Co_xO_2solid solutions as alternative cathode materials for lithium batteries[J].Mater.Res.Bull.,2004,39:41-54.
    [3]Kim J,Liu J,Chen C,et al.Material characterization and electrochemical study on LiNi_(0.95)Ti_(0.05)O_2 materials[J].J.Electrochem.Soc.,2003,19:1241-1244.
    [4]Kalaiselvi N,Raajaraajan AV,Sivagaminathan B,et al.Synthesis of optimized LiNiO_2 for lithium ion batteries[J].Ionics,2003,5:382-387.
    [5]Weaving J S,Coowar F,Teagle D A,et al.Development of high energy density Li-ion batteries based on LiNi_(1-x-y)Co_xAl_yO_2[J].J.Power Sources,2001,97:733-735.
    [6]Bloom I,Cole B W,Sohn J J et al.An accelerated calendar and cycle life study of Li-ion cells[J].J.Power Sources 2001,101:238-247.
    [7] Guilmard M, Croguennec L, Denux D, et al.Thermal stability of lithium nickel oxide derivatives. Part I: Li_xNi_(1.02)O_2 and Li_xNi_(0.89)Al_(0.16)O_2 (x = 0.50 and 0.30) [J].Chem. Mater, 2003,15: 4476-4483.
    
    [8] Zhang X, Ross Jr. P N, Kostecki R, et al. Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles [J]. J.Electrochem. Soc., 2001,148:A463-A470.
    
    [9] Yuan R Z, Qu M Z, Yu Z L. Thermal stability of nickel-based lithium transition metal oxides as the cathode materials for lithium-ion batteries [J]. J. Inorg. Mater,2003,18: 973-979.
    [10] Chen C H, Liu J, Stoll M E et al. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries [J]. J. Power Sources, 2004, 128:278-285.
    [11] Lee K K, Yoon W S, Kim K B, et al. Characterization of LiNi_(0.85)Co_(0.10)M_(0.05)O_2 (M = Al, Fe) as a cathode material for lithium secondary batteries [J]. J. Power Sources, 2001, 308-312.
    [12] Zhang X, Ross Jr. P N, Kostecki R, et al. Diagnostic Characterization of High Power Lithium-Ion Batteries for Use in Hybrid Electric Vehicles [J]. J.Electrochem. Soc., 2001, 148: A463-A470.
    
    [13] Abraham D P, Poppen S D, Jansen A N, et al. Application of a lithium-tin reference electrode to determine electrode contribute to impedance rise in high power LIB [J]. Electrochim. Acta, 2004,49: 4763-4775.
    
    [14] Kim H B, Park B C, Myung S T, et al. Electrochemical and thermal characterization of AlF3-coated Li[Ni_(0.8)Co_(0.15)Al_(0.05)]O_2 cathode in lithium-ion cells [J]. J. Power Sources, 2008,179: 347-350.'
    [15] Belharouak I, Vissers D, Amine K. Thermal stability of the Li(Ni_(0.8)Co_(0.15)Al_(0.05))O_2 cathode in the presence of cell components [J]. J.Electrochem. Soc., 2006,153: A2030-A2035.
    [16] Belharouak I, Lu W Q, Vissers D, et al. Safety characteristics of Li(Ni_(0.8)Co_(0.15)Al_(0.05))O_2 and Li(Ni_(1/3)CO_(1/3)Mn_(1/3))O_2 [J]. Electrochem. Commun,2006, 8: 329-335.
    [17] Belharouak I, Lu W Q, Liu J. Thermal behavior of delithiated Li(Ni_(0.8)Co_(0.15)Al_(0.05))O_2 and Li_(1.1)(Ni_(1/3)Co_(1/3)Mn_(1/3))_(1.9)O_2 powders [J]. J. Power Sources, 2007,174:905-909.
    [18] Yoon W S, Hanson J, McBreen J, et al. A study on the newly observed intermediate structures during the thermal decomposition of nickel-based layered cathode materials using time-resolved XRD [J]. Electrochem. Commun., 2006, 8:859-862.
    [19] Lee K K, Yoon W S, Kim K B, et al. Characterization of LiNi_(0.85)Co_(0.10)M_(0.05)O_2 (M = Al, Fe) as a cathode material for lithium secondary batteries [J]. J. Power Sources, 2001, 308-312.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700