用户名: 密码: 验证码:
棉花形态建成模型与基于模型和GIS的数字棉作系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在综合国内外相关研究成果的基础上,以不同株型棉花品种为研究对象,运用系统分析原理和数学建模技术,综合棉花各个器官形态建成过程与温度之间的定量关系,构建了基于生长度日(growing degree day,GDD)的棉花主茎、叶片、叶柄、分枝、棉铃形态生长模型和干物质分配比例指数动态模型。应用面向对象的程序设计与软构件技术,在江苏省高信息技术研究试验室已有研究成果的基础上,以棉花生长模拟模型和管理知识模型为核心,以WebGIS为空间信息管理平台,运用软件工程的思想,采用B/S(Browser/Server)模式,实现了基于模型和GIS技术的数字棉作系统(model and webGIS based decision support system of cotton management,MBWDSSCM)。具体研究结果如下:
     (1)系统分析了光温生态因子对棉花叶片长、宽,叶柄长、粗,主茎节间长、粗,果节长、粗,蕾铃高、直径等形态发生的影响,量化了温度、光照时间与棉花各器官形态建成的关系,构建了基于GDD、以Logistic方程为基础的棉花形态建成光温模型。利用同年南京相应条件下的试验数据对模型进行了检验,检验结果表明,棉花主茎叶片长度、宽度、叶柄长、主茎节间长、主茎节间粗和果枝叶片长度、宽度、叶柄长度、果节长度、果节直径、蕾铃高度和直径的RMSE值范围分别为0.48cm、0.65cm、0.53cm、0.09cm、0.02cm、0.55cm、0.28cm、0.23cm、0.14cm、0.17cm、0.20cm、0.11cm。棉花器官形态指标的模拟值与检验值具有较好的吻合度,说明模型具有较好的预测性和描述性。
     (2)通过对紧凑型株型棉花品种33B主茎和果枝单位主茎、分枝、叶片、叶柄及蕾铃等器官干物重的连续观测和定量分析,构建了棉花地上部各单位器官干物质分配比例指数动态模拟模型。模型采用线性和指数方程描述了叶片、叶柄、主茎、分枝及蕾铃单位器官分配比例指数随GDD的动态变化过程;分别用指数方程及一元二次方程描述了叶片、叶柄、主茎、分枝及蕾铃单位分配比例指数随不同叶位、节位的动态变化过程。利用同年本试验室所获取的棉花品种33B干物质积累资料,初步检验了本模型预测的棉花品种33B不同单位器官在不同GDD时刻的干物质分配比例指数的动态变化。结果表明,模型对主茎、主叶、主柄、主茎分枝、果叶、果柄、果枝茎、蕾铃等单位器官在不同GDD时刻的比例指数动态过程均有较好的预测性,模拟值和观测值之间的RMSE平均值分别为0.028、0.017、0.013、0.035、0.021、0.009、0.011、0.014。从干物质分配比例指数观测值与模拟值间的1∶1关系图也可以看出,整个生育期内,除果枝茎、果叶、果柄的模拟值略高外,其他各单位器官干物质分配比例指数的模拟值与实测值吻合度均较好,变化趋势也比较一致。棉花形态生长模型的构建为基于生理生态过程的棉花结构一功能形态模拟模型的构建及虚拟生长系统的研制奠定了基础。
     (3)运用软构件和参数化技术,决策支持与系统设计技术,结合GIS空间技术,充分发挥模拟模型的动态预测功能、GIS的空间信息管理功能、知识模型的管理决策功能,最终建立了基于数字模型和模拟分析的网络化数字棉作栽培管理决策系统,该系统以品种、气候、土壤、生产条件等作为基本输入,可为用户提供棉作区划、方案设计、模拟预测、方案评估和动态调控等功能。
     利用华北地区及江苏部分县市的资料,对系统进行了测试。结果表明,系统的设计思想和结构框架符合现代农业决策支持系统的发展要求,实现了农业生产的信息化和数字化管理。与以往的棉花管理决策支持系统相比,基于模型和GIS技术的数字棉作系统较好地综合了棉花生长模拟模型、管理知识模型和GIS技术的优点,因而具有以下鲜明的特点:①在系统结构方面,采用典型的三层B/S结构,数据的产生和表现完全分离,方便系统维护。②系统安全性较高,系统授予不同角色的用户不同权限,很好的保证了系统数据的安全,确保了系统稳定运行。③在操作方面,界面友好,模型与WebGIS的结合大大改善了系统的输入输出界面,易于直观形象地展示运行结果。④在功能方面,决策全面,系统可以提供棉花产前方案设计、产中动态调控、产后效益分析及生产环境管理等贯穿棉花生产全过程的信息化决策支持服务。系统的实现为棉花生产系统的数字化预测、设计、评价和调控提供了支持。
Based on the integration of domestic and overseas production correlative to this study, whose object is cotton of different plant type,the simulation model of morphologic change and dry matter partitioning index dynamics of main stem,leaves,petiole,fruit branch and cotton boll were constructed based on accumulated growing degree day(GDD) by using the system analysis method and mathematical modeling technique,and integration the quantificational connection of every organ's morphologic growth.Applying the object-oriented programming and component technology,on the basis of current research result of cotton in the key laboratory of high technique information research in Jiangsu, coupling with cotton simulation model,management knowledge model and GIS technique, a digital and web cotton farming system based on model and GIS was developed by using software engineering method and Browser/Server(B/S) structural pattern.The main results of the present study are summarized as following:
     (1) With consideration of growing degree day and day length factor to length and width morphologic indexes of cotton stem,leaf,petiole,branch,cotton boll,an ecological model of cotton morphology formation based on growing degree day and Logistic equation were developed.The model were validated by experiment data from Nanjing,the result showed that the value of RMSE of leaf length and width,petiole length and width,main stem internodes length and width,sympodial stem intemodes width,cotton boll height and diameter was 0.48cm、0.65cm、0.53cm、0.09cm、0.02cm、0.55cm、0.28cm、0.23cm、0.14cm、0.17cm、0.20cm、0.11cm,respectively,which indicated the model was accurate and the prediction were better.
     (2) With quantitative analysis and time-course observations,a simulation model on the dry matter partitioning index dynamics for tighten cotton cultivar 33B was conducted. The dynamic change of the unit organ partitioning ratio index could be characterized by linear and exponential equation,respectively for stem internode,leaf,petiole,and cotton bud and boll in relation to accumulated GDD.The changes of partitioning ratio index for unit organ could be described by exponential equation and quadratic equation with different stem internode,leaf,petiole,and cotton bud and boll according to different internode positions on main stem and sympodial stem.The model was validated by the independent field experiment data from lab.The average RMSE between the simulated and observed values for the dry matter partitioning ratio index of unit organs on main stem and sympodial stem with 33B cultivars was 0.028、0.017、0.013、0.035、0.021、0.009、0.011、0.014 for stem,leaf,petiole,branch on main stem,and branch,leaf,petiole and cotton bud and boll on fruit branch,respectively.The results indicated that the present model had a good performance in predicting the dynamic changes in the dry matter partitioning ratio index for tighten cotton cultivar,it will be a foundation for further constructing structure-functional model based on eco-physiological process and visual organ growth system in cotton.
     (3) With integrating the advantage of prediction of simulation model,spatial information management of GIS technologies,decision support of management knowledge model,a digital and web cotton fanning system based on model and GIS was developed by full utilizing the technologies of software component and parameter method,decision support and system design,GIS spatial technique.By inputting the parameters of varieties, climate,soil and production condition,this system realized the functions of cotton farming zone,cultivation strategy design,growth prediction,scheme evaluation,dynamic regulation and so on.
     Case of study and testing of the system were carried out with the data from eco-sites of Jiangsu province and Northern area of China.The result indicated that the design idea and structure framework of system met the development demand of modern agricultural decision support system,and realized informationization and modernization of agriculture production management.Compared with those former decision support systems for crop management,this system integrated inherits of cotton growth model,management knowledge model and GIS technology,and has several good characteristics as below: Firstly,Four layers of B/S structure are convenient to maintain the system.Secondly,at the point of structure,the system warrants user different authority to ensure the safety of data.Thirdly,system interface is more friendly and simple,user can operate the system easily and doesn't need to download any plug-ins.Finally,at the point of function,it could dynamically design cultivation strategy,simulate the process of cotton growth and development,make analysis on production level and offer information service through whole growth period.This system provide support for digital prediction,design, evaluation and dynamic control in the whole cotton production system,which provided digital and scientific support for cotton production system,and sent basis for transition from traditional cultivation to precise and digital farming.
引文
[1]唐启国.浅谈农业现代化与农业信息化建设[J].农业现代化研究,2004,25(1):56-58.
    [2]曹卫星,朱艳,田永超,等.数字农作技术研究的若干进展与发展方向[J].中国农业科学,2006,39(2):281-288.
    [3]曹卫星主编.农业信息学[M].北京:农业出版社,2004:1-14.
    [4]Rao M N,Waits D A,Neilsen M L.A GIS-based modeling approach for implementation of suitable farm management practices[J].Environmental Modeling and Software,2000,15(8):745-753.
    [5]Kersebaum K C,Lorenz K,Renter H I,Schwarz J,Wegehenkel M,Wendroth O.Operational use of agro-meteorological data and GIS to derive site specific nitrogen fertilizer recommendations based on the simulation of soil and crop growth processes[J].Physics and Chemistry of the Earth,2005,(30):59-67.
    [6]Guoxin Tan,Ryosuke Shibasaki.Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration[J].Ecological Modeling,2003,168:357-370.
    [7]Christopher L.Lant,Steven E.Kraft,Jeffrey Beaulieu etc.Using GIS-based ecological economic modeling to evaluate policies affecting agricultural watersheds[J].Ecological Modeling,2005,55:467-484.
    [8]吕新,魏亦农,李少昆.基于GIS的土壤肥力信息管理及棉花施肥推荐支持决策系统研究[J].中国农业科学,2002,35(7):883-887.
    [9]周留根,周治国,曹卫星,等.基于知识模型和GIS的棉花生产潜力评价系统[J].棉花学报,2005,17(2):112-121.
    [10]潘学标.基于GIS的中国县域棉花生产空间分布与变异研究[J].中国农业科学,2003,36(4):382-386.
    [11]刘小军,朱艳,姚霞,等.基于WebGIS的农业空间信息管理及辅助决策系统[J].农业工程学报,2006,22(5):125-129.
    [12]潘瑜春,王纪华,赵春江,等.基于网络GIS的作物品质监测与调优栽培系统[J].农业工程学报,2004,20(6):120-123.
    [13]张伟.数字农业空间信息管理平台开发研究—以上海市农工商现代农业园区为例[D].华东师范大学博士学位论文,2004.
    [14]刘虹.雅安市农业信息系统研制[D].四川农业大学硕士学位论文,2003.
    [15]李苏.建立和完善农业信息系统[J].农业经济问题,1998(11):56-57.
    [16]黄萕.加快农业信息化建设的思考[J].计算机与农业,2001(11):1-3.
    [17]傅洪勋.中国农业信息化发展研究[J].农业经济问题,2002(11):44-47
    [18]郭瑞林.我国农业信息化的内涵、现状及发展对策[J].农业系统科学与综合研究,1999(2):117-120
    [19]程明华,陈建平.3S技术在农业中的应用[J].山西农业科学,2006,34(2):15-17.
    [20]孙成明,袁登荣.地理信息系统的农业应用与进展[J],上海农业学报,2004,20(3):99-101.
    [21]潘瑜春,赵春江.地理信息技术在精确农业中的应用[J],农业工程学报,2003,19(4):1-6
    [22]单美.GIS与RS的农业应用前景与展望[J].计算机与农业,2000,11:33.
    [23]石磊,徐芳森.精确农业的内涵及其发展前景[J].山地农业作物学报,2003,22(3):253-258
    [24]马桂莲,江洪涛,张琴.精准农业—3S技术的应用[J].延边大学农学学报,2002,24(3):219-222
    [25]蒋红军.基于模型和3S的数字麦作支持系统研究[D].南京农业大学硕士学位论文,2007:7-9
    [26]曹卫星,罗卫红.作物系统模拟与智能管理[M].北京:华夏英才出版社,2000.
    [27]Blachmore B S.An information system for precision farming.In:Bright on Crop Protection conference:Pests & Diseases-1996,Vol.3:Proceesdings,Bright on UK.Farnham:British Crop Protection Council,1996,1207-1214.
    [28]谢云,Kiniry J R.国外作物生长模型发展综述[J].作物学报,2002,28(2):190-195.
    [29]Timsina J,Humphreys E.Performance of CERES-Rice and CERES-Wheat Models in Rice-Wheat Systems:A Review[J].Agricultural Systems,2006,90:5-31.
    [30]林忠辉,莫兴国,项月琴.作物生长模型研究综述[J].作物学报,2003,29(5):750-758.
    [31]傅京生,蔡自兴.人工智能及其应用[M].北京:清华大学出版社,1986.
    [32]林尧瑞,张钹,石纯一.专家系统原理与实践[M].北京:清华大学出版社,1988
    [33]吴泉源.人工智能与专家系统[M].长沙:国防科技出版社,1995.
    [34]曹卫星,朱艳.作物管理知识模型[M].北京:中国农业出版社,2004:1-15.
    [35]王磊.建设农业信息网络、促进农业信息化发展[J].安徽农业科学,2000,28(3):543-545
    [36]潘爱民著.COM原理与应用[M].北京:清华大学出版社,1999.
    [37]熊范纶,淮小永,丁立志.基于软构件技术的新一代专家系统开发平台-雄风6.0[J].模式识别与人工智能,1999,(12):8-17.
    [38]Blachmore B S.An information system for precision fanning.In:Bright on Crop Protection conference:Pests & Diseases-1996,Vol.3:Proceesdings,Bright on Uk.Famham:British Crop Protection Council,1996,1207-1214.
    [39]de Wit C T.Photosynthesis of leaf canopies[J].Agriculture Research Report,1965,42:663-671.
    [40]Duncan W G,Loomis R S,Williams W A,et al.A model for simulation photosynthesis in plant communities[J].Hilgardia,1967,38:181-205.
    [41]de Wit C T.Dynamic concepts in biology.In:Prediction and Management of Photosynthesis Productivity.Proceedings International Biological Program/Plant Production Technical Meeting Wageningen,Netherlands:PUDOC,1970,17-23.
    [42]Penning de Vries,F W T.van Laar H H.Simulation of plant growth and crop production.In:Penning de Vries F W T,van Laar H H.Simulation Monographs.Wageningen,Netherlands:PUDOC,1982:114-136.
    [43]van Kenlen H.Crop production under semi-arid conditon,as determinted by nitrogen and moisture availability.In:Penning de Vfies F W T.Van laar H H.Simulation Monographs. Wageningen,Netherlands:PUDOC,1982:234-251.
    [44]Penning de Vries,F W T,Jansen D M,ten Berge H F M,et al.Simulation of ecophysiological processes of growth in several annual crops.Simulation Monogrophs.Wageningen.Netherlands:PUDOC,1989:271-279.
    [45]van Larr H H,Goudriaan J,van Keulen.Simulation of crop growth for potential and water-limited production situation.Simulation Report CABO-TT27,CABO-DLO,Wageningen,1992.
    [46]Jones C A,Kiniry F R.CERES-Maize:A Simulation model of maize growth and development College station,US:Tesas S&M Univ.Press,1986.
    [47]Ritchie J T,Otter S.Description and performance of CERES-Wheat:A user-oriented wheat yield model.USDA-ARS,ARS:1985,38:159-175.
    [48]Ritchie J T,Godwin D C.CERES-Wheat.Michigan State University.US.1988.
    [49]Ritchie J T,Alocija E C.IBSNAT and the CERES-Rice.In:Weather and Rice.IRRI,Los Banos,Philippines,1987,271-281.
    [50]黄策,王天铎.水稻群体物质生产过程的计算机模型[J].作物学报,1986,12:1-8.
    [51]高亮之,金之庆,黄耀,等.水稻计算机模拟模型及其应用之一:水稻钟模型-水稻发育计算机模型[J].中国农业气象,1989,10(2):3-10.
    [52]高亮之,金之庆,黄耀.水稻栽培计算机模拟优化决策系统[M].中国农业科技出版社,1992.
    [53]Cao W,Moss D N.Modeling phasic development in wheat:an integration of physiological components[J].Journal of Agriculture Science,1997,129:163-172.
    [54]严美春,曹卫星.小麦发育过程及生育期机理模型的检验和评价[J].中国农业科学,2000,33(2):43-50.
    [55]潘学标.COTGROW棉花生长发育模拟模型[D].北京农业大学博士论文,1995.
    [56]冯利平,高亮之.小麦生育期动态模拟模型的研究[J].作物学报,1997,23(4):418-424.
    [57]李秉柏,方娟.棉花生育期模拟模型的研究[J].棉花学报,1991,3(2):59-68.
    [58]刘文,王恩利.棉花生长发育的计算机模拟模型初探[J].中国农业气象,1992,13(6):10-16.
    [59]于强.玉米株型与光合作用的数学模拟研究:Ⅰ.模型与验证[J].作物学报,1998,24(1):7-15.
    [60]郑国清,张瑞玲,等.我国玉米计算机模拟模型研究进展[J].玉米科学,2003,11(2):66-70.
    [61]Prusinkiewcz P,Hanan J.Lindenmayer systems,fractals and plants.Lecture Notes in Biomathematics[J].Berlin:Spinger-Verlag,1989.
    [62]Prusinkiewcz P,Lindenmayer.A.The algorithmic beauty of plants[J].New York:Spinger-Verlag,1990.
    [63]Smith G S,Curtis J P,Edwards C M.A method for analyzing plant architecture as it relates to fruit quality using three-dimeusional computer graphics[J].Annals of Botany,1992,70(3):265-269.
    [64]Fournier C,Andrien B A.3D architectural and process-based model of maize development[J].Annals of Botany,1998,81:233-250.
    [65]Kaitaniemi P,Hanan J S,Room P M.Virtual sorghum:visulalization of partitioning and morphogenesis[J].Computers and Electronics in Agriculture,2000,28(3):195-205.
    [66]Watanebe T,Room P M,Hanan J S.Virtual Rice:simulating the development of plant architecture[J].International Rice Research Notes,2001,26(2):60-62.
    [67]金明现,王天铎.玉米根系生长及向水性的模拟[J].植物学报,1996,38(5):384-390.
    [68]张录达,李少昆,赵明,等.玉米植株几何形态特征的统计模型研究[J].作物学报.1998,24(5):635-638.
    [69]郭焱,李保国.玉米冠层三维结构研究[J].作物学报,1998,24(6):1006-1009.
    [70]郭焱,李保国.玉米冠层的数学描述与三维重建研究[J].应用生态学报,1999,10(1):39-41.
    [71]郭新宇,赵春江,刘洋.基于生长模型的玉米三维可视化研究[J].农业工程学报,2007,23(3):121-125.
    [72]展志刚,王一鸣,Philippe de Reffye.冬小麦植株生长的形态构造模型研究[J].农业工程学报,2001,17(5):6-11.
    [73]陈国庆.小麦形态建成模型及虚拟小麦研究[D].山东农业大学硕士论文,2004.
    [74]谭子辉,朱艳,姚霞,等.冬小麦麦穗生长过程的模拟研究[J].麦类作物学报,2006,26(4):93-97.
    [75]石春林,金之庆,曹卫星.水稻植株的虚拟生长[J].江苏农业学报,2006,22(2):105-108.
    [76]严小龙,廖红.植物根构型特性与磷吸收效率[J].植物学通报,2000,17(6):511-519.
    [77]Pierce J.Agricultural applications of expert systems concepts[J],Agriculture System,1989,9-18.
    [78]Lal H J.Jones W,FARMSYS-A:Whole farm machinery management decision support systems [J].Agriculture Systems,1992,38:257-273.
    [79]Montas H C,Bebder A,Mecarl B A.FINDS:Farm level intelligent decision support system[J].Applied Engineering in Agriculture.1989,5(2):73-82.
    [80]岳桂兰,郭景.水稻新品种选育专家系统的研制[J].辽宁农业科学,1997,2:32-39.
    [81]王蕾,傅泽田.网络化河蟹养殖专家系统的设计[J].中国农业大学学报,2002,7(4):52-58
    [82]汪志农,康绍忠.灌溉预报与节水灌溉决策专家系统研究[J].节水灌溉,2001,1:4-7.
    [83]刘有兆,何方.耕地适宜性评价专家系统的建立与运用[J].安徽农业大学学报,2001,28(3):326-330.
    [84]赵春江,诸德辉,李鸿祥.小麦栽培管理计算机专家系统的研究与应用[J].中国农业科学,1997,30(5):42-49.
    [85]上官周平,陈培元,李英.黄土旱塬小麦生产管理专家系统的设计与实现[J].水土保持学报,1995,9(4):75-83.
    [86]周兴根,王来花,冯国华.淮北小麦栽培专家系统的建立[J].计算机与农业,1998,4:16-17.
    [87]米湘成,邹应斌.水稻高产栽培专家决策系统的研制[J].湖南农业大学学报,2002,28:188-191.
    [88]廖桂平,官春云,吴泉源.油菜生产专家系统知识库构建[J].作物研究,2002,3:118-122.
    [89]曹永华,何唯勋,欧阳达.防御玉米低温冷害专家系统[J].农业系统科学与综合研究.1992,8(1):35-39.
    [90]Jones J W,Hoogenboom G,Porter C H,et al.The DSSAT eropping system model.European Journal of Agronomy,2003,18:235-265.
    [91]Engel T,Hoogenboom G,Jones J W.AEGIS/Win:a computer program for the application of crop simulation models across geographic areas[J].Agronomy Journal,1997,89(6):919-928.
    [92]Lant C L,Kraft S E,Jeffrey Beaulieu,etc.Using GIS-based ecological economic modeling to evaluate policies affecting agricultural watersheds[J].Ecological Modeling,2005,55:467-484.
    [93]Montas H,Madramootoo C A.A decision support system for soil conversation planting[J].Computers and Electronics in Agriculture,1992,7:187-202.
    [94]Kersebaum K C,Lorenz K,Reuter H I.Operational use of agro-meteorological data and GIS to derive site specific nitrogen fertilizer recommendations basedon the simulation of soil and crop growth processes[J].Physics and Chemistry of the Earth,2005,30:59-67.
    [95]潘洁.小麦生长模拟与决策支持系统的研究[D].南京:南京农业大学博士论文,2005.
    [96]李卫国.水稻生长模拟与决策支持系统的研究[D].南京:南京农业大学博士论文,2005.
    [97]张立桢.基于过程的棉花生长发育模拟模型研究[D].南京:南京农业大学博士论文,2005.
    [98]汤亮.油菜生长模拟与决策支持系统的研究[D].南京:南京农业大学博士论文,2006.
    [99]花登峰.基于构件化生长模型的作物管理决策支持系统[D].南京农业大学硕士论文,2007.
    [100]沈维祥.基于知识模型的油菜管理决策支持系统研究[D].南京农业大学硕士论文,2002.
    [101]朱艳.基于知识模型的小麦管理决策支持系统的研究[D].南京农业大学博士论文,2003.
    [102]张怀志.基于知识模型的棉花管理决策支持系统的研究[D].南京农业大学博士论文,2003.
    [103]严定春.水稻管理知识模型及决策支持系统的研究[D].南京农业大学博士论文,2004.
    [104]蒋红军.基于模型和3S的数字麦作支持系统研究[D].南京农业大学硕士论文,2007.
    [105]Wanjura D F,Buxton D R,Stapleton H N.A temperature model for predicting initial cotton emergence[J].Agronomy Journal,1970,62:741-743.
    [106]Duncan W G.SIMCOT:A simulation of cotton growth and yield,In Proc.Workshop on tree growth dynamics and modeling[J].Duke University,1972,115-118.
    [107]Baker D N,Lammert J R,Mckinion J M.GOSSYM:A simulation of cotton growth and yield[M].South Colorado Agricultural Experiment Station Technical Bulletion,1983.
    [108]Jones J W,Brown L G,Hesketh J D.COTCTOP:A computer model for cotton growth and yield.In:Hesbeith J D,Jones J Weds.Predicting Photosynthesis for Ecosystem Model(C).CRC Publication,1980(2):209-241.
    [109]Mckinion J M,Jones J M.SIMCOT:A simulation of cotton growth and yield in computer simulation of a cotton production system[J].A User's Manual,ARS-S-52,1975,27-82.
    [110]刘斌章.岱字—15号棉花果实动态模型及其与棉红铃虫相互关系的初步研究[J].昆虫学研究集刊,1984,4:85-96.
    [111]吴国伟.棉花生长发育模拟模型研究[J].生态学报,1988(3):201-210.
    [112]唐仕芳.水分胁迫下棉花生长发育动态模拟研究.作物生产计算机调控系统的研究[C].北京:北京农业大学出版社,1990.
    [113]潘学标.一个棉花高产栽培生育动态模型CGSM[J].研究通讯.1992(1):91-91.
    [114]李秉柏,方娟.棉花生育期模拟模型的研究[J].棉花学报,1991,3(2):59-68.
    [115]董占山,潘学标,邓绍华,等.棉花生长发育与产量潜力的模拟[J].棉花学报,1992,(4):21-30.
    [116]肖荧南,戴逸民.棉花优质高产的定苗计算和决策[M].中国科技大学出版社,1995.
    [117]潘学标.COTGROW棉花生长发育模拟模型[D].北京农业大学博士论文,1995.
    [118]马新明.棉花蕾铃发育及产量形成的模拟模型(COTMOD)[D].南京农业大学博士论文,1996.
    [119]张立桢.基于过程的棉花生长发育模拟模型研究[D].南京农业大学博士论文,2003.
    [120]马富裕.棉铃发育及纤维品质形成的生态效应与模拟研究[D].南京农业大学博士论文,2004.
    [121]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟与检验[J].中国农业科学,2006,39(3):487-493.
    [122]陈兵林,曹卫星,周治国,朱艳.棉花纤维品质指标的时空分布模型研究[J].作物学报,2007,33(5):763-770.
    [123]Hanan J S,Hearn A B.Linking physiological and architectural models of cotton[J].Agricultural System,2003,75(1):47-77.
    [124]Room P M,Hanan J S.Virtual cotton:a new tool for research,management and training.In:Constable G A et al.Proceedings of the world Cotton Research Conference-1.Challenging the Future[C].Brisbane,Melbource:CSIRO Australia,1995,40-44.
    [125]Jallas E,Martin P,Sequeira R,et al.Virtual COTTONS,the Firstborn of the Next Generation of Simulation Model[J],Virtual World,2000:235-244.
    [126]张吴平,李保国.棉花根系生长发育的虚拟研究系统[J].仿真学报,2006,8(1):283-286.
    [127]杨娟,赵明,潘学标.基于NURBS的棉花器官建模[J].计算机工程与应用,2005,41(30):185-188.
    [128]Hearn A B,Ives P M,Room P M.Computer-based cotton pest management in Australia[J].Field Crop Research,1981,4:321-332.
    [129]Heam A B,Daroza G D.A simple model for crop management application for cotton (Gossypinm hirsutum L)[J].Field Crop Research,1985,12:49-69.
    [130]Stone N D.COTFLEX,A modular expert system that synthesizes biological and economic analysis:the pest management advisor as an example[A].Proceeding of Beltwide Cotton Production.Research Conference[C],1987
    [131]Plant K E,Wiston L T.CALEX/cotton:an expert system-based management aid for California cotton growers[A].Proceeding of Beltwide Cotton Production Research.Conference[C],1987.
    [132]Olson R L,Wagner T L.Design and implementation of rbWHIMS:An expert system for cotton management[A],Proceeding of Beltwide Cotton Production Research Conference[C],1992.
    [133]Lemmon H.COMAX:An expert for cotton crop management[J].Science,1986,233:29-33.
    [134]Mckinion J M,Baker D N.Application of the GOSSYM/COMAX system to cotton crop management[J].Agriculture Systems,1989,31:31-35.
    [135]郭向东,肖荧南,陈端生.棉花管理专家系统的设计[J].农业工程学报,1991,7(2):66-71.
    [136]董占山,潘学标,吴同礼,等.棉花生产管理决策支持系统CPMSS的设计与实现[J].农业网 络信息,1993(1):16-19.
    [137]郑曙峰,唐胜.江淮丘陵棉区棉花生产计算机管理决策系统(AHCCE)的研究[J].棉花学报,1999,11(4):191-194.
    [138]冯利平,韩学信.棉花栽培计算机模拟决策系统COTSYS[J].棉花学报,1999,11(5):251-254.
    [139]Hutchinson J F.Climatic analysis in data sparse regions.In:Muchow R C and Bellamy J A eds.Climatic Risk in Crop Production[C],CAB International,1991.55-71.
    [140]Hansen J W,Jones J W.Scaling-up Crop Models for Climate Prediction Applications[J].Agricultural Systems,2000,65(1):43-72.
    [141]Hammer G L,Muchow R C.Quantifying climatic risk to sorghum in Australia's semi-arid tropics and subtropics:Model development and simulation.In:Muchow C R,and Bellamy J A eds.Climatic Risk in Crop Production:Models and management for Semi-arid Tropics and Subtropics[C],CAB International,Wallingford.England,1991,205-232.
    [142]董美对,何勇,赵云飞.精确农业21世纪的农业工程技术[J].浙江大学学报,2000,26(4):433-436.
    [143]党安荣,阎守邕.基于GIS的中国土地生产潜力研究[J].生态学报,2000,20(6):910-915.
    [144]潘学标.基于GIS的新疆棉花生产发展时空变异分析[J].干旱区地理,2000,23(7):199-206.
    [145]邱建军,宇振荣.新疆棉花单产潜力预测研究[J].中国棉花,1998,25(11):8-10.
    [146]周治国.区域作物生产管理地理信息系统的研究与应用[D].南京农业大学博士后论文,2001.
    [147]郑重.基于GIS的农三师棉花平衡施肥微机决策系统[D].石河子大学硕士论文,2002.
    [148]刘洪.基于作物模型的棉花生产潜力和气候风险分析[D].中国农业大学博士论文,2002.
    [149]赵艳霞,秦军,周秀骥.遥感信息与棉花模型结合反演模型初始值和参数的方法研究[J].棉花学报,2005,17(5):280-284.
    [150]中国农业科学院棉花研究所主编.中国棉花栽培学[M].上海:上海科学技术出版社,1983.
    [151]姜爽.基于棉花形态模型的虚拟生长系统研究[D].南京农业大学硕士论文,2007.
    [152]张立桢,曹卫星,张思平.棉花干物质分配和产量形成的动态模拟[J].中国农业科学,2004,37(11):1621-1627.
    [153]常丽英,汤亮,曹卫星,朱艳.水稻地上部单位器官物质分配过程的定量模拟[J].中国农业科学,2008,41(4):986-993.
    [154]王欣,郑贵州.网络地理信息系统的特点与实现方法[J].计算机与现代化,2002(8):40-43
    [155]王艳红.几种Web数据库技术的比较研究[J].北京广播电视大学学报,2002(1):41-47.
    [156]萨师煊,王珊.数据库系统概论[M].北京:教育出版社,2000:153-157.
    [157]冯能山.轻松学—ASP网络实用编程[M].北京:清华大学出版社,2002.
    [158]Sbelley Powers.ASP组件开发指南[M].北京:中国电力出版社,2002.
    [159]张立.C#2.0宝典[M].北京:电子工业出版社,2007.
    [160]张宏森,朱征宇.四层B/S结构及解决方案[J].计算机应用研究,2002,(9):20-22
    [161]宋有洪,郭焱,李保国,Philippe de Reffye.基于器官生物量构建植株形态的玉米虚拟模型.生态学报,2003,23(12):2579-2586.
    [162]de Reffye P,Blaise F,Chemouny S,et al.Calibration of hydraulic growth model on the architecture of cotton plants.Agronomie:Agriculture & Environment.1999,19,265-280.
    [163]Foumier C,Andrieu B.ADEL-maize:an L-system based model for the integration of growth process from the organ to the canopy.Agronomie,1999,19,313-327.
    [164]Chelle M,Andricu B.Radiative models for architecture modeling.Agronomie 1999,19:225-240.
    [165]刘铁梅,曹卫星,罗卫红,等.小麦器官间干物质分配动态的定量模拟[J].麦类作物学报,2001,21:25-31.
    [166]孟亚利,曹卫星,柳新伟,等.水稻地上部干物质分配动态模拟的初步研究[J].作物学报,2004,30:376-381.
    [167]Mareelis L F M.A simulation model for dry matter partitioning in cucumber[J].Annals of Botany,1994,74:43-52.
    [168]Singels A,Bezuidenhout C N.A new method of simulating dry matter partitioning in the Canegro sugarcane model[J].Field Crops Research,2002,78:151-164.
    [169]朱艳,曹卫星,王其猛,等.基于知识模型和生长模型的小麦管理决策支持系统[J].中国农业科学,2004,37(6):814-820.
    [170]刘布春,王石立,马玉平.国外作物生长模型区域应用中升尺度问题的研究[J].中国生态农业学报,2003,11(4):89-91.
    [171]林忠孝,莫兴国,李宏轩,等.中国陆地区域气象要素的空间插值[J].地理学报,2002,57(1):47-56.
    [172]于贵瑞,何洪林,刘新安,等.中国陆地生态信息空间化技术研究(Ⅰ)—气象/气候信息的空间化技术途径[J].自然资源学报,2004,19(4):537-544.
    [173]李正泉,于贵瑞,刘新安,等.东北地区降水与湿度气候资料的栅格化技术[J].资源科学,2003,25(1):72-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700