用户名: 密码: 验证码:
浅海条件下主动声呐目标探测若干方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高主动声呐系统对目标的探测能力,本文以浅海水声环境为应用场合,以线谱信号为主线,分别针对高分辨能力声呐信号设计及其检测方法、线谱信号高分辨频率估计方法以及基于单频水声信号的多径时延估计算法等方面,进行了深入系统的理论和实验研究,主要研究内容包括:
     1.在对常用声呐信号以及传统梳状谱信号进行分析的基础上,提出了一种新的梳状谱信号设计方法。该波形设计方法通过在频点间加入一比例序列作为抗速度模糊频率间隔,有效的降低了多普勒频谱混叠,并根据梳状谱信号的频谱特点,利用分集发射的形式,并对每帧信号设定不同的多普勒测速范围及频带范围,不但更高效的利用频带资源,而且可以有效提高系统的探测帧率。仿真分析证明了本文提出的设计方法具有更好的时延与频移分辨能力,并有效提高了系统的测速精度以及混响抑制能力。针对梳状谱信号峰均功率比较高的特点,提出了一种改进的快速相位优化算法,新方法在保证计算量显著减小的前提下,能有效的降低发射信号的峰均功率比。
     2.针对梳状谱信号检测的问题,提出一种基于频域匹配搜索的梳状谱信号检测方法。梳状谱信号的多普勒容限较小,针对传统的多匹配/拷贝相关检测方法运算量较大的问题,本文根据梳状谱频谱多峰结构的特点,提出了一种基于频域匹配搜索的检测算法:利用信号与噪声频域分布的差别,通过在频域对频点匹配搜索积累的方法实现了对于多普勒回波信号的检测以及速度估计,有效的降低了运算量。针对低信噪比条件下信号检测的问题,根据梳状谱信号的特点,通过瞬时相关积分法有效提高了接收信号的信噪比。仿真实验证明在噪声、混响条件下,本文算法均具有较好的信号检测以及速度估计能力,将此预处理方法与频域搜索方法相结合可进一步提高其检测与估计性能。
     3.针对低信噪比条件下的线谱信号频率提取问题,提出了基于双递归自适应滤波的高精度频率估计算法。对线谱信号频率的提取一直是目标特征估计的重要参数,传统的频率估计方法如:短时傅里叶变换方法、准正交采样频率估计方法、过零频率估计方法、基于时频分析的频率估计方法等,或受限于计算量或对噪声比较敏感。基于二阶自适应陷波滤波器结构的自适应瞬时频率估计器,其算法简单,可实现对信号的滤波、幅度及相位估计,本文对其基本原理以及其性能进行了详细的描述,并推导了Notch滤波器滤波输出瞬时频率方差与滤波器中心频点以及信噪比条件的关系,根据以上分析提出了一种基于双递归自适应滤波的频率估计方法,通过将多个自适应Notch滤波器组成递归环路,通过对滤波器输出瞬时频率方差的分析进行滤波器参数的更新,以达到更优的滤波输出结果。仿真分析表明:双递归自适应滤波方法具有良好的噪声抑制能力,能够实现低信噪比条件下的信号检测与频率估计。
     4.针对线谱信号多途时延提取的问题,提出了基于同态滤波的时延估计算法。针对窄带信号多途时延估计的问题,推导了倒谱算法获取多途时延估计的原理,针对其对噪声较敏感的问题,提出了一种基于对数域谱减法的同态滤波时延估计算法:利用主动系统的特点,充分利用信号的先验信息,将信号项在对数域消除,并对相减后的信号通过滤波算法消除其残余的信号成分以及噪声项,再将信号恢复到时域,以得到多途时延信息。仿真实验证明,基于同态滤波的多途时延估计方法具有很高的估计精度,与直接进行复倒谱运算相比,有效的提高了其抗噪声能力,而且对于信号的多普勒频移也具有很好的适应能力。
To improve the passive sonar system’s ability of target detection and parameterestimation, the shallow water environment was considered in this paper, against theline-spectrum signal, design and detection method of high resolution sonar signal, linespectrum signal high-resolution frequency estimation method and multipath time-delayestimation method for single frequency acoustic signal were analyzed researched theoreticallyand experimentally, respectively. The key contributions are as follows:
     1. Based on the analysis of common sonar signal and traditional comb spectrum signal, anew method of comb spectrum signal design was proposed. The Doppler spectrum aliasingwas reduced effectively by adding a ratio of equal sequence in frequency as an anti-speedfuzzy frequency interval. According to the spectrum characteristics of comb spectrum signals,a set of comb spectrum signals with different Doppler tolerance and frequency range werelaunched. Consequently, the efficiency of frequency resources and frame rate of the systemwere improved. Simulation results demonstrated the better time delay and frequencyresolution, as well as the improved speed measuring precision and reverberation suppressionability of the system. Focusing on the high peak to average power ratio (PAPR) of the combspectrum signals, a quick phase optimization algorithm was presented. The PAPR of thesignal was reduced effectively on the basis of dramatically decreased computation.
     2. A detection method of comb spectrum signal based on the matching search infrequency domain was proposed. The Doppler tolerance of comb spectrum signal is small.Considering the huge computation of traditional matching/copies correlation method andmulti-peak characteristics of comb spectrum signal, a detection algorithm based on frequencydomain matching search was proposed. The frequency distribution difference between signaland noise was used. Doppler echo signal detection and velocity estimation were achieved bysearching the matched point and accumulation in the frequency domain. Furthermore, theamount of computation was reduced effectively. In view of the signal detection problems inlow SNR, the signal-to-noise ratio of the received signal was greatly improved through theinstantaneous correlation integral method based on the characteristics of the comb spectrumsignal. Simulation results showed that in the noise and reverberation conditions, the proposedalgorithm had better performance of signal detection and velocity estimation. Theperformance could be further improved by combining the frequency domain search methodand instantaneous correlation integral method.
     3. Focused on the frequency extracting in low signal-to-noise ratio, a high-accuracyfrequency estimation algorithm based on the double recursive adaptive filtering was proposed.The extracted line spectrum frequency was an important parameter to estimate the targetfeatures. The traditional frequency estimation methods, such as short time Fourier transformmethod, quasi-orthogonal sampling frequency estimation method, zero frequency estimationmethod and time-frequency analysis method, were either limited by calculation or sensitive tonoise. The algorithm of the frequency estimator which was based on second-order adaptivenotch filter (ANF) was simple. The signal filtering, amplitude and phase estimation could alsobe achieved. The basic principle and performance were described in detail. Based on theanalysis of the relationship of the output instantaneous frequency variance and centerfrequency of the notch filter versus SNR were deduced, a frequency estimation method usingthe dual-recursive adaptive filtering was presented. Multiple adaptive notch filters werecomposed as a recursive loop. A better filtering result was gained by updating the filterparameters based on the analysis of the output instantaneous frequency variance. Simulationanalysis showed that this method had good noise suppression capability and could achievesignal detection and frequency estimation in low SNR.
     4. To estimate the multipath timedelay, a time delay estimation algorithm based onhomomorphic filtering was proposed. Focusing on the narrowband signal multipathtime-delay estimation, the principle of obtaining multipath time-delay through cepstrumalgorithm was deduced. Concerning the problem of its sensitivity to noise, a homomorphicfiltering delay estimation algorithm based on spectral subtraction in logarithm domain wasproposed. Taking advantage of the active system and the priori information of signal, signalwas eliminated in the logarithmic domain. The subtracted signal was filtered to eliminate theresidual signal component and noise. Then the signal was recovered to the time domain to getthe multipath time-delay information. Simulation results showed that the multipath time-delayestimation method based on homomorphic filtering had high estimation accuracy. Comparedto the direct complex cepstrum method, the proposed method effectively improved theanti-noise ability and adapted better to the Doppler frequency shift of the signal.
引文
[1]朱埜.主动声呐检测信息原理.海洋出版社,1990
    [2]秦臻.海洋开发与水声技术.海洋出版社,1984
    [3]林茂庸.雷达信号理论.国防工业出版社,1984
    [4] A.W Rihaczek. Radar waveform selection-A simplified approach. IEEE Transactionson Aerospace and Electronic Systems,1971, AES-7:1078-1086P
    [5] J.D. Park, D.J. Miller. Feasibility of range estimation using Sonar LPI. Conference onInformation Sciences and Systems,2010
    [6] J.D. Park, D.J. Miller. A study on the feasibillty of low probability of intercept sonar.Conference on Information Sciences and Systems,2009:284-289P
    [7] P. Willett, J. Reinert. LPI waveforms for active sonar. IEEE Aerospace ConferenceProceedings,2004,4:2236-2247P
    [8] G.R. Mellema. Improving the passive sonar picture through reverse-time tracking.Signal and Data Processing of Small Targets, Proceedings of SPIE,2006:62360O1-12P
    [9]朱埜.复杂信号双扩展目标回波在混响中的检测.中国声学学会2002年全国声学技术会议论文集
    [10]蔡汉添.关于有源声呐检测最佳波形.声学学报,1989,14(1):45-50页
    [11]杨崇林,姚蓝.探测高速小目标的声呐信号波形设计.声学技术,1999,18(3):112-115页
    [12]杨崇林,姚蓝.水下高速小目标探测中的信号波形设计研究.声学学报,2001,26(5):389-394页
    [13]刘冲,方世良.主动声纳组合波形抗混响性能研究.声学技术,2009,28(5):125-126页
    [14]周胜,林春生.主动声纳的混沌波形设计和解调方法.电子与信息学报,2010,32(5):1248-1252页
    [15]周胜,程文鑫.混沌检测在主动声纳中的应用研究.鱼雷技术,2009,17(1):35-39页
    [16]田坦,刘国枝,孙大军.声呐技术.哈尔滨工程大学出版社,2004
    [17] S. Ward. The use of sinusoidal frequency modulated pulses for low Doppler detection.Proc. Oceans MTS/IEEE,2001,4:2147-2151P
    [18] J.P. COSTAS. A study of a class of detection waveforms having nearly ideal rangeDoppler ambiguity properties. Proceeding of the IEEE,1984,72(8):996-1009P
    [19] J.P. COSTAS. Project medior-a medium oriented approach to sonar signal processing.HMED Tech.1966
    [20] S.P. Pecknold, W.M. Renaud. Improved active sonar performance using costaswaveforms. IEEE Journal of oceanic engineering,2009,34(4):559-574P
    [21] H. Cox, H Lai. Geometric comb waveforms for reverberation suppression. Proceedingof IEEE,1995,145(6):347–353P
    [22] T. Collins, P. Atkins. Doppler-sensitive active sonar pulse design for reverberationprocessing. IEE Proceeding of Radar, Sonar Navigation,1998,145(6):347-353P
    [23] T. Collins, P. Atkins. Nonlinear frequency modulation chirps for active sonar. IEEProceedings of Radar, Sonar and Navigation,1999,146(6):312-316P
    [24] J.M. Alsup. Comb waveforms for sonar. Proceeding of IEE on Signals, systems, andcomputers,1999,2:864-869P
    [25] J.M. Alsup. Sonar system and method employing a power-efficient triplet-pair combwaveform, USA.Patent,2002,349,073B1
    [26] J.M. Alsup. Power-efficient sonar system employing a waveform and processingmethod for improved range resolution at high Doppler sensitivity. USA.Patent,2002,466,515B1
    [27]姚东明,蔡志明.主动声纳梳状谱信号研究.信号处理,2006,22(2):256-259页
    [28]谢植广,王英民等.基于Costas信号的声呐目标探测性能分析.水声工程,2010,34(3):50-53页
    [29]陈绍华,张忠波等.主动声纳SFM信号的抗混响性能分析.声学技术,2011,30(3):268-270页
    [30]黄雄飞,苑秉成等.宽带多普勒声纳信号频谱特性分析,应用声学,2009,28(4):278-282页
    [31]梁国龙,张瑶,付进等.新型主动声呐梳状谱信号设计.哈尔滨工程大学学报,2012,33(3):302-307页
    [32]李宇,黄海宁,李淑秋等.新型抗混响梳状波形设计.声学技术,2003,22(2):389-391页
    [33] S. BOYD. Multitone signals with low crest factor. IEEE Transactions on CircuitsSystems,1986,33(10):1018-1022P
    [34] S. Narahashi, T. Nojima. New phasing scheme of Nmultiple carriers for reducingpeak-to-average power ratio. Electronic Letters,1994,30(17):1382-1383P
    [35] S. Narahashi, K. Kumagai, T. Nojima. Minimising peak-to-average power ratio ofmultitone signals using steepest descent method. Electronic Letters,1995,31(18):1552-1554P
    [36]袁沈浩,程小冬.梳状谱峰值控制算法.通信对抗,2004,4:40-42页
    [37]邓宇,李大芳,梅勇兵.多频率合成信号包络优化的初相搜索方法.电讯技术,2008,48(3):74-78页
    [38]杜谦,王旭宁,陈荩.降低梳状谱信号PSPR的初相优化法.雷达工程,2011,41(1):28-30页
    [39]段再超,肖丽萍.降低OFDM系统峰均功率比的研究.无线电通信技术,2010,36(1):19-21页
    [40]惠俊英,生雪莉.水下声信道.国防工业出版社,2007
    [41] D.A. Abraham, K.L. Hillsley. A robust model-based detector for active sonar. IEEEConference on Oceans,2001,4:2139-2146P
    [42] B. Fredelander. Detection of broadband signals in frequency and time dispersivechannels, Transaction on Signal Processing,1996,44(7):1643-1622P
    [43] M. Paul. On detecting linear frequency-modulated waveforms in frequency-andtime-dispersive channel: alternatives to segmented replica correlation. IEEE Journal ofOceanic Engineering,1994,19(4):591-598P
    [44]刘贯领,凌国民,严琪.梳状谱信号多拷贝快速匹配/相关检测技术.信号处理,2007,23(6):888-890页
    [45]赵申东,唐劲松,蔡志明.梳状谱信号的空时自适应处理.武汉理工大学学报,2008,32(5):937-940页
    [46] F. Raphael, P. R. Atkins. Mismatched filters for Doppler-sensitive active sonar pulses.Proceedings of the IEEE Conference on Signal and Image Precessing Applications,2011:150-155P
    [47] D.J Rabideau, P. Parker. Ubiquitous MIMO multifunction digital array radar.Proceedings of Conference on Signals, Systems and Computers,2003:1057-1064P
    [48] D.W Bliss, K.W Forsythe. Multiple-input multiple-output(MIMO) radar and imaging:degrees of freedom and resolution. Proceedings of Conference on Signals, Systemsand Computers,2003,1:54-59P
    [49] E. Fishler, A. Haimovich, R. Blum. MIMO Radar: an idea whose time has come.Proceedings of the IEEE Radar Conference,2004:71-78P
    [50] Bekkerman, J. Tabrikian. Target detection and localization using MIMO radars andsonars. IEEE Transaction Signal Processing,2006,54(10):3873-3883P
    [51] Li Wenhua, Chen Genshe, Blasch. Cognitive MIMO sonar based robust targetdetection for harbor and maritime surveillance applications. IEEE AerospaceConference Proceedings,2009
    [52] Ma Ning, Goh Joo Thiam. Ambiguity-function-based techniques to estimate DOA ofbroadband chirp signals. IEEE Transactions on Signal Processing,2006,54(5):1826-1839P
    [53]王福钋,李淑秋.迭代法MIMO声纳目标检测-一种凸显弱目标的方法.应用声学,2010,29(1):11-16页
    [54]张祥,王福钋,李淑秋.分布式MIMO声纳中运动目标参数快速估计.声学技术,2011,30(3):219-222页
    [55] J.G Huang, L.J Zhang, Y.S Hou. Modified subspace algorithms for doa estimationusing MIMO array. Proceedings of Conference on Signals Process,2008:195-198P
    [56] J.G Huang, L.J Zhang, Q.F Zhang. Performance analysis of DOA estimation forMIMO sonar based on experiments. IEEE Workshop on Statistical Signal Process,2009:269-272P
    [57]金勇,黄建国,蒋敏. MIMO声纳最小二乘方位估计快速算法.电子学报,2009,37(9):2041-2045页
    [58] W.T Shi, J.G Huang, C.B He. A beamspace DOA estimation algorithm for non-circularsignals. Proceedings of the World Congress on Engineering and Computer Science,2011, I:158-161P
    [59] W.T Shi, J.G Huang, X.D Cui. Orthogonal waveforms design and performanceanalysis for MIMO sonar. Proceedings of IEEE Conference on Signals Process,2010:2382-2385P
    [60]刘雄厚,孙超,唐政. MIMO声纳波束图及其目标探测能力研究.声学技术,2011,30(2):289-291页
    [61]张友文,孙大军. MIMO声纳自适应波束形成技术研究.声学技术,2009,28(3):105-106页
    [62]赵壮,孙超,杜力.一种折衷的MIMO阵的似然比检测器性能.声学技术,2010,29(6):138-139页
    [63]张明友,吕明.信号检测与估计(第二版).电子工业出版社,2007
    [64]胡广书.数字信号处理:理论、算法与实现.清华大学出版社(第二版),2003
    [65] R.O. Schmidt. Multiple emitter location and signal parameter estimation. IEEETransactions on Antennas and Propagation,1986,34(3):276-280P
    [66] R. Kumaresan, D.W. Tufts. Estimating the angles of arrival of multiple plane waves.IEEE Transactions on Aerospace and Electronic Systems,1983,19(1):134-138P
    [67]侯自强,李贵斌.声纳信号处理原理与设备.海洋出版社,1986
    [68] W.F. Gabriel. Spectral analysis and adaptive array superresolution techniques.Proceedings of IEEE,1980,68(6):654-666P
    [69] J.P. Burg. Maximum entropy spectral analysis. Meeting of the society of explorationgeophysists,1967
    [70] J.A. Cadzow. Spectral estimation: An overdetermined rational model equationapproach. Proceedings of IEEE,1982,70(9):907-939P
    [71] R. Kumaresan, D.W. Tufts. Estimating the parameters of exponentially dampedsinusoids and pole-zero modeling in noise. IEEE Transactions on Acoustics, Speech,and Signal Proceesing,1982,30(6):833-840P
    [72] D.W. Tufts, R. Kumaresan. Estimation of frequencies of multiple sinusoids: makinglinear prediction performs like maximum likelihood. Proceedings of IEEE,1982,70(9):975-989P
    [73] M.D.A. Rahman, K.B. Yu. Improved frequency estimation using total least squareapproach. IEEE International Conference on Acoustics,1986:1397-1400P
    [74] R. Kumaresan, D.W. Tufts. Estimating the angles of arrival of multiple plane waves.IEEE Transaction on Aerospace and Electronic Systems,1983,19(1):134-138P
    [75]项楚骐,田坦.离散估计导论.哈尔滨船舶工程学院出版社,1988
    [76] D.C. Rife, R.R. Boorstyn, Single tone parameter estimation from discreta-timeobservation, IEEE Transactions on Information Theory,1974,20(5):591-598P
    [77] M. Bom, B.W. Conoly. Zero crossing shift as a detection method. Journal of theAcoustical Society of America,1970,47(5):1408-1411P
    [78] B. Kede. Spectral analsis amd discrimation by zero crossomgs. Preceedings of IEEE,1986,74(11):1408-1411P
    [79] V. Friedman. Zero crossing algorithm for the estimation of the frequency of asinglesinusoid in white noise. IEEE Transactions on Signal Processing,1994,42(6):1565-1569P
    [80] D.R.A. Mcmahon, R.F. Barrett, An efficient method for the estimation of thefrequency of a single tone in noise from the phase of discreta Fourier transform.Singal Processing,1986,11:169-177P
    [81] J. Ville. Theory and applications of the notion of complex signal. Report T92, RANDCorporation,1948
    [82] M. Sun, R.J. Sclabassi. Discrete-time instantaneous frequency and its computation.IEEE Transactions on Signal Processing,1993,41(5):1867-1879P
    [83] S.M. Kay. Fast and accurate single frequency estimator. IEEE Transactions onAcoustics, Speech, and Signal Processing,1989,37(12):1987-1990P
    [84] B.C. Lovell, R.C. Williamson. The statistical performance of some instantaneousfrequency estimators, IEEE Transactions on Signal Processing,1992,40(7):1708-1723P
    [85] S.A. Tretter. Estimating the frequency of a noisy sinusoid by linear regression. IEEETransactions on information Theory,1985,31(6):832-835P
    [86] S.M. Kay. Statistically/computationally efficient frequency estimators. IEEEConference on Acoustics, Speech and Signal Processing-Proceedings,1988:2292-2295P
    [87] L.J. Griffiths. Rapid measurement of digital instantaneous frequency. IEEETransactions on Acoustics, Speech, and Signal Processing,1975,23(2):207-222P
    [88] A. Nehorai, B. Porat. Adaptive comb filter for harmonic signal enhancement. IEEETransacitions on Acoustics, Speech, and Signal Processing,1986,34(5):1124-1138P
    [89]梁国龙.回波信号瞬时参数序列分析及其应用研究,哈尔滨工程大学博士论文,1997
    [90]杨春.基于鱼雷报警声呐的目标识别技术基础研究.哈尔滨工程大学博士论文,2005.
    [91]梁国龙,杨春,王德俊.频点自跟踪自适应频率估计器性能研究.电子学报,2005,7:1204-1208页.
    [92] P. Stoica, K.C. Sharman. Novel eigenanalysis method for direction estimation. IEEproceedings of Communications radar and signal,1990,137(1):19-26P
    [93] I. Ziskind, M. Wax. IMaximum likelihood localization of multiple sources byalternating projection. IEEE Transactions on Acoustics, Speech, and Signal Processing,1988,36(10):1553-1560P
    [94] R.J. Vaccaro, C.S. Ramalingam, D.W. Tufts. Least-squares time-delay estimationfortransient signals in a multipath environment. J. Acoust. Soc,1992,92:210-218P
    [95]陈华伟,赵俊渭,郭业才.二次加权频域自适应时延估计算法与应用.声学学报,2003,28(1):61-65页
    [96]李军,章新华,王凯.基于高阶统计的水声信道盲辨识.应用声学,2009,28(1):42-46页
    [97]童峰,许肖梅,方世良.基于有效抽头和进化算法的自适应水声信道估计.声学技术,2007,26(2):301-306页
    [98]童峰,许肖梅,方世良.一种单频水声信号多径时延估计算法.声学学报,2008,33(1):62-68页
    [99]彭琴,童峰.浅海水声信道自适应均衡算法.厦门大学学报,2011,50(4):724-728页
    [100]赵力.语音信号处理(第2版).机械工业出版社,2009
    [101] C.R. Fuller, S. Tavakkoli. Application of the complex cepstrum to locate acousticsources near reflective surfaces. AIAA journal,1988,26(8):905-910P
    [102] P. Athina, C.L. Nikias, J.G. Proakis. Cumulant cepstrum of FM signal andhigh-resolution time delay estimation. IEEE International Conference on Acoustics,Speech and Signal Processing,1988:2642-2645P
    [103] N. Hossein, Su Qi. Partial discharge location on power cables using cepstrum analysisBidhendi. Proceedings of the International Symposium on Signal Processing and itsApplications, ISSPA,1996,1:278-281P
    [104] Beck, W.J. Staszewski. Leak detection in pipelines using cepstrum analysis.Measurement Science and Technology,2006,17(2):367-372P
    [105] J.C. Hassab, R. Boucher. Analysis of signal extraction, Echo detection and removal bycomplex cepstrum in presence of distortion and noise. Journal of Sound and Vibration,1975,40(3):321-325P
    [106] J.C. Hassab, R. Boucher. Probabilitic analysis of time delay extraction by the cepstrumin stationary Gaussian noise. IEEE Transactions on Information Thery,1976,22(4):444-454P
    [107] Stephenne, Alex. New cepstral prefiltering technique for estimating time delay underreverberant conditions. Signal Precessing,1997,59(3):253-266P
    [108] J.L. Bonner, D.T. Reiter. Application of a cepstral F statistic for improved depthestimation. Bulletin of the seismological Society of America,2002,92(5):1675-1693P
    [109]陆志华,陈励军.基于倒谱的匹配场被动定位研究.声学与电子工程,2009,3:4-7页
    [110]陈励军,张俊,安良.浅海信道单水听器多径被动定位.声学技术,2011,30(3):250-252页
    [111] Chen Li-Jun, Gao Xiang, An Liang. Multipath passive localization in shallow waterchannel. Journal of NanJing University(Natural Sciences),2012,48(5):609-615P
    [112]王志强,李刚虎,魏鑫.倒谱和复倒谱在被动声纳目标识别中的应用.声学技术,2011,30(3):280-283页
    [113]张颖,应小凡,田斌.一种基于倒谱分析的抗多径衰落的算法.信号处理,2003,19(1):55-58页
    [114]张辉,鞠德航.时变衰落信道下同态滤波技术的研究.西安电子大学学报,1999,26(2):145-148页
    [115]李灯熬,赵菊敏,张立毅.基于高阶倒谱盲均衡器的设计.太原理工大学学报,2006,37(5):518-520页
    [116]田杰,张春华,刘维.基于倒谱分析的被动水声目标分类.系统工程与电子技术,2005,27(10):1708-1710页
    [117]张明友,吕明.信号检测与估计(第二版).电子工业出版社,2005
    [118]陈炳和.随机信号处理.国防工业出版社,1996
    [119] R.J. Urick.水声原理.哈尔滨船舶工程学院出版社,1990
    [120]梁昆淼.数学物理方法(第三版).高等教育出版社,1998
    [121]张贤达.现代信号处理.清华大学出版社,1995
    [122]范展.目标高速运动对矢量信号处理的影响及匹配技术研究.哈尔滨工程大学硕士论文,2009
    [123]江峰,惠俊英,蔡平.自适应线谱干扰抵消器的性能分析及其极窄带实现.哈尔滨工程大学学报,1998,19(5):42-48页
    [124]付进,梁国龙.多通道自适应陷波滤波器组设计及性能分析.哈尔滨工程大学学报,2007,28(9):1030-1035页
    [125]付进,梁国龙.基于瞬时频率估计的双曲调频信号检测技术.南昌航空大学学报(自然科学版).2007,21(4):61-65页
    [126] A.V. Oppenhem, R.W. Schafer, J.R. Buck.刘树棠译.离散时间信号处理.西安交通大学出版社(第2版),2001:210-211页
    [127]曾治丽,李亚安,刘雄厚.基于高阶谱和倒谱的舰船噪声特征提取研究.计算机仿真,2011,28(11):5-9页
    [128]马元锋,陈克安,马苗.一种新的可应用于声目标识别的倒谱系数.兵工学报,2009,30(11):1477-1483页
    [129]姚舒恬,方世良.倒谱定深法在目标识别中的应用.声学与电子工程,2007,1:15-17页
    [130]杨德森,时洁,刘伯胜.基于倒谱分析的水声信号被动定位时延估计计算法研究.系统仿真学报,2009,21(2):610-612页
    [131] J.Y. Tourneret, B. Lacaze. On the statistics of estimated reflection and cepstrumcoefficients of an autoregressive process. Signal Processing,1995,43(3):253-267P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700