用户名: 密码: 验证码:
基于洛伦兹力散度声源的磁声成像关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁声耦合效应成像是一种新型的旨在对早期病变组织进行诊断的功能成像方法。该方法利用磁声耦合效应,通过外加电磁场激励信号把反映组织电特性的信息转换为声信号进行检测,进而对声信号进行重建,实现组织电特性成像。该方法将输入的电磁能量转化为机械能,声源的产生和传播是关键问题。该方法的研究涉及到多学科交叉,仍处于探索阶段,还存在尚未解决的问题,目前仅实现了实验样本电导率边界信息的成像,尚未实现组织内部电导率信息的准确重建。
     本文为研究电磁激励下的电导率成像技术,通过理论模型仿真以及物理实验两条途径展开工作:首先,建立模拟实验样本声学、电学特性的长方体嵌套模型,建立基于洛伦兹力散度声源的电磁场、声场正逆问题仿真求解方法,在考虑声传感器特性基础上,求解声源信息和传播至样本表面的声压信号;反演重建声源分布和电导率分布;仿真比较磁脉冲激励和电流脉冲两种激励方式下产生声源的异同,结果表明磁脉冲激励下正问题声源除边界外有内部声源分布,两种方式下重建声源只有边界。
     其次,建立磁声耦合效应声信号检测实验系统,测试了实验系统的信噪比、分辨率等参数;为了比较激励源与声信号之间关系,设计实验,分别对直铜线、铜线圆环、导电橡胶样本进行电流脉冲激励,激励信号分别是0.7MHz、1MHz、1.3MHz的单周期正弦脉冲,采集记录样本激发的声压信号;采用频谱法分析声压信号频率特征,从信号与系统的角度分析输入输出幅频响应,分析声信号特征与激励信号的关系;采用相关估计法分析声压信号与激励源及声传感器响应之间的相关程度,建立激励源特征、声传感器响应与声信号之间关系,结果表明铜线与铜环激发声信号与激励源、声传感器响应相关程度较好;导电硅胶的信号与两者之间相关性非常小。在分析声信号特征基础上,建立声信号重建声源的反卷积投影算法,铜环、导电硅胶样本的重建声源结果表明:重建声源只有边界,在实验误差范围内重建边界与样本边界相符。该结果与仿真中电流激励的洛伦兹力散度声源只有边界声源的结果一致。
     受限于声传感器的带宽限制,检测到的声压信号在0.2-1.8MHz;此外,由于实验系统信噪比不够高,而且在反卷积过程中带入更多噪声,在声源重建中形成系统误差。下一步工作应重点提高检测系统信噪比,增大声传感器带宽,以及研制抑制噪声的反卷积算法,最终实现组织内部电导率成像。
Imaging by magneto-acoustic coupling effect is a new functional imaging modality for diagnosis of malignant lesions in the early stage. In this way, the tissue is excited by magnetic field energy, and the magnetic energy is transformed to acoustic vibration based on magneto-acoustic coupling effect, whereas, acoustic signal carried the electric information of the tissue is detected by transducer. Then, reconstruction algorithm is conducted to the collected data, and electric conductivity of the tissue could be obtained. The key issue in this method is acoustic source as well as its mechanism of generation and propagation. Since this method involve and cross the research of theories multi-disciplinarily and many kinds of technology synthetically, many problems have not been solved, study still in stage of probing both in theory and practice. Up to now, only the electric conductive boundary of the experimental phantom is reconstructed with the experimental signal, conductive distribution inside the tissue couldn't be reconstructed yet.
     In order to study the technology of magneto-acoustic tomography, simulation of theoretical model and physical experiments are performed. At first, model is established with cuboid shape which simulating the acoustic characteristics and electric parameter of the experimental sample. Secondly, considering the characteristics of acoustic transducer, the numerical simulation method is established to solve the direct-inverse problems in electro-magnetic field and acoustic field, according to acoustic source of Lorentz force divergence. After that, the distribution of acoustic source and electric conductivity are reconstructed. In the simulation, the differences are analyzed between the acoustic sources induced by magnetic pulse and that excited by electric pulse current. The analyzing results display that, there is acoustic source inside the boundary obtained in direct problem, which is induced by magnetic pulse, simultaneously, only electric conductive boundary of the model could be reconstructed either excited by magnetic pulse or electric pulse.
     Next, the experimental system is set up to detect the acoustic pressure signal, also, the SNR and solution of this system is tested practically. For the purpose of comparing the relationship between the exciting signal and acoustic signal, experiment is carried out to impose electric current pulse to samples, including direct copper wire and copper wire circle as well as conductive rubber with the concentric circles structure. In this experiment, while electric current pulse with frequency of 0.7MHz,1MHz and1.3MHz are applied to the samples, acoustic signals are recorded by the detecting system, respectively. After the signal collected, frequency-spectrum method is used to get the amplitude-frequency response of the input/output system, also, the relationship between the exciting signal and acoustic signal are studied. Moreover, correlation estimate method is adopted here to obtain the correlation degree between acoustic signal and transducer response as well as exciting signal, so as to explore the relationship between the acoustic signal and exiting signal together with transducer response. As a result, both of acoustic signals induced in copper wire and copper wire circle get high correlation degree with the exiting signal and transducer response, however, acoustic signal of conductive rubber get poor correlation degree with the other two signals.
     Last, according to the analyzing results of the acoustic signal, reverse convolution projection algorithm is given to reconstruct the distribution of acoustic source. Adopted the algorithm, the distribution of acoustic sources are obtained with the data of copper wire circle and conductive rubber, respectively. The results suggest that when considering the experimental system error, the reconstructed boundary of acoustic source is basically same as that of the samples. And hence, the results agree with the simulation, which validated that only the boundary could be reconstructed based on acoustic source of Lorentz force divergence.
     Nevertheless, limited by the bandwidth of transducer, acoustic pressure detected by the system is filtered by the transducer's characteristics. So, the effect frequency segment of the received signal distribute from200KHz to1.8MHz. On the other hand, since the SNR of the detecting system is not high enough, more noise is involved in the process of reverse convolution, and produce system errors in reconstruction.
     Furthermore, key technology should be researched to promote SNR of the detecting system promptly. In the next work, how to widen the bandwidth of the transducer should be considered as an important issue. Additional, reverse convolution algorithm with suppressing noise function should be developed to get reconstruction image with high quality. Therefore, distribution of conductivity inside the tissue might be reconstructed in the near future.
引文
[1]R.D. Stoy, K.R. Foster, H.P. Schwan, "Dielectric properties of mammalian tissues from 0.1 to 100 MHz:a summary of recent data", Phys. Med Biol.vol. 1982,27(4):501-513.
    [2]K. R. Foster and H. P. Schwan, CRC Handbook of Biological Effects of Electromagnetic Fields, Part I, C. Polk and E. Postow, Eds. Boca Raton, FL:CRC, 1986, Part I, p.68.
    [3]陈强谱,傅廷亮,欧琨.人体组成的活体测量技术及评价.生物医学工程学杂志,2007,24(4):954-958.
    [4]B.He. Modeling and Imaging of Bioelectrical Activity-Principles and Applications. Norwell, MA:Kluwer Academic,2004.
    [5]俞梦孙,董秀珍.生物电磁特性与电磁对生命系统的作用若干问题的探讨[C]//第373次香山会议.北京,2010:5-21.
    [6]Gabriel C, Gabriel S and Corthout E. The dielectric properties of biological tissues I:Literature survey[J]. Phys Med Biol,1996.41(11):2231-2249.
    [7]Gabriel S, Lau RW and Gabriel C. The dielectric properties of biological tissues II: Measurements on the frequency range lOHz to 20GHz[J]. Phys Med Biol,1996, 41(11):2251-2269.
    [8]Gabriel S, Lau RW and Gabriel C. The dielectric properties of biological tissues III:Parametric models for the dielectric spectrum of tissues[J]. Phys Med Biol, 1996,41(11):2271-2293.
    [9]Towe B.C and Islam M. R. A magneto-acoustic method for the noninvasive measurement of bioelectric currents.IEEE Trans. Biomed. Eng.1988,35:892-894
    [10]B.J.Roth, P.J.Basser, J.P.Wikswo.Jr. A theoretical model for magneto-acoustic imaging of bioelectric currents. IEEE Transactions on Biomedical Engineering, 1994,41(9):723-728
    [11]Han.Wen,Eric Bennett,.The Feasibility of Hall Effect Imaging in Humans. IEEE Ultrasonics Symposium.2000(2):1619-1622.
    [12]Montalibet A. Jossinet J. et al.2001. Electric current generated by ultrasonically induced Lorentz force in biological media. Medical & Biological Engineering & Computing 2001,39:15-20
    [13]Y. Xu, B.He. Magnetoacoustic tomography with magnetic induction. Physics in Medicine and Biology,2005,50:5175-5187
    [14]Li, Xu, Xu, Yuan, He, Bin. Imaging Electrical Impedance From Acoustic Measurements by Means of Magnetoacoustic Tomography With Magnetic Induction (MAT-MI). IEEE Transactions on Biomedical Engineering,2007,54(2): 323-330
    [15]Rongmin Xia,Xu Li,Bin He.Magnetoacoustic Tomographic imaging of electrical impedance with magnetic induction[J].Applied Physics Letters,2007(91):083903.
    [16]Xu LI. Multi-excitation magnetoacoustic tomography with magnetic Induction for bioimpedance imaging[J].IEEE Transaction on medical imaging, 2012(29):1759-1767.
    [17]Gang Hu,Imaging biological tissues with electrical conductivity contrast below 1S m-1 by means of magnetoacoustic tomography with magnetic induction[J]. Appl.Phys.Lett,2010(97) 103705.
    [18]Gang Hu,Erik Cressman.Magnetoacoustic imaging of human liver tumor with magnetic induction[J], Appl.Phys.Lett,2011(98) 023703.
    [19]Gang Hu. Magnetoacoustic imaging of magnetic iron oxide nanoparticles Embedded in biological tissues with microsecond magnetic stimulation[J].Appl.Phys.Lett,2012(100) 013704.
    [20]Li X, Li X, Zhu, S and He, B. Solving the forward problem of magneto-acoustic tomography with magnetic induction by means of the finite. Phys. Med. Biol. 2009(54):2667-82
    [21]Li, X and He, B. Multi-excitation magneto-acoustic tomography with magnetic induction for bio-impedance imaging. IEEE Trans. Med. Imaging.2010 (29): 1759-67
    [22]Lian Zhou, Xu Li, Shanan Zhu and Bin He. Magneto-acoustic tomography with magnetic induction (MAT-MI) for breast tumor imaging:numerical modeling and simulation. Phys. Med. Biol.2011(56):1967-1983
    [23]Qingyu Ma, Bin He. Magnetoacoustic Tomography With Magnetic Induction:A Rigorous Theory. IEEE Transactions on Biomedical Engineering, 2008,55(2):813-816
    [24]Qingyu Ma, Bin He. Investigation on magnetoacoustic signal generation with magnetic induction and its application to electrical conductivity reconstruction. Physics in Medicine and Biology,2008,52:5085-5099
    [25]Xiaodong Sun,Feng Zhang et al.Acoustic dipole radiation based conductivity image reconstruction for magnetoacoustic tomography with magnetic induction[J], Appl.Phys.Lett,
    [26]Guoqiang Liu. Hao Wang, et.al.2007. Reconstruction method of Magnetoacoustic Tomography with Magnetic Induction (MAT-MI).13th International Conference on Electrical Bioimpedance combined with the 8th Conference on Electrical Impedance Tomography.312-314
    [27]Hao Wang,Guoqiang Liu,Lintong Jiang,et al.3D Inverse Problem of Magnetoacoustic Tomography with Magnetic Induction [C].Proceedings of the 5th International Conference on Information Technology and Application in Biomedicine, in conjunction with The 2nd International Symposmm&Summer School on Biomedical and Health Engineering,2008,78-81.
    [28]贺文静,刘国强,张洋.感应式磁声成像声场正问题研究(一)—基于声压速度耦合方程的声场模拟方法.现代科学仪器,2010(1):9-13,1.
    [29]刘国强,贺文静,夏慧.感应式磁声成像声场正问题研究(二)—基于位移方程的声场模拟方法.现代科学仪器,2010(1):14-16,1.
    [30]刘国强,贺文静,夏慧,等.感应式磁声成像声场正问题研究(三)---基于弱形式处理洛伦兹力散度声源的声场模拟方法[J].现代科学仪器,2010,(1):17-20.
    [31]Yang Zhang,Guoqiang Liu,Wenjing He,et al.New Reconstruction Method of Magnetoacoustic Tomography with Magnetic Induction.32nd Annual International Conference of the IEEE EMBS,2010:3061-3064.
    [32]李殉,Li X,朱善安.基于时间反演方法的三维磁感应磁声成像电导率重建.中国生物医学工程学报,2009,28(1):48-52.
    [33]周廉,朱善安,贺斌.三维磁感应磁声成像的新算法研究.电子学报.2013,41(4):288-294.
    [34]李宜令,马青玉.基于磁感应磁声成像的洛伦兹力重建研究.2010,29(6):39-39.
    [35]郭余庆,李宜令,马青玉等.基于声偶极辐射的磁感应磁声层析成像研究[J].声学学报,2011,36(2),185-190.
    [36]危立辉,高智勇,等.感应式磁声医用成像技术及其实验系统的研究.现代科学仪器.2007,17(6):18-20
    [37]危立辉.感应式磁声成像脉冲磁场的测量方法.现代科学仪器.2010(5):24-27.
    [38]Andrzej J. Surowiec, Stanislaw S. Stuchly, et al. Dielectric properties of breast carcinoma and the surrounding tissues. IEEE Transactions On Biomedical Engineering.1988,35(4):257-263.
    [39]Ann P O'Rourke,Dielectrica properties of human normal,malignant and cirrhotic liver tissue:in vivo and ex vivo measurements from 0.5 to 20GHz using a precision open-ended coaxial probe[J]. Physics in Medicine and biology,2007(52):4707-4719.
    [40]Keshtkar A, Salehnia Z, Somi MH, et al. Some Early Results Related to Electrical Impedance of Normal and Abnormal Gastric tissue. Phys Med,2012,28(1):19-24.
    [41]Swarup, S.S. Stuchly, A. Surowiec. Dielectric properties of mouse MCA1 fibrosarcoma at different stages of development. Bioelectromagnetics.1991,12:
    [42]Christina Skourou, P Jack Hoopes, Rendall R Strawbridge. Feasibility studies of electrical impedance spectroscopy for early tumor detection in rats. Physiol. Meas. 2004 (25):335-346
    [43]Arum Han, Lily Yang and A. Bruno Frazier. Quantification of the Heterogeneity in Breast Cancer Cell Lines Using Whole-Cell Impedance Spectroscopy. Clin Cancer Res 2007(13):139-143.
    [44]董秀珍.生物电阻抗成像研究的现状与挑战.中国生物医学工程学报,27(5),pp 641-643,2008/10.
    [45]任超世,生物电阻抗测量技术,中国医疗器械信息,2004,10(1):21-25.
    [46]Lazebnik M, Popovic d, Mccartney 1, et al. A largescale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries [J]. Phys Med Biol,2007,52: 6093-6115.
    [47]David S Holder, Electrical Impedance Tomography, Methods, History and Applications. IoP Pblishing LTD.2005.
    [48]计钟,娄存广,杨思华.三维微波热声成像系统及早期乳腺肿瘤检测研究.激光生物学报.2012,21(5):465-469.
    [49]Wang Y, Xing D, Zeng Y G, et al. Photoacoustic imaging with deconvolution algorithm.Phys Med Biol,2004,49(14):3117-3124.
    [50]Xu Y. and Wang L-H. V., Time Reversal and Its Application to Tomography with Diffracting Sources. Phys. Rev. Lett.2004,92(3),033902.
    [51]向良忠,邢达,郭华,杨思华.高分辨率快速数字化光声CT乳腺肿瘤成像.物理学报,2009(7):247-254.
    [52]Fear EC, Hagness SC, Meaney PM, et al. Enhancing breast tumor detection with near-field imaging[J]. IEEE microwave magazine,2002:48-56.
    [53]Fast Monte Carlo inversion for extracting the optical properties of tubular tissues, Hui-juan Zhao Xiao-qing Zhou, Ju-lan Liang, Shun-qi Zhang, Chinese Optics Letters 2008,6(12):935-937.
    [54]万明习.生物医学超声学.科学出版社.2010.
    [55]Chen H, Shi H, Varghese T. Improvement of elastographic displacement estimation using a two-step cross-correlation method. Ultrasound Med Biol.,2007 33(1):48-56.
    [56]Fatemi M, Greenleaf J F. Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound. Phys Med Biol,2000,45(6):1449-1464.
    [57]施克仁.无损检测新技术.清华大学出版社.2007.
    [58]李孟源,尚振东,蔡海潮等.声发射检测及信号处理.科学出版社.2010.
    [59]Ziola S. Digital Signal Processing of Modal Acoustic Emission Signals. Journal of Acoustic Emission,1996,14(3-4):12-18.
    [60]A Terchi, Y H J Au, Acoustic Emission Signal Processing. Measurement and Control,2001,4(8):240-244.
    [61]许国辉,刘志朋,李经宇,殷涛.感应式磁声成像正问题数学模型及仿真.中国生物医学工程学报,2009(4):481-484/9.
    [62]Guohui Xu, Zhipeng Liu, Jingyu Li, Tao Yin. The forward problem study of MAT-MI simulated by Comsol Multiphysics. the World Congress on Medical Physics and Biomedical Engineering-the triennial scientific meeting of the IUPESM,2009/9/7.
    [63]马虹霞,刘志朋,张顺起,殷涛.基于不同几何模型的感应式磁声成像声源重建仿真.中国生物医学工程学报,2011,30(1):52-57.
    [64]马任,殷涛,张顺起,刘志朋.基于声换能器特性的磁感应磁声成像正问题分析.生物医学工程与临床.2012,16(3):218-222.
    [65]Shunqi Zhang, Tao Yin, Zhipeng Liu. "Study on Imaging with Current Excitation Conductivity Imaging Object Based on Magneto-acoustic Effect", "34th Annual International IEEE EMBS Conference",2012.9.2 pp 1526-1629.
    [66]陈怡美,刘志朋,殷涛.高频脉冲弱磁场检测技术的研究.中国生物医学工程学报.2012,31(2):190-197.
    [67]许福永,赵克玉.电磁场与电磁波.2005.科学技术出版社
    [68]周希朗.电磁理论中的应用数学基础.东南大学出版社.2006.
    [69]牛中奇等.电磁场理论基础.2001.电子工业出版社
    [70]Roth B J,Saypol J M, Hallett M.A theoretical calculation of the electric field induced in the cortex during magnetic stimulation. Electroencephalography and Clinical Neurophysiology,1991,81:46-56
    [71]刘志朋.改善脑神经磁刺激空间选择性的方法研究.硕士论文,中国协和医科大学.1998.
    [72]张海澜.声学理论.高等教育出版社.2007.
    [73]Anders C. Nilsson and Bilong Liu. Vibro-Acoustics.Vol.l.科学出版社.2012
    [74]Cohen L. Time-Frequency Analysis:Theory and Applications [M].Prentice Hall, 1995.
    [75]王浩全.超声成像检测方法的研究与实现.国防工业出版社.2011.
    [76]郑君里等.信号与系统.高等教育出版社.2002.
    [77]Ultrasonic Transducers Wedges, Cables, Test Blocks, www.olympus-ims.com
    [78]郭焕银.相关函数及其谱在数字信号处理系统中的应用.宿州学院学报.2005,20(5):76-79.
    [79]刘腾飞,陈宇翔,高立宁.一种基于频率调制的时域相关多普勒估计算法.计算机工程与应用.网络出版时间:2012-04-25.
    [80]A.C. Likas and N.P. Galatsanos, A Variational Approach for Bayesian Blind Image De-convolution. IEEE Trans. Signal Processing,2004,52(8). pp 2222-2233.
    [81]杨克己,方文平,黄一春,乔华伟.一种应用于超声无损检测的广谱反卷积技术.浙江大学学报.2009,43(10):1766-1771.
    [82]林莉,李喜孟.超声波频谱分析技术及其应用.机械工业出版社.2009.
    [83]胡广书.现代信号处理教程.北京:清华大学出版社.2004.
    [84]Wang Q, Chu F, Experimental Determination of the Rubbing Location by Means of Acoustic Emission and Wavelt Transform. Journal of Sound and Vibration,2001,248(1):91-103.
    [85]R Demirli. Model based estimation of ultrasonic echoes:analysis algorithms and applications[D]. Chicago: Illinois Institute of Technology.2001.ppl9-38.
    [86]Thomas Widlak, Otmar Scherzer. Hybrid tomography for conductivity imaging.Physics.med-ph.2012(3):1-32.
    [87]L. Chen and K — H. Yap, A soft double regularization approach to parametric blind image deconvolution, IEEE Trans. Image Process.,2005,14(5). pp 624-633.
    [88]Wu Y, Han D and Li X. Time-Frequency de-composition based on Ricker wavelet. Expanded Abstracts of 74th SEG Ann. Intl. Mtg.,2004,pp 1937-1940.
    [89]Tabaru T, Shin S. Relation between spectrum density and wavelet transform of correlation function.Trans, of SCIE.2003,39(5):425~431.
    [90]沈瑜,党建武,王阳萍,雷涛.加权短时自相关函数的基音周期估计算法.计算机工程与应用.网络出版时间:2012-10-11.
    [91]Guido Buresti, Giovanni Lombardi, Jacopo Bellazzini. On the analysis of fluctuating velocity signals through methods based on the wavelet and Hilbert transforms. Chaos, Solitons and Fractals.2004,20:149-158.
    [92]杨航.图像反卷积算法研究.吉林大学博士学位论文.2012.6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700