用户名: 密码: 验证码:
光子晶体中非互易性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,基于光子晶体的非互易性质研究,无论是在基础研究还是应用研究方面都引起了人们极大的关注。本论文将研究和分析在具有时间和空间拓扑对称性的光子晶体中出现的一些非互易现象。这些现象包括:可类比电子整数量子霍尔效应的电磁单通边界态、单通的体波态、光的类自旋量子霍尔效应以及非互易传输等。同时,也设计了一些具有独特应用的器件模型,如单通的分路器、环路器、单向隐身等。结果分别是:
     1.类比电子整数量子霍尔效应,在由旋电材料构成的二维正方晶格磁光光子晶体中,存在两对边界狄拉克点。当频率位于第二能带到第三能带间时,电磁波沿整个光子晶体边界只能按顺时针传播;而当其处于第三能带到第四能带间时,却只能按逆时针传播(这里顺时针和逆时针是面朝外加磁场的方向所定义的)。这两种不同的单通路径是起源于能带之间不同的陈数交换。从对称性上讲,这个模型的单通性质源于时间反演对称性的破缺,而平移对称性和空间反演对称性却保持。另外,在边界狄拉克点频率的上方和下方对应的单通边界态分别为左手性和右手性传播的。这些效应可用于设计一些光学隔离器,环路器,分路器,单通的光学开光以及一些相位补偿器件。
     2.表面态的色散曲线和性质在很大程度取决于光子晶体的表面状况,如表面形貌,结构参数的变化等。边界态作为表面态的一种,在边界情况的改变下同样也会有相似的现象出现。在研究表面状况对二维四方晶格磁光光子晶体中的单通边界态的影响时,将考虑两种类型边界的影响:一是磁光光子晶体的边界状况,另一个是作为包裹层的氧化铝光子晶体的边界状况。研究发现通过裁剪边界,边界态将和波导态发生耦合,从而影响其边界态的传输性质,但其边界态的单通性质基本不变,甚至会出现多个边界态,可以用于设计两个独立的单通波导。而且,边界狄拉克点的频率也可以得到相应的调节。上述性质对设计多通道、手性选择的单通光电器件将有所帮助。
     3.设计了一种基于磁光光子晶体的可调谐单通十字形分路器。模型中各个出口的出射效率可以通过改变模型中心的电光圆柱的外加电场来调节,其通断可以由外加磁场的方向来控制。并研究了其中缺陷模式和单通边界模式的耦合理论。与一般的光子晶体分路器不同,由于边界态的单通性质,这种分路器里面有特定的出口和入口,因为背向散射的完全抑制,即使是在其中有障碍物的情况下依然能达到100%的出射率。这种设计可以非常方便的用于实现单通的分路器,隔离器,环路器,以及光学开关。
     4.构造了一种具有空间反演非对称结构的二维磁光光子晶体。由于非对称的能带的产生,可以实现单向传播的体波模式,其单向性可以表现为单向的群速度或单向的相速度。与之前已有研究的由损耗和增益材料构成的模型不同,这种二维磁光光子晶体中同时破缺宇称和时间反演对称性然而遵守宇称-时间对称性的性质,是来源磁光材料磁导率的虚数非对角项。由于模型中相对传播的电磁波具有单向性,我们称之为宇称-时间对称的电磁二极管。另外,除了传统的单通传播,所有四种折射类型右手性正折射,左手性负折射,右手性负折射,左手性正折射)都可以以单通的形式在此模型中实现,并且还可以选择是群速度的单通还是相速度的单通。
     5.将变换光学引入光子晶体,利用二维非互易光子晶体本身所具有的宇称和时间反演对称性破缺,设计了一种对电磁波具有单向隐身效果的结构:从一边入射,光从隐身区域绕过,达到隐身效果;而从另外一边入射,则是全反射。这种隐身结构同样也具有原光子晶体的能带性质。通过选择不同的频率区域或者是改变外加磁场,隐身和反射的方向也会反转。
     6.类比电子自旋量子霍尔效应,设计了一种由磁光材料构成的二维四方晶格光子晶体,其中磁光材料同时具有旋电和旋磁的性质。这种二维磁光光子晶体对于横磁偏振和横电偏振的光而言,时间反演对称性分别都是破缺的,但是对于圆偏振光而言,时间反演对称性不变。沿着一对相反方向的外加磁场边界,偏振的输运可以在其无能隙的手性边界态中得以实现。在此边界态中仅允许顺时针单向传播的横磁偏振光存在,而横电偏振光只能逆时针单向传播,两个方向的能流之差为零,即光的类自旋量子霍尔效应。另外,通过不同的激发源激发,可以控制边界态选择以对称模式或反对称模式传播。同时也讨论了两种模式之间不同的相位传播方向等问题。利用这种宏观的光子晶体模型,可以实现相应的电磁波(光)类自旋现象。
     7.研究了如何提高基于一维光子晶体-金属薄膜结构中垂直入射光共振光学透射的透射率问题。所谓共振光学透射是指,透射的频率是位于一维光子晶体原来的带隙范围内。研究了光子晶体的层数和金属薄膜的厚度对共振光学透射率的影响。根据表面模式的增强情况和距离,给出了一个最优化参数。利用了有效导纳匹配理论来描述表面模式和确定共振光学透射频率,这与软件模拟和实验结果吻合很好。研究对一些高效率和高灵敏度的光电器件设计方面可能有较大帮助,比如光学滤波器、光学传感器等。
     8.研究了基于一维光子晶体-旋电金属薄膜结构的非互易透射和反射效应。这是由于在外加磁场下,时间反演对称性破缺,单通模型中将出现非互易的表面模式。同样,这种非互易的共振光学透射的频率位于原来光子晶体的带隙中。基于这种非互易系统,提出了一个有效导纳匹配理论来解释这种单通现象,并得到这种非互易共振光学透射的频率。由于旋电金属的导纳为虚数,更为重要的是在外加磁场下其具有方向性,即相反的方向有着不同的导纳。在原光子晶体带隙内就可能会出现非互易的透射、反射现象。其共振光学透射的频段位于通信波段甚至可达可见光范围。这个模型可能对在实验上实现光二极管很有帮助,其优势来源于低的损耗,很宽的频率窗口,较小的外加磁场区域和工业上成熟的工艺等等。这种设计也可能对构造一些单通的光电器件很有帮助,比如说光学分路器,隔离器和光学开关。
     9.推导基于DBF本构方程的手性光子晶体的耦合多重散射算法,得到了全偏振的耦合多重算法本征方程。计算并分析了二维手性极化激元光子晶体的能带性质。考虑具有色散手性参数的光子晶体,研究了手性材料共振区域附近的能带。由于手性光子晶体中的本征局域态与Bloch模式耦合,通带中将有“平区”,出现“结点转换”的现象。并分析了平带区域内两种模式之间的转换和劈裂。计算并分析了二维手性极化激元光子晶体的透射谱和手性相关的场局域现象。分析了不同偏振的入射光在平带附近的透射性质。其在对于光的圆偏振性要求很高的场合,例如可在作生化反应中的催化剂、制药或者手性化合物的分离等领域有潜在的应用前景。另外,将手性材料的负折射率和光子晶体的负折射综合起来,考虑同时实现左旋光和右旋光的负折射,并对其成像做了初步探索。
Recently, the nonreciprocal properties in photonic crystals have drawn much attention in both fundamental research and applications, due to their inherent novel phenomena. In this dissertation, by introducing the time-reversal symmetry and spatial inversion symmetry (separately or both) into photonic crystals, the nonreciprocal properties would be realized, such as the one-way edge modes, one-way bulk modes and nonreciprocal transmission, which might trigger some exotic applications, such as one-way splitters, optical isolators and one-way cloaks
     1. Analogous to the quantum Hall effect of electrons, a two-dimensional magneto-optical photonic crystal shows two pairs of one-way edge Dirac cones, whereby only clockwise and anti-clockwise circle wave scattering (facing the direction of the external applied magnetic field) are allowed in the second and third band-gaps respectively. These two different chiral pathways originate from the different exchange of Chern numbers, which are attributed to the broken time-reversal symmetry. Moreover, below and above the edge Dirac point, the edge modes show the left-handed (counter propagation of group velocity and phase velocity) and right-handed characters respectively.
     2. The influence of boundary conditions on the one-way edge modes in two-dimensional magneto-optical photonic crystals is studied theoretically by supercell methods. The numerical results reveal that it could bring some new properties by tailoring the boundary, but would not change the intrinsic one-way character for edge modes in the band-gap generally. Evenmore, there are more than one edge modes and waveguide modes to appear, which could be coupled each other and split into new ones. Two independent channels for one-way edge modes can be realized. The frequency of the edge Dirac point can be tunable.
     3. We design a tunable one-way cross-waveguide splitter, resulting from the broken time-reversal symmetry, based on the edge modes of the gyromagnetic photonic crystal. Mode control can be realized by altering the radius or refractive index of a single central electro-optical rod. The on-off switch of the channels can be manipulated by external electric or magnetic field. An coupled-mode theory between defect modes and waveguide modes has been used to characterize the transmission efficiency of the channels.
     4. We propose a kind of electromagnetic diodes based on a two-dimensional nonreciprocal gyrotropic photonic crystal. This periodical microstructure is of separately broken symmetries in both parity and time-reversal but obeys the parity-time symmetry. This kind of diode could support the bulk one-way propagating modes either for group velocity or phase velocity with various types of negative and positive refraction. This symmetries broken system might be a platform to realize abnormal photoelectronic devices and analogy to electron counterpart with one-way features.
     5. Transformation optics is recently of great interest since it can help to create various applications that were considered illusions in history, such as an invisible cloak. Here we propose a novel physical concept of simultaneously breaking the parity and time-reversal symmetries in transformation optics, by which nonreciprocal one-way invisible cloak is designed and validated. The one-way invisible cloak is made of a coordinate-transformed nonreciprocal photonic crystal, showing a perfect cloaking for wave incident from one direction but acting as a perfect reflector for wave from the counter direction. The proposed nonreciprocal transformation optics shows a high promise of applications in military, as protecting the own information to be detected but efficiently grabbing the information from the "enemy" side.
     6. Analogous to the spin quantum Hall effect of electrons, a two-dimensional photonic crystal constructed by magneto-optical medium with both gyroelectric and gyromagnetic properties was proposed, which breaks time-reversal symmetry separately for a single polarization but obeys the time-reversal invariant for the circular polarized wave. The polarization transportation can be realized in a pair of time-reversal invariant gapless edge states, which can be treated as an optical counterpart of spin quantum Hall effect. The symmetric or anti-symmetric edge states can be excited at the boundary, which can be tunable by using different exciting sources. This time-reversal invariant model might be a platform to mimic the spin property of electrons to realize some abnormal photonic devices with "spin" quantum features.
     7. We theoretically and experimentally reveal that the enhanced resonant optical transmission can be realized through a one-dimensional photonic crystal adjacent to a thin metal film at a frequency in the original band-gap of the photonic crystal. The influence of the periodic number of photonic crystal and the thickness of the adjacent metal on the transmission frequency and intensity is studied in details. An optimum design is given to reach the maximum transmission efficiency meanwhile a mechanism underlining the resonant optical transmission phenomenon is proposed. An effective admittance-matching theory is used to understand this effect and quantitatively determine the resonant frequency, which matches very well with the simulated and measured results. The effects might be very useful to realize some optical filters and sensor devices since the structure is easy for mass production and is matured technique to be prepared in industry.
     8. We report our design of nonreciprocal transmission/reflection based on a one-dimensional photonic crystal adjacent to the gyroelectric metal, which is stemming from the broken time-reversal symmetry. With broken time-reversal symmetry by applying an external magnetic field, the dielectric function of gyroelectric metal would be both nonreciprocal and negative in optical window, which could excite the nonreciprocal surface modes between the PC and metal in the band-gap of original PC. An effective admittance-matching theory based on nonreciprocal systems is proposed to understand this effect and quantitatively determine the work frequency. This1DPC-metal model might be very helpful to realize the optical diode with the advantage of the low loss, wide frequency window, small external magnetic field area, mature technique in industry, etc..
     9. We theoretically investigated a format of two-dimensional dielectric-chiral photonic crystal structure that is composed of a dispersive chiral medium embedded in a dielectric background. The photonic band-structure shows distinctive dispersion relationship for circularly polarized electromagnetic waves, leading to a number of intriguing wave properties, namely chirality dependent'node switching', polarization sensitive transmission and handedness dependent mode localization. All of these effects are attributed to the strong interaction between the local resonant modes around the dispersive chiral rods and the Bloch modes of the bulk waves. The chirality dependent properties might find tremendous applications in polarization based optoelectronics devices and rapid separation of chiral compounds in pharmaceutical industry.
引文
[1]E. Yablonovitch, Physical Review Letters 58,2059 (1987).
    [2]S. John, Physical Review Letters 58,2486 (1987).
    [3]K. Ohtaka, Physical Review B 19,5057 (1979).
    [4]K. Ohtaka, Journal of Physics C:Solid State Physics 13,667 (1980).
    [5]M. S. Kushwaha et al, Physical Review Letters 71,2022 (1993).
    [6]M. S. Kushwaha et al, Physical Review B 49,2313 (1994).
    [7]Y.-q. Lu et al., Science 284,1822 (1999).
    [8]J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals:Modeling the Flow ofLoght
    (Princeton University Press, Princeton, NJ,1995).
    [9]M. F. Yanik et al., Opt. Lett.28,2506 (2003).
    [10]K. Ishizaki, and S. Noda, Nature 460,367 (2009).
    [11]M. Bayindir, B. Temelkuran, and E. Ozbay, Applied Physics Letters 77,3902 (2000).
    [12]V. Karathanos, N. Stefanou, and A. Modinos, Journal of Modern Optics 42,619 (1995).
    [13]J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386,143 (1997).
    [14]B.-S. Song, S. Noda, and T. Asano, Science 300,1537 (2003).
    [15]A. Christ et al., Physical Review Letters 91,183901 (2003).
    [16]S. Y. Lin et al., Opt. Lett.27,1400 (2002).
    [17]M. Tokushima et al., Applied Physics Letters 76,952 (2000).
    [18]T. A. Birks, J. C. Knight, and P. S. J. Russell, Opt. Lett.22,961 (1997).
    [19]J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett.25,25 (2000).
    [20]H. Miguez et al., Applied Physics Letters 71,1148 (1997).
    [21]V. Kuzmiak, and A. A. Maradudin, Physical Review B 57,15242 (1998).
    [22]O. Painter, J. Vu?kovi, and A. Scherer, J. Opt. Soc. Am. B 16,275 (1999).
    [23]G. Tayeb, B. Gralak, and S. Enoch, Opt. Photon. News 14,38 (2003).
    [24]S. Kinoshita, and S. Yoshioka, ChemPhysChem 6,1442 (2005).
    [25]Bir et al., Physical Review E 67,021907 (2003).
    [26]K. Kertesz et al., Current Applied Physics 6,252 (2006).
    [27]K. M. Ho, C. T. Chan, and C. M. Soukoulis, Physical Review Letters 65,3152 (1990).
    [28]M. Qi et al., Nature 429,538 (2004).
    [29]B.-S. Song et al., Nat Mater 4,207 (2005).
    [30]Y. A. Vlasov et al, Nature 414,289 (2001).
    [31]T. Baba et al, Applied Physics Letters 85,3989 (2004).
    [32]Y. Akahane et al, Applied Physics Letters 83,1512 (2003).
    [33]T. Tanabe et al, Applied Physics Letters 91,021110 (2007).
    [34]N. Yokouchi, A. J. Danner, and K. D. Choquette, Applied Physics Letters 82,3608 (2003).
    [35]S. Christophe, L. Philippe, and H. Jean Paul, (Optical Society of America,2004), p. DTuB3.
    [36]M. Notomi et al, Physical Review Letters 87,253902 (2001).
    [37]K. Yamada et al, Optics Communications 198,395 (2001).
    [38]A. Sugitatsu, T. Asano, and S. Noda, Applied Physics Letters 84,5395 (2004).
    [39]R. D. Meade et al, Physical Review B 44,10961 (1991).
    [40]W. M. Robertson et al, Opt. Lett.18,528 (1993).
    [41]F. Ramos-Mendieta, and P. Halevi, Solid State Communications 100,311 (1996).
    [42]F. Ramos-Mendieta, and P. Halevi, Physical Review B 59,15112 (1999).
    [43]S. Xiao et al., Applied Physics Letters 85,4269 (2004).
    [44]M. Che, and Z.-Y. Li, J. Opt. Soc. Am. A 25,2177 (2008).
    [45]H. Kosaka et al, Physical Review B 58, R10096 (1998).
    [46]H. Kosaka et al., Applied Physics Letters 74,1212 (1999).
    [47]A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Physical Review Letters 71,708 (1993).
    [48]C. Spielmann et al., Physical Review Letters 73,2308 (1994).
    [49]S. Fan et al., Physical Review B 59,15882 (1999).
    [50]L. H. Frandsen et al. Opt. Express 14,9444 (2006).
    [51]J. Li et al., Opt. Express 16,6227 (2008).
    [52]Y. A. Vlasov et al. Nature 438,65 (2005).
    [53]V. G. Veselago, Soviet Physics Uspekhi 10,6 (1968).
    [54]卢明辉,博士论文:声子晶体及其物理效应的研究(南京大学,南京,2007).
    [55]李建,硕士论文:光子晶体负折射及其超透镜效应(南京大学,南京,2008).
    [56]J. B. Pendry, Physical Review Letters 85,3966 (2000).
    [57]R. E. Camley, and D. L. Mills, Physical Review B 26,1280 (1982).
    [58]S. T. Chui, and L. Hu, Physical Review B 65,144407 (2002).
    [59]J. B. Pendry et al., Physical Review Letters 76,4773 (1996).
    [60]D. R. Smith et al., Physical Review Letters 84,4184 (2000).
    [61]R. A. Shelby, D. R. Smith, and S. Schultz, Science 292,77 (2001).
    [62]J. Huangfu et al., Applied Physics Letters 84,1537 (2004).
    [63]T. J. Yen et al., Science 303,1494 (2004).
    [64]S. Zhang et al., Physical Review Letters 94,037402 (2005).
    [65]S. Linden et al., Science 306,1351 (2004).
    [66]H. Liu et al., Physical Review B 71,125106 (2005).
    [67]H. Liu et al., Applied Physics Letters 86,102904 (2005).
    [68]D. H. Werner et al., Opt. Express 15,3342 (2007).
    [69]J. B. Pendry, Science 306,1353 (2004).
    [70]S. Zhang et al., Physical Review Letters 102,023901 (2009).
    [71]N. Fang et al., Science 308,534 (2005).
    [72]M. Tsang, and D. Psaltis, Physical Review B 77,035122 (2008).
    [73]C. He et al., Physical Review B 83,075117 (2011).
    [74]L. Feng et al., Physics Letters A 332,449 (2004).
    [75]C. Luo, S. G. Johnson, and J. D. Joannopoulos, Applied Physics Letters 81,2352 (2002).
    [76]C. Luo et al., Physical Review B 65,201104 (2002).
    [77]C. Luo et al., Physical Review B 68,045115 (2003).
    [78]S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, Physical Review Letters 90,107402 (2003).
    [79]K. Guven et al., Physical Review B 70,205125 (2004).
    [80]R. Moussa et al., Physical Review B 71,085106 (2005).
    [81]S. Foteinopoulou, and C. M. Soukoulis, Physical Review B 72,165112 (2005).
    [82]X. Zhang, Physical Review B 70,195110 (2004).
    [83]X. Zhang, Physical Review E 71,037601 (2005).
    [84]E. Cubukcu et al., Physical Review Letters 91,207401 (2003).
    [85]黄昆,and韩汝琦,固体物理学(高等教育出版社,北京,1988).
    [86]尹真,电动力学(科学出版社,北京,2005).
    [87]J. A. Kong, Theory of electromagnetic waves (Wiley, New York,1975).
    [88]曹昌棋,电动力学(人民教育出版社,北京,1962).
    [89]P. M. Rinard, and J. W. Calvert, American Journal of Physics 39,753 (1971).
    [90]S. Raghu, and F. D. M. Haldane, arXiv:cond-mat/0503588 (2005).
    [91]F. D. M. Haldane, and S. Raghu, arXiv:cond-mat/0602501 (2005).
    [92]D. J. Thouless et al., Physical Review Letters 49,405 (1982).
    [93]R. B. Laughlin, Physical Review Letters 50,1395 (1983).
    [94]B. Simon, Physical Review Letters 51,2167 (1983).
    [95]M. V. Berry, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392,45(1984).
    [96]Y. Hatsugai, Physical Review Letters 71,3697 (1993).
    [97]Z. Wang et al., Physical Review Letters 100,013905 (2008).
    [98]Y. D. Chong, X.-G. Wen, and M. Soljaccaronicacute, Physical Review B 77,235125 (2008).
    [99]F. D. M. Haldane, and S. Raghu, Physical Review Letters 100,013904 (2008).
    [100]S. Raghu, and F. D. M. Haldane, Physical Review A 78,033834 (2008).
    [101]Z. Wang et al., Nature 461,772 (2009).
    [102]Y. Poo et al., Physical Review Letters 106,093903 (2011).
    [103]X. Ao, Z. Lin, and C. T. Chan, Physical Review B 80,033105 (2009).
    [104]M. Liao et al., Physical Review B 78,045112 (2008).
    [105]M. Onoda, and T. Ochiai, Physical Review Letters 103,033903 (2009).
    [106]X. Zhang, Physical Review Letters 100,113903 (2008).
    [107]D. Han et al., Physical Review Letters 102,123904 (2009).
    [108]H. Benisty, Physical Review B 79,155409 (2009).
    [109]E. Prodan, Journal of Mathematical Physics 50,083517 (2009).
    [110]C. He et al., Solid State Communications 150,1976 (2010).
    [111]S. Liu et al., Applied Physics Letters 97,201113 (2010).
    [112]C. He et al., Applied Physics Letters 96,111111 (2010).
    [113]C. Huang, and C. Jiang, J. Opt. Soc. Am. B 26,1954 (2009).
    [114]X. Zang, and C. Jiang, Appl. Opt.49,6111 (2010).
    [115]H. Zhao et al., Applied Physics Letters 91,131107 (2007).
    [116]X.-F. Li et al., Physical Review Letters 106,084301 (2011).
    [117]Z. Yu, Z. Wang, and S. Fan, Applied Physics Letters 90,121133 (2007).
    [118]Z. Yu et al., Physical Review Letters 100,023902 (2008).
    [119]Z. Yu, and S. Fan, Applied Physics Letters 94,171116 (2009).
    [120]Z. Yu, and S. Fan, Nat Photon 3,91 (2009).
    [121]A. E. Serebryannikov, Physical Review B 80,155117 (2009).
    [122]A. O. Cakmak et al., Opt. Express 18,22283 (2010).
    [123]Q. Wang et al., Opt. Express 18,7340 (2010).
    [124]B. Liang, B. Yuan, and J.-c. Cheng, Physical Review Letters 103,104301 (2009).
    [125]V. Yannopapas, Physical Review B 83,113101 (2011).
    [1]E. Yablonovitch, Physical Review Letters 58,2059 (1987).
    [2]S. John, Physical Review Letters 58,2486 (1987).
    [3]V. G. Veselago, Soviet Physics Uspekhi 10,6 (1968).
    [4]J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals:Modeling the Flow of Loght
    (Princeton University Press, Princeton, NJ,1995).
    [5]J. B. Pendry, Physical Review Letters 85,3966 (2000).
    [6]D. R. Smith et al., Physical Review Letters 84,4184 (2000).
    [7]C. Luo et al., Physical Review B 65,201104 (2002).
    [8]M. Onoda, S. Murakami, and N. Nagaosa, Physical Review Letters 93,083901 (2004).
    [9]X. Zhang, Physical Review Letters 100,113903 (2008).
    [10]X. Zhang, and Z. Liu, Physical Review Letters 101,264303 (2008).
    [11]F. D. M. Haldane, and S. Raghu, Physical Review Letters 100,013904 (2008).
    [12]S. Raghu, and F. D. M. Haldane, Physical Review A 78,033834 (2008).
    [13]Z. Wang et al., Physical Review Letters 100,013905 (2008).
    [14]Z. Wang et al., Nature 461,772 (2009).
    [15]K. v. Klitzing, G. Dorda, and M. Pepper, Physical Review Letters 45,494 (1980).
    [16]D. J. Thouless et al., Physical Review Letters 49,405 (1982).
    [17]R. B. Laughlin, Physical Review Letters 50,1395 (1983).
    [18]B. Simon, Physical Review Letters 51,2167 (1983).
    [19]M. V. Berry, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392,45(1984).
    [20]Y. Hatsugai, Physical Review Letters 71,3697 (1993).
    [21]Y. D. Chong, X.-G. Wen, and M. Soljaccaronicacute, Physical Review B 77,235125 (2008).
    [22]L. Feng et al., Physics Letters A 332,449 (2004).
    [23]D. M. Pozar, Microwave Engineering (Wiley, New York,1998).
    [24]叶飞,and苏刚,物理39,564(2010).
    [25]M. Onoda, and T. Ochiai, Physical Review Letters 103,033903 (2009).
    [26]R. A. Sepkhanov, J. Nilsson, and C. W. J. Beenakker, Physical Review B 78,045122 (2008).
    [27]W. Jiang, and R. T. Chen, Physical Review B 77,075104 (2008).
    [28]R. A. Sepkhanov, Y. B. Bazaliy, and C. W. J. Beenakker, Physical Review A 75,063813 (2007).
    [29]A. Lakhtakia, and T. G. Mackay, Microwave and Optical Technology Letters 41,165 (2004).
    [30]J. Valentine et al., Nature 455,376 (2008).
    [31]C. He et al., Journal of Applied Physics 107,123117(2010).
    [32]C. Huang, and C. Jiang, J. Opt. Soc. Am. B 26,1954 (2009).
    [33]J.-X. Fu, R.-J. Liu, and Z.-Y. Li, Applied Physics Letters 97,041112 (2010).
    [34]X. Ao, Z. Lin, and C. T. Chan, Physical Review B 80,033105 (2009).
    [35]Y. Poo et al., Physical Review Letters 106,093903 (2011).
    [36]A. B. Khanikaev et al. Applied Physics Letters 95,011101 (2009).
    [37]V. Yannopapas, Physical Review B 83,113101 (2011).
    [38]R. D. Meade et al., Physical Review B 44,10961 (1991).
    [39]W. M. Robertson et al., Opt. Lett.18,528 (1993).
    [40]F. Ramos-Mendieta, and P. Halevi, Solid State Communications 100,311(1996).
    [41]F. Ramos-Mendieta, and P. Halevi, Physical Review B 59,15112 (1999).
    [42]S. Enoch, E. Popov, and N. Bonod, Physical Review B 72,155101 (2005).
    [43]K. Ishizaki, and S. Noda, Nature 460,367 (2009).
    [44]S. Xiao et al., Applied Physics Letters 85,4269 (2004).
    [45]S. Xiao, and M. Qiu, Applied Physics Letters 87,111102 (2005).
    [46]X. Zhang et al., Physical Review B 63,125114(2001).
    [47]M. Che, and Z.-Y. Li, J. Opt. Soc. Am. A 25,2177 (2008).
    [48]Z. Yu, Z. Wang, and S. Fan, Applied Physics Letters 90,121133 (2007).
    [49]Z. Yu, and S. Fan, Applied Physics Letters 94,171116 (2009).
    [50]B. Liang, B. Yuan, and J.-c. Cheng, Physical Review Letters 103,104301 (2009).
    [51]A. E. Serebryannikov, Physical Review B 80,155117(2009).
    [52]X.-F. Li et al., Physical Review Letters 106,084301 (2011).
    [53]W. migaj et al., Opt. Lett.35,568 (2010).
    [54]Z. Wang, and S. Fan, Applied Physics B:Lasers and Optics 81,369 (2005).
    [55]Z. Yu et al., Physical Review Letters 100,023902 (2008).
    [56]M. Bayindir, B. Temelkuran, and E. Ozbay, Applied Physics Letters 77,3902 (2000).
    [57]M. F. Yanik et al., Opt. Lett.28,2506 (2003).
    [58]N. Moll et al., Applied Physics Letters 88,171104 (2006).
    [59]S. Fan et al., Physical Review B 59,15882 (1999).
    [60]A. N. Furs, and L. M. Barkovsky, Journal of Physics A 40,309 (2007).
    [61]J. Li et al., Journal of Applied Physics 101,013516 (2007).
    [1]E. Yablonovitch, Physical Review Letters 58,2059 (1987).
    [2]S. John, Physical Review Letters 58,2486 (1987).
    [3]F. D. M. Haldane, and S. Raghu, Physical Review Letters 100,013904 (2008).
    [4]S. Raghu, and F. D. M. Haldane, Physical Review A 78,033834 (2008).
    [5]Z. Wang et al., Physical Review Letters 100,013905 (2008).
    [6]Z. Wang et al., Nature 461,772 (2009).
    [7]X. Ao, Z. Lin, and C. T. Chan, Physical Review B 80,033105 (2009).
    [8]C. He et al., Applied Physics Letters 96,111111 (2010).
    [9]C. He et al.,Journal of Applied Physics 107,123117(2010).
    [10]Y. Poo et al., Physical Review Letters 106,093903 (2011).
    [11]C.He et al. Solid State Communications 150,1976(2010).
    [12]C. L. Kane, and E. J. Mele, Physical Review Letters 95,146802 (2005).
    [13]S.-C. Zhang, and J. Hu, Science 294,823 (2001).
    [14]J. Wunderlich et al., Physical Review Letters 94,047204 (2005).
    [15]D. Hsieh et al., Nature 452,970 (2008).
    [16]Y. Xia et al., Nat Phys 5,398 (2009).
    [17]H. Zhang et al., Nat Phys 5,438 (2009).
    [18]Y. L. Chen et al., Science 325,178 (2009).
    [19]K. G. Makris et al., Physical Review Letters 100,103904 (2008).
    [20]C. E. Ruter et al., Nat Phys 6,192 (2010).
    [21]P. M. Rinard, and J. W. Calvert, American Journal of Physics 39,753 (1971).
    [22]V. G. Veselago, Soviet Physics Uspekhi 10,6 (1968).
    [23]L. Feng et al. Physical Review B 71,195106 (2005).
    [24]N.-H. Shen et al., Physical Review B 72,153104 (2005).
    [25]J. B. Pendry, Science 322,71 (2008).
    [26]I. L. Lyubchanskii, and et al., Journal of Physics D:Applied Physics 36, R277 (2003).
    [27]M. Inoue, and et al., Journal of Physics D:Applied Physics 39, R151 (2006).
    [28]M. Inoue et al., Journal of Applied Physics 83,6768 (1998).
    [29]R. Wolfe et al., Applied Physics Letters 56,426 (1990).
    [30]I. Bita, and E. L. Thomas, J. Opt. Soc. Am. B 22,1199 (2005).
    [31]Z. Wang, and S. Fan, Applied Physics B:Lasers and Optics 81,369 (2005).
    [32]Z. Wang, and S. Fan, Opt. Lett.30,1989 (2005).
    [33]Z. Yu, Z. Wang, and S. Fan, Applied Physics Letters 90,121133(2007).
    [34]M. Vanwolleghem et al., Physical Review B 80,121102 (2009).
    [35]J. A. Kong, Theory of electromagnetic waves (Wiley, New York,1975).
    [36]S.-L. Yu, J.-X. Li, and L. Sheng, Physical Review B 80,193304 (2009).
    [37]X. Zhang, Physical Review Letters 100,113903 (2008).
    [38]J. B. Nielsen et al., Photonics Technology Letters, IEEE 12,630 (2000).
    [39]T. Hiroyuki, and et al.,Journal of Physics:Condensed Matter 16,6317 (2004).
    [40]R. A. Sepkhanov, J. Nilsson, and C. W. J. Beenakker, Physical Review B 78,045122 (2008).
    [41]K. S. Novoselov et al. Nature 438,197 (2005).
    [42]Y. Zhang et al., Nature 438,201 (2005).
    [43]M.-H. Lu et al., Nat Mater 6,744 (2007).
    [44]C. He et al., Physical Review B 83,075117 (2011).
    [45]康雷,博士论文.Investigation on tunability of metamaterials(清华大学,北京,2009).
    [46]向仁生,微波铁氧体线性器件原理(科学出版社,北京,1979).
    [47]D. M. Pozar, Microwave Engineering (Wiley, New York,1998).
    [48]B. Lax, and K. J. Button, Microwave ferrite and ferrimagnetics (McGRAW-HILL, New York, 1962).
    [49]H. Zhao et al., Applied Physics Letters 91,131107 (2007).
    [50]H. Zhao et al., Applied Physics Letters 93,201106 (2008).
    [51]周志刚,铁氧体磁性材料(科学出版社,北京,1981).
    [52]J.-X. Fu, R.-J. Liu, and Z.-Y. Li, Applied Physics Letters 97,041112 (2010).
    [53]K. C. Huang et at., Physical Review Letters 90,196402 (2003).
    [54]C. He et al., Journal of Applied Physics 108,073103 (2010).
    [1]U. Leonhardt, Science 312,1777 (2006).
    [2]J. B. Pendry, D. Schurig, and D. R. Smith, Science 312,1780 (2006).
    [3]H. Chen, C. T. Chan, and P. Sheng, Nat Mater 9,387 (2010).
    [4]A. U. Yaroslav, and et al., Journal of Optics 13,024002 (2011).
    [5]W. M. Graeme, and et al., New Journal of Physics 8,248 (2006).
    [6]D. Schurig, J. B. Pendry, and D. R. Smith, Opt. Express 14,9794 (2006).
    [7]U. Leonhardt, and T. Tyc, Science 323,110 (2009).
    [8]M. Rahm et al., Photonics and Nanostructures-Fundamentals and Applications 6,87 (2008).
    [9]J. Li, and J. B. Pendry, Physical Review Letters 101,203901 (2008).
    [10]C. Li, and F. Li, Opt. Express 16,13414 (2008).
    [11]Y. Lai et al., Physical Review Letters 102,093901 (2009).
    [12]Y. Lai et al., Physical Review Letters 102,253902 (2009).
    [13]J. Hao, W. Yan, and M. Qiu, Applied Physics Letters 96,101109 (2010).
    [14]J. Valentine et al., Nat Mater 8,568 (2009).
    [15]W. Cai et al., Nat Photon 1,224 (2007).
    [16]L. H. Gabrielli et al., Nat Photon 3,461 (2009).
    [17]C. Qiang, and et al., New Journal of Physics 12,063006 (2010).
    [18]T. Yang et al., Applied Physics A:Materials Science & Processing 99,843 (2010).
    [19]Y. Liu et al., Nano Letters 10,1991 (2010).
    [20]W. H. Wee, and J. B. Pendry, New Journal of Physics 12,033047 (2010).
    [21]J. B. Pendry, and L. Jensen, New Journal of Physics 10,115032 (2008).
    [22]S. Zhang et al., Physical Review Letters 100,123002 (2008).
    [23]Z. Yu, Z. Wang, and S. Fan, Applied Physics Letters 90,121133 (2007).
    [24]M. Vanwolleghem et al., Physical Review B 80,121102 (2009).
    [25]A. E. Serebryannikov, Physical Review B 80,155117 (2009).
    [26]I. Bita, and E. L. Thomas, J. Opt. Soc. Am. B 22,1199 (2005).
    [27]F. D. M. Haldane, and S. Raghu, Physical Review Letters 100,013904 (2008).
    [28]S. Raghu, and F. D. M. Haldane, Physical Review A 78,033834 (2008).
    [29]Z. Wang et al., Physical Review Letters 100,013905 (2008).
    [30]Z. Wang et al. Nature 461,772 (2009).
    [31]C. He et al., Physical Review B 83,075117(2011).
    [32]D. M. Pozar, Microwave Engineering (Wiley, New York,1998).
    [33]K. G. Makris et al., Physical Review Letters 100,103904 (2008).
    [34]C. E. Ruter et al.,Nat Phys 6,192(2010).
    [1]叶飞,and苏刚,物理39,564(2010).
    [2]D. J. Thouless et al., Physical Review Letters 49,405 (1982).
    [3]R. B. Laughlin, Physical Review Letters 50,1395 (1983).
    [4]Y. Hatsugai, Physical Review Letters 71,3697 (1993).
    [5]C. L. Kane, and E. J. Mele, Physical Review Letters 95,146802 (2005).
    [6]J. Wunderlich et al., Physical Review Letters 94,047204 (2005).
    [7]Y. L. Chen et al., Science 325,178 (2009).
    [8]H. Zhang et al., Nat Phys 5,438 (2009).
    [9]F. D. M. Haldane, and S. Raghu, Physical Review Letters 100,013904 (2008).
    [10]S. Raghu, and F. D. M. Haldane, Physical Review A 78,033834 (2008).
    [11]Z. Wang et al., Physical Review Letters 100,013905 (2008).
    [12]Z. Wang et al., Nature 461,772 (2009).
    [13]X. Ao, Z. Lin, and C. T. Chan, Physical Review B 80,033105 (2009).
    [14]Y. Poo et al., Physical Review Letters 106,093903 (2011).
    [15]C. He et al., Journal of Applied Physics 107,123117(2010).
    [16]C. He et al., Applied Physics Letters 96,111111 (2010).
    [17]J.-X. Fu, R.-J. Liu, and Z.-Y. Li, Applied Physics Letters 97,041112 (2010).
    [18]O. Hosten, and P. Kwiat, Science 319,787 (2008).
    [19]F. D. M. Haldane, Physical Review Letters 61,2015 (1988).
    [20]C. Xu, and J. E. Moore, Physical Review B 73,045322 (2006).
    [21]C. He et al., Solid State Communications 150,1976 (2010).
    [22]D. M. Pozar, Microwave Engineering (Wiley, New York,1998).
    [23]V. Yannopapas, Physical Review B 83,113101 (2011).
    [1]C. Genet, and T. W. Ebbesen, Nature 445,39 (2007).
    [2]D. C. Skigin, and R. A. Depine, Physical Review Letters 95,217402 (2005).
    [3]Y. Kurokawa, and H. T. Miyazaki, Physical Review B 75,035411 (2007).
    [4]Q. Cao, and P. Lalanne, Physical Review Letters 88,057403 (2002).
    [5]M.-H. Lu et al., Physical Review Letters 99,174301 (2007).
    [6]M. Ghulinyan et al., Physical Review Letters 94,127401 (2005).
    [7]F. Dreisow et al., Physical Review Letters 102,076802 (2009).
    [8]G. Guan et al., Applied Physics Letters 88,211112 (2006).
    [9]E. Yablonovitch, Physical Review Letters 58,2059 (1987).
    [10]S. John, Physical Review Letters 58,2486 (1987).
    [11]J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals:Modeling the Flow of Loght
    (Princeton University Press, Princeton, NJ,1995).
    [12]R. D. Meade et al., Physical Review B 44,10961 (1991).
    [13]W. M. Robertson et al., Opt. Lett.18,528 (1993).
    [14]F. Ramos-Mendieta, and P. Halevi, Physical Review B 59,15112 (1999).
    [15]K. Ishizaki, and S. Noda, Nature 460,367 (2009).
    [16]J. A. Gaspar-Armenta, and F. Villa, J. Opt. Soc. Am. B 20,2349 (2003).
    [17]A. S. Ramirez-Duverger, J. Gaspar-Armenta, and R. Garcia-Llamas, J. Opt. Soc. Am. B 25,1016 (2008).
    [18]D. Aldo Santiago Ramirez, L. Raul Garcia, and G.-A. Jorge, (Optical Society of America,2007), p. MD5.
    [19]S. R. D. Aldo et al., (Optical Society of America,2010), p. ThA11.
    [20]B. J. Lee, Y. B. Chen, and Z. M. Zhang, Opt. Lett.33,204 (2008).
    [21]M. Kaliteevski et al., Physical Review B 76,165415 (2007).
    [22]W. Shen et al., Optics Communications 282,242 (2009).
    [23]S. Brand, R. A. Abram, and M. A. Kaliteevski, Journal of Applied Physics 106,113109 (2009).
    [24]J. S. Foresi et al., Nature 390,143 (1997).
    [25]X.-Y. Lei et al., Applied Physics Letters 71,2889 (1997).
    [26]C.-H. Chen et al., Appl. Opt.44,1503 (2005).
    [27]J. Homola, S. S. Yee, and G. Gauglitz, Sensors and Actuators B:Chemical 54,3 (1999).
    [28]C. Ciminelli, F. Peluso, and M. N. Armenise, J. Lightwave Technol.23,886 (2005).
    [29]C. Ciminelli, F. Peluso, and M. N. Armenise, in Fibres and Optical Passive Components,2005. Proceedings of 2005 IEEE/LEOS Workshop on2005), pp.404.
    [30]H. A. Macleod, Thin film optical filters (McGraw-Hill, New York,1989).
    [31]C. J. van der Laan, and H. J. Frankena, Appl. Opt.34,681 (1995).
    [32]F. Villa, and J. A. Gaspar-Armenta, Optics Communications 223,109 (2003).
    [33]J. A. Gaspar-Armenta, F. Villa, and T. L6pez-Rios, Optics Communications 216,379 (2003).
    [34]B. S. Verma, R. Bhattacharyya, and V. V. Shah, Appl. Opt.25,315 (1986).
    [35]F. D. M. Haldane, and S. Raghu, Physical Review Letters 100,013904 (2008).
    [36]S. Raghu, and F. D. M. Haldane, Physical Review A 78,033834 (2008).
    [37]Z. Wang et al., Physical Review Letters 100,013905 (2008).
    [38]B. Liang, B. Yuan, and J.-c. Cheng, Physical Review Letters 103,104301 (2009).
    [39]Q. Wang et al., Opt. Express 18,7340 (2010).
    [40]Z. Yu, and S. Fan, Nat Photon 3,91 (2009).
    [41]Z. Yu, and S. Fan, Applied Physics Letters 94,171116 (2009).
    [42]A. E. Serebryannikov, Physical Review B 80,155117 (2009).
    [43]X.-F. Li et al., Physical Review Letters 106,084301 (2011).
    [44]Z. Wang et al., Nature 461,772 (2009).
    [45]J.-X. Fu, R.-J. Liu, and Z.-Y. Li, Applied Physics Letters 97,041112 (2010).
    [46]Y. Poo et al., Physical Review Letters 106,093903 (2011).
    [47]Z. Yu et al., Physical Review Letters 100,023902 (2008).
    [48]A. B. Khanikaev et al., Applied Physics Letters 95,011101 (2009).
    [49]C.-S. Yuan et al., Physica B:Condensed Matter 406,1983 (2011).
    [50]P. V. Aleksei, and et al., Physics-Uspekhi 53,243 (2010).
    [51]C. He et al., Physical Review B 83,075117 (2011).
    [1]J. A. Kong, Theory of electromagnetic waves (Wiley, New York,1975).
    [2]A. Lakhtakia, Beltrami Fields in Chiral Media (World Scientific Publishing, Singapore,1994).
    [3]A. G. Fresnel, Oeuvres 1,738 (1822).
    [4]L. Pasteur, Ann. Chem. Phys.24,442 (1848).
    [5]L. Pasteur, Ann. Chem. Phys.28,56 (1850).
    [6]P. Drude, Lehrbuch der Optik (S.Hirzel, Leipzig,1900).
    [7]J. B. Biot, Mem. C1. Sci. Maths. Phys. Inst.13,1 (1812).
    [8]L. Natanson, J. Physique 8,321 (1909).
    [9]M. Born, Phys. Z.16,251 (1915).
    [10]C. W. Oseen, Ann. Phys. Leipzig 48,1 (1915).
    [11]K. F. Lindman, Ann. Phys. Leipzig 63,621 (1920).
    [12]A. Lakhtakia, and R. Messier, Sculptured Thin Films:Nanoengineered Morphology and Optics (SPIE Press, Bellingham WA,2005).
    [13]J. B. Pendry, Science 306,1353 (2004).
    [14]A. V. Rogacheva et al., Physical Review Letters 97,177401 (2006).
    [15]V. A. Fedotov et al., Physical Review Letters 97,167401 (2006).
    [16]V. A. Fedotov et al., Physical Review E 72,056613 (2005).
    [17]E. Yablonovitch, Physical Review Letters 58,2059 (1987).
    [18]S. John, Physical Review Letters 58,2486 (1987).
    [19]J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals:Modeling the Flow of Loght (Princeton University Press, Princeton, NJ,1995).
    [20]D.-H. Kwon et al., Opt. Express 16,11822 (2008).
    [21]J. K. Gansel et al, Science 325,1513(2009).
    [22]V. Karathanos, N. Stefanou, and A. Modinos, Journal of Modern Optics 42,619 (1995).
    [23]K. M. Flood, and D. L. Jaggard, J. Opt. Soc. Am. A 13,1395 (1996).
    [24]J. Chongjun et al., Optics Communications 142,179(1997).
    [25]P. Tran, J. Opt. Soc. Am. B 16,70 (1999).
    [26]I. E. Psarobas, N. Stefanou, and A. Modinos, J. Opt. Soc. Am. A 16,343 (1999).
    [27]S. Furumi et al., Applied Physics Letters 82,16 (2003).
    [28]M. Thiel, G. von Freymann, and M. Wegener, Opt. Lett.32,2547 (2007).
    [29]K. Konishi et al., Opt. Express 16,7189 (2008).
    [30]S. Tretyakov et al., Journal of Electromagnetic Waves and Applications 17,695 (2003).
    [31]I. Bita, and E. L. Thomas, J. Opt. Soc. Am. B 22,1199 (2005).
    [32]Q.Cheng, and T. J. Cui, Physical Review B 73,113104 (2006).
    [33]L. Jelinek et al., Physical Review B 77,205110 (2008).
    [34]Y. Jin, and S. He, Opt. Express 13,4974 (2005).
    [35]冯端,and金国钧,凝聚态物理学(上卷)(高等教育出版社,北京,2003).
    [36]A. J. Ward, Doctoral dissertation:Transfer matrices, photonic bands and related quantities (Imperial college, London,1996).
    [37]A. Lakhtakia, and T. G. Mackay, Microwave and Optical Technology Letters 41,165 (2004).
    [38]C. He et al. Physical Review B 83,075117 (2011).
    [39]M.-H. Lu et al., Nat Mater 6,744 (2007).
    [40]X. Zhang, Physical Review Letters 100,113903 (2008).
    [41]O. Hosten, and P. Kwiat, Science 319,787 (2008).
    [42]V. Yannopapas, Physical Review B 83,113101 (2011).
    [43]C. L. Kane, and E. J. Mele, Physical Review Letters 95,146802 (2005).
    [44]Z. Yu, Z. Wang, and S. Fan, Applied Physics Letters 90,121133 (2007).
    [45]F. D. M. Haldane, and S. Raghu, Physical Review Letters 100,013904 (2008).
    [46]Z. Wang et al., Physical Review Letters 100,013905 (2008).
    [47]Z. Wang et al., Nature 461,772 (2009).
    [48]Z.-Y. Li, and L.-L. Lin, Physical Review E 67,046607 (2003).
    [49]J. Korringa, Physica 13,392 (1947).
    [50]W. Kohn, and N. Rostoker, Phys. Rev.94,1111 (1954).
    [51]李正中,固体理论(高等教育出版社,北京,1984).
    [52]K. Ohtaha, J. Phys. C 13,667 (1980).
    [53]W. Lamb, D. M. Wood, and N. W. Ashcroft, Physical Review B 47,2248 (1980).
    [54]A. Modinos, Physica A 141,575 (1987).
    [55]X. D. Wang et al., Physical Review B 47,4161 (1993).
    [56]A. Moroz, Physical Review B 51,2068 (1995).
    [57]K. H. D. J. A. Kong, C. O. Ao, and L. Tsang, Scattering of Electromagnetic Waves:Numerical
    Simulations (Wiley, New York,2001).
    [58]L.-M. Li, and Z.-Q. Zhang, Physical Review B 58,9587 (1998).
    [59]G. Tayeb, and D. Maystre, J. Opt. Soc. Am. A 14,3323 (1997).
    [60]陈延彬,硕士论文:介电体超晶格光学性质的研究(南京大学,南京,2001).
    [61]樊天,硕士论文:磁电耦合超晶格及其物理性质(南京大学,南京,2007).
    [62]C. F. Bohren, Chemical Physics Letters 29,458 (1974).
    [63]J.-Y. Lin, and D.-C. Su, Optics Communications 218,317 (2003).
    [64]E. Hecht, Optics (Addison-Wesley Longman, New York,1998).
    [65]R. Angelaud et al., Chirality 12,544 (2000).
    [66]E. Giorgio et al., Chirality 19,434 (2007).
    [67]K. C. Huang et al., Physical Review Letters 90,196402 (2003).
    [68]A. Christ et al., Physical Review Letters 91,183901 (2003).
    [69]J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386,143 (1997).
    [70]S. Noda, A. Chutinan, and M. Imada, Nature 407,608 (2000).
    [71]B.-S. Song, S. Noda, and T. Asano, Science 300,1537 (2003).
    [72]A. A. Sukhorukov, Y. S. Kivshar, and O. Bang, Physical Review E 60, R41 (1999).
    [73]N. Akozbek, and S. John, Physical Review E 57,2287 (1998).
    [74]Y. Tajitsu et al., Journal of Materials Science Letters 18,1785 (1999).
    [75]Z. Li et al., Nano Letters 9,2306 (2009).
    [76]M. Decker et al., Opt. Lett.32,856 (2007).
    [77]V. M. Agranovich, Y. N. Gartstein, and A. A. Zakhidov, Physical Review B 73,045114 (2006).
    [78]V. G. Veselago, Soviet Physics Uspekhi 10,6 (1968).
    [79]L. Feng et al., Physics Letters A 332,449 (2004).
    [80]J. Li et al., Journal of Applied Physics 101,013516 (2007).
    [1]F. D. M. Haldane, and S. Raghu, Physical Review Letters 100,013904 (2008).
    [2]S. Raghu, and F. D. M. Haldane, Physical Review A 78,033834 (2008).
    [3]Z. Wang et al., Physical Review Letters 100,013905 (2008).
    [4]Z. Wang et al., Nature 461,772 (2009).
    [5]X. Zhang, Physical Review Letters 100,113903 (2008).
    [6]V. Yannopapas, Physical Review B 83,113101 (2011).
    [7]C. He et al., Physical Review B 83,075117 (2011).
    [8]Y. A. Urzhumov, and D. R. Smith, Physical Review Letters 105,163901 (2010).
    [9]D. J. Thouless et al., Physical Review Letters 49,405 (1982).
    [10]Y. Hatsugai, Physical Review Letters 71,3697 (1993).
    [11]C. L. Kane, and E. J. Mele, Physical Review Letters 95,146802 (2005).
    [12]D. Hsieh et al., Nature 452,970 (2008).
    [13]S. Zhang et al., Physical Review Letters 102,023901 (2009).
    [14]C. Wu et al., Physical Review Letters 105,247401 (2010).
    [15]C.-W. Chang et al, Physical Review Letters 105,235501 (2010).
    [16]B. Liang, B. Yuan, and J.-c. Cheng, Physical Review Letters 103,104301 (2009).
    [17]C. E. Ruter et al.,Nat Phys 6,192(2010).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700