用户名: 密码: 验证码:
拓扑绝缘体薄膜表面态和掺杂效应的STM研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维拓扑绝缘体是一类新的量子物质态,为近年来物理学的热点前沿课题之一。这类材料体内是绝缘体,表面存在无能隙的、受时间反演对称性保护的金属表面态。利用分子束外延技术精确可控地生长高质量的拓扑绝缘体薄膜,是研究拓扑绝缘体的新奇量子现象和探索其在自旋电子学和量子计算等应用的重要基础。Bi2Te3和Sb2Te3是表面具有单个狄拉克锥结构的第二代拓扑绝缘体,可在石墨烯衬底上用分子束外延生长得到。在本博士论文中,我们以生长在石墨烯上的Bi2Te3和Sb2Te3薄膜为衬底,进行了Bi薄膜的异质结生长和元素掺杂研究,利用原位的低温扫描隧道显微镜(STM)系统地研究了这两类体系在纳米尺度下的物理性质,得到的主要结论如下:
     (1)表面态如果被表面边界囚禁,则可以实现类似光学谐振腔的封闭体系。此封闭体系内的无质量Dirac费米子由于受到边界处多次散射,会形成量子干涉现象。我们在Bi2Te3上沉积亚单层的Bi(111)薄膜,实现了限制Dirac费米子的三角形“量子围栏”。通过围栏内的STM空间局域态密度成像、扫描隧道谱,我们观察到了这种量子干涉行为。结合该体系受限表面态共振散射的具体机制,我们分析了限制表面态寿命的主要来源。我们还系统地研究了Bi膜生长动力学机理、Bi膜对Bi2Te3薄膜的掺杂效应以及两种薄膜的功函数差别,并最终提出了Bi/Bi2Te3界面处能带弯曲的模型。
     (2)在室温掺杂Sb的Bi2Te3薄膜中,我们观测到了杂质中心的强烈共振峰。通过分析共振峰随空间和能量的变化情况,我们证明该中心处的共振峰与Dirac点是共存的。我们还研究了表面态在杂质周围的散射,结合Bi2Te3等能面构形,定量分析了散射波矢的来源:连接次近邻Γ-K方向电子波矢的q2。对照三类不同沉积条件的样品,我们研究了杂质在薄膜中的占位情况。
     (3)(BixSb1-x)2Te3合金薄膜是一类电子结构介于Bi2Te3和Sb2Te3之间的拓扑绝缘体材料。我们通过控制掺杂比例,实现了Dirac点相对费米能级的可控移动。在表面6掺杂Bi的Sb2Te3薄膜中,我们分析了不同掺杂浓度下表面态的色散关系和在强磁场下Landau量子化行为的演化,认为Bi掺杂抑制了原表面态内束缚态扰动,表面态更趋于线性色散。我们也观察到了Sb2Te3与Bi2Te3类似的表面态在杂质周围的准粒子相干条纹。
As a new state of quantum matter, three-dimensional topological insulatorhas recently attracted tremendous attention in the physics community. The bulkof a topological insulator is insulating, but there exist gapless metallic surfacestates, which are topologically protected by time-reversal symmetry. Bymolecular beam epitaxy technique, one can grow high-quality topologicalinsulator thin films with precisely controlled properties and can be used forexploring novel quantum phenomena in topological insulators and potentialapplications in spintronics and quantum computation.
     The surface states of the second-generation topological insulators Bi_2Te_3and Sb_2Te_3consist of a single Dirac cone structure on each surface. High qualitythin films of Bi_2Te_3and Sb_2Te_3have been successfully grown on graphenesubstrate by molecular beam epitaxy. In this thesis, we perform heteroepitaxialgrowth of Bi films and chemical doping on Bi_2Te_3and Sb_2Te_3substrates. Usingin-situ low temperature scanning tunneling microscopy/spectroscopy(STM/STS), we systematically study the physical properties of the two systemsin nanoscale. The main conclusions are as follows:
     1. Confining topological insulator surface states with a closed boundary isfascinating and experimentally challenging. In this closed system,multiple-scattering of massless Dirac fermions at boundaries is predicted toinduce quantum interference. We have successfully confined the Dirac fermionsin Bi_2Te_3by bilayer Bi(111) films, which forms a new quantum resonatorsystem in analogy to optical cavity. The quantum interference nature isidentified by both spatial local density of state maps of STM and byenergy-dependent STS. The underlying physics of surface state resonantscattering is clarified, and the origin of surface state lifetime is discussed. Wealso investigate the growth kinetics of Bi film, its doping effect to Bi_2Te_3, andthe work functions of Bi and Bi_2Te_3films. We propose a schematic energy-banddiagram, which reveals band bending effect at the Bi/Bi_2Te_3interface.
     2. In Sb-doped Bi_2Te_3films, we observe a strong resonance peak at the impurity center. By probing its spatial and energy dependent STS, we demonstrate the coexistence of Dirac point and resonance peak at the impurity center. Coherent scattering of surface states around impurities is analyzed in real-and q-spaces. Based on the constant energy contour of Bi2Te3, we quantitatively discuss the origin of the wave vector involved in the scattering: nesting vectors q2connected to the electron vectors from next nearest Γ-K directions. We compare three kinds of samples prepared under different growth conditions, and determine the atomic structure of the impurity in films.
     3.(BixSb1-x)2Te3alloy films are a new promising class of topological insulator materials, by combining the electronic and structural properties of Bi2Te3and Sb2Te3. By fine-tuning composition ratio of Bi, we are able to control the position of the Dirac point with respect to the Fermi level. In the Bi-δ-doped Sb2Te3films, we analyze the dispersion change of and the evolution of Landau levels of surface states under magnetic field, as a function of doping level. Bi dopants suppress bound states induced by native Sb vacancies and make surface states approaching linear dispersions. Quasiparticle interference patterns related to surface impurities are also observed in the same samples. It is found that they are similar to the surface state scattering behavior in Bi2Te3.
引文
[1] Qi X-L, Zhang S-C. Topological insulators and superconductors. Reviews of Modern Physics,2011,83:1057-1110.
    [2] Qi X-L, Zhang S-C. The quantum spin Hall effect and topological insulators. Physics Today,2010,63:33-38.
    [3] Klitzing K v, Dorda G, Pepper M. New method for high-accuracy determination of thefine-structure constant based on quantized Hall resistance. Physical Review Letters,1980,45:494-497.
    [4] Manoharan H C. Topological insulators: A romance with many dimensions. NatureNanotechnology,2010,5:477-479.
    [5] Berry M. Geometric phase memories. Nature Physics,2010,6:148-150.
    [6] Ghaemi P, Mong R S K, Moore J E. In-plane transport and enhanced thermoelectricperformance in thin films of the topological insulators Bi2Te3and Bi2Se3. Physical ReviewLetters,2010,105:166603.
    [7] Qi X-L, Li R, Zang J, et al. Inducing a magnetic monopole with topological surface states.Science,2009,323:1184-1187.
    [8] Fu L, Kane C L. Superconducting proximity effect and Majorana fermions at the surface of atopological insulator. Physical Review Letters,2008,100:096407.
    [9] Kane C L, Mele E J. Z2topological order and the quantum spin Hall effect. Physical ReviewLetters,2005,95:146802.
    [10] Kane C L, Mele E J. Quantum spin Hall effect in graphene. Physical Review Letters,2005,95:226801.
    [11] Bernevig B A, Hughes T L, Zhang S-C. Quantum spin Hall effect and topological phasetransition in HgTe quantum wells. Science,2006,314:1757-1761.
    [12] K nig M, Wiedmann S, Brüne C, et al. Quantum spin Hall insulator state in HgTe quantumwells. Science,2007,318:766-770.
    [13] Knez I, Du R-R, Sullivan G. Evidence for helical edge modes in inverted InAs/GaSb quantumwells. Physical Review Letters,2011,107:136603.
    [14] Murakami S. Quantum spin Hall effect and enhanced magnetic response by spin-orbitcoupling. Physical Review Letters,2006,97.
    [15] Yang F, Miao L, Wang Z F, et al. Spatial and energy distribution of topological edge states insingle Bi(111) Bilayer. Physical Review Letters,2012,109:016801.
    [16] Fu L, Kane C L, Mele E J. Topological insulators in three dimensions. Physical ReviewLetters,2007,98:106803.
    [17] Moore J E, Balents L. Topological invariants of time-reversal-invariant band structures.Physical Review B,2007,75:121306.
    [18] Fu L, Kane C L. Topological insulators with inversion symmetry. Physical Review B,2007,76:045302.
    [19] Hsieh D, Qian D, Wray L, et al. A topological Dirac insulator in a quantum spin Hall phase.Nature,2008,452:970-974.
    [20] Zhang H, Liu C-X, Qi X-L, et al. Topological insulators in Bi2Se3, Bi2Te3and Sb2Te3with asingle Dirac cone on the surface. Nature Physics,2009,5:438-442.
    [21] Zhang W, Yu R, Zhang H-J, et al. First-principles studies of the three-dimensional strongtopological insulators Bi2Te3, Bi2Se3and Sb2Te3. New Journal of Physics,2010,12:065013
    [22] Chen Y L, Analytis J G, Chu J-H, et al. Experimental realization of a three-dimensionaltopological insulator, Bi2Te3. Science,2009,325:178-181.
    [23] Xia Y, Qian D, Hsieh D, et al. Observation of a large-gap topological-insulator class with asingle Dirac cone on the surface. Nature Physics,2009,5:398-402.
    [24] Hsieh D, Xia Y, Qian D, et al. Observation of time-reversal-protected single-Dirac-conetopological-insulator states in Bi2Te3and Sb2Te3. Physical Review Letters,2009,103:146401.
    [25] Roushan P, Seo J, Parker C V, et al. Topological surface states protected from backscatteringby chiral spin texture. Nature,2009,460:1106-1109.
    [26] Chen Y. Studies on the electronic structures of three-dimensional topological insulators byangle resolved photoemission spectroscopy. Frontiers of Physics,2012,7:175-192.
    [27] Chen Y L, Chu J H, Analytis J G, et al. Massive Dirac fermion on the surface of amagnetically doped topological insulator. Science,2010,329:659-662.
    [28] Hasan M Z, Kane C L. Colloquium: Topological insulators. Reviews of Modern Physics,2010,82:3045-3067.
    [29] Culcer D. Transport in three-dimensional topological insulators: Theory and experiment.Physica E-Low-Dimensional Systems&Nanostructures,2012,44:860-884.
    [30] Moore J E. The birth of topological insulators. Nature,2010,464:194-198.
    [31] Li H, Peng H, Dang W, et al. Topological insulator nanostructures: Materials synthesis,Raman spectroscopy, and transport properties. Frontiers of Physics,2012,7:208-217.
    [32] Li Y-Y, Wang G, Zhu X-G, et al. Intrinsic topological insulator Bi2Te3thin films on Si andtheir thickness limit. Advanced Materials,2010,22:4002-4007.
    [33] Wang G, Zhu X-G, Sun Y-Y, et al. Topological insulator thin films of Bi2Te3with controlledelectronic structure. Advanced Materials,2011,23:2929-2932.
    [34] Zhang T, Cheng P, Chen X, et al. Experimental demonstration of topological surface statesprotected by time-reversal symmetry. Physical Review Letters,2009,103:266803.
    [35] Cheng P, Song C, Zhang T, et al. Landau quantization of topological surface states in Bi2Se3.Physical Review Letters,2010,105:076801.
    [36] Jiang Y, Wang Y, Chen M, et al. Landau Quantization and the thickness limit of topologicalinsulator thin films of Sb2Te3. Physical Review Letters,2012,108:016401.
    [37] Zhang Y, He K, Chang C-Z, et al. Crossover of the three-dimensional topological insulatorBi2Se3to the two-dimensional limit. Nature Physics,2010,6:584-588.
    [38] Kuroda K, Ye M, Kimura A, et al. Experimental realization of a three-dimensionaltopological insulator phase in ternary chalcogenide TlBiSe2. Physical Review Letters,2010,105:146801.
    [39] Chen Y L, Liu Z K, Analytis J G, et al. Single Dirac cone topological surface state andunusual thermoelectric property of compounds from a new topological insulator family.Physical Review Letters,2010,105:266401.
    [40] Ren Z, Taskin A A, Sasaki S, et al. Large bulk resistivity and surface quantum oscillations inthe topological insulator Bi2Te2Se. Physical Review B,2010,82:241306.
    [41] Chadov S, Qi X, Kuebler J, et al. Tunable multifunctional topological insulators in ternaryHeusler compounds. Nature Materials,2010,9:541-545.
    [42] Xiao D, Yao Y G, Feng W X, et al. Half-Heusler compounds as a new class ofthree-dimensional topological insulators. Physical Review Letters,2010,105:096404.
    [43] Hor Y S, Roushan P, Beidenkopf H, et al. Development of ferromagnetism in the dopedtopological insulator Bi2-xMnxTe3. Physical Review B,2010,81:195203.
    [44] Hor Y S, Richardella A, Roushan P, et al. p-type Bi2Se3for topological insulator andlow-temperature thermoelectric applications. Physical Review B,2009,79:195208.
    [45] Kong D S, Randel J C, Peng H L, et al. Topological insulator nanowires and nanoribbons.Nano Letters,2010,10:329-333.
    [46] Peng H, Lai K, Kong D, et al. Aharonov-Bohm interference in topological insulatornanoribbons. Nature Materials,2010,9:225-229.
    [47] Xiu F X, He L A, Wang Y, et al. Manipulating surface states in topological insulatornanoribbons. Nature Nanotechnology,2011,6:216-221.
    [48] Xue Q-K. Nanoelectronics: A topological twist for transistors. Nature Nanotechnology,2011,6:197-198.
    [49] Tse W K, MacDonald A H. Giant magneto-optical Kerr effect and universal Faraday effect inthin-film topological insulators. Physical Review Letters,2010,105:057401.
    [50] Hor Y S, Williams A J, Checkelsky J G, et al. Superconductivity in CuxBi2Se3and itsimplications for pairing in the undoped topological insulator. Physical Review Letters,2010,104:057001.
    [51] Wray L A, Xu S Y, Xia Y Q, et al. Observation of topological order in a superconductingdoped topological insulator. Nature Physics,2010,6:855-859.
    [52] Qu D-X, Hor Y S, Xiong J, et al. Quantum oscillations and Hall anomaly of surface states inthe topological insulator Bi2Te3. Science,2010,329:821-824.
    [53] Analytis J G, McDonald R D, Riggs S C, et al. Two-dimensional surface state in the quantumlimit of a topological insulator. Nature Physics,2010,6:960-964.
    [54] Yu R, Zhang W, Zhang H-J, et al. Quantized anomalous Hall effect in magnetic topologicalinsulators. Science,2010,329:61-64.
    [55] Alpichshev Z, Biswas R R, Balatsky A V, et al. STM imaging of impurity resonances onBi2Se3. Physical Review Letters,2012,108:206402.
    [56] Wang Y-L, Xu Y, Jiang Y-P, et al. Structural defects and electronic properties of theCu-doped topological insulator Bi2Se3. Physical Review B,2011,84:075335.
    [57] Seo J, Roushan P, Beidenkopf H, et al. Transmission of topological surface states throughsurface barriers. Nature,2010,466:343-346.
    [58] Okada Y, Dhital C, Zhou W, et al. Direct observation of broken time-reversal symmetry onthe surface of a magnetically doped topological insulator. Physical Review Letters,2011,106:206805.
    [59] Chen C, He S, Weng H, et al. Robustness of topological order and formation of quantum wellstates in topological insulators exposed to ambient environment. Proceedings of the NationalAcademy of Sciences of the United States of America,2012,109:3694-3698.
    [60] Valla T, Pan Z H, Gardner D, et al. Photoemission spectroscopy of magnetic andnonmagnetic impurities on the surface of the Bi2Se3topological insulator. Physical ReviewLetters,2012,108:117601.
    [61] Zhu Z H, Levy G, Ludbrook B, et al. Rashba spin-splitting control at the surface of thetopological insulator Bi2Se3. Physical Review Letters,2011,107:186405.
    [62] Bianchi M, Hatch R C, Mi J, et al. Simultaneous quantization of bulk conduction and valencestates through adsorption of nonmagnetic impurities on Bi2Se3. Physical Review Letters,2011,107:086802.
    [63] Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices withhigh room-temperature figures of merit. Nature,2001,413:597-602.
    [64] Urazhdin S, Bilc D, Tessmer S H, et al. Scanning tunneling microscopy of defect states in thesemiconductor Bi2Se3. Physical Review B,2002,66:161306.
    [65] Urazhdin S, Bilc D, Mahanti S D, et al. Surface effects in layered semiconductors Bi2Se3andBi2Te3. Physical Review B,2004,69:085313.
    [66] Mishra S K, Satpathy S, Jepsen O. Electronic structure and thermoelectric properties ofbismuth telluride and bismuth selenide. Journal of Physics: Condensed Matter,1997,9:461.
    [67] Herman M A, Richter W, Sitter H. Epitaxy: physical principles and technical implementation.Springer,2003.
    [68] Herman M A, Sitter H. Molecular beam epitaxy: fundamentals and current status. Springer,1996.
    [69]吴自勤,王兵.薄膜生长.科学出版社,2000.
    [70] Venables J A, Spiller G D T, Hanbucken M. Nucleation and growth of thin-films. Reports onProgress in Physics,1984,47:399-459.
    [71] Lagally M G, Zhang Z. Materials science: Thin-film cliffhanger. Nature,2002,417:907-910.
    [72] Parkinson B A, Ohuchi F S, Ueno K, et al. Periodic lattice distortions as a result of latticemismatch in epitaxial films of two-dimensional materials. Applied Physics Letters,1991,58:472-474.
    [73] Koma A. Van der Waals epitaxy–a new epitaxial growth method for a highlylattice-mismatched system. Thin Solid Films,1992,216:72-76.
    [74] Koma A. Van der Waals epitaxy for highly lattice-mismatched systems. Journal of CrystalGrowth,1999,201:236-241.
    [75] Song C-L, Wang Y-L, Jiang Y-P, et al. Topological insulator Bi2Se3thin films grown ondouble-layer graphene by molecular beam epitaxy. Applied Physics Letters,2010,97:143118-143113.
    [76] Song C-L, Wang Y-L, Jiang Y-P, et al. Molecular-beam epitaxy and robust superconductivityof stoichiometric FeSe crystalline films on bilayer graphene. Physical Review B,2011,84:020503.
    [77] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbonfilms. Science,2004,306:666-669.
    [78] Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene.Reviews of Modern Physics,2009,81:109-162.
    [79] Goerbig M O. Electronic properties of graphene in a strong magnetic field. Reviews ofModern Physics,2011,83:1193-1243.
    [80] Rutter G M. Atomic scale properties of epitaxial graphene grown on SiC(0001)(PhD Thesis).Georgia Institute of Technology,2008.
    [81] http://www.nobelprize.org.
    [82] Domke C, Ebert P, Heinrich M, et al. Microscopic identification of the compensationmechanisms in Si-doped GaAs. Physical Review B,1996,54:10288-10291.
    [83] West D, Sun Y Y, Wang H, et al. Native defects in second-generation topological insulators:Effect of spin-orbit interaction on Bi2Se3. Physical Review B,2012,86:121201.
    [84] Scanlon D O, King P D C, Singh R P, et al. Controlling bulk conductivity in topologicalinsulators: Key role of anti-site defects. Advanced Materials,2012,24:2154-2158.
    [85] Navrátil J, Horák J, Plecháek T, et al. Conduction band splitting and transport properties ofBi2Se3. Journal of Solid State Chemistry,2004,177:1704-1712.
    [86] Satterthwaite C B, Ure R W, Jr. Electrical and thermal properties of Bi2Te3. Physical Review,1957,108:1164-1170.
    [87] Wang Y. private communication.
    [88] Richardella A, Kitchen D, Yazdani A. Mapping the wave function of transition metalacceptor states in the GaAs surface. Physical Review B,2009,80:045318.
    [89] Marczinowski F, Wiebe J, Meier F, et al. Effect of charge manipulation on scanningtunneling spectra of single Mn acceptors in InAs. Physical Review B,2008,77:115318.
    [90] Ando T, Fowler A B, Stern F. Electronic properties of two-dimensional systems. Reviews ofModern Physics,1982,54:437-672.
    [91] Cho A Y. Film deposition by molecular-beam techniques. Journal of Vacuum Science&Technology,1971,8:S31
    [92] Cho A Y, Arthur J R. Molecular beam epitaxy. Progress in Solid State Chemistry,1975,10:157-191.
    [93] Arthur J R. Molecular beam epitaxy. Surface Science,2002,500:189-217.
    [94] McCray W P. MBE deserves a place in the history books. Nature Nanotechnology,2007,2:259-261.
    [95] Arthur J R. Interaction of Ga and As2molecular beams with GaAs surfaces. Journal ofApplied Physics,1968,39:4032.
    [96]王欲知,陈旭.真空技术.北京航空航天大学出版社,2007.
    [97]王晓冬等.真空技术.冶金工业出版社,2006.
    [98] Binnig G, Rohrer H. Scanning tunneling microscopy. Helvetica Physica Acta,1982,55:726-735.
    [99] Binnig G, Rohrer H, Gerber C, et al. Tunneling through a controllable vacuum gap. AppliedPhysics Letters,1982,40:178-180.
    [100] Binnig G, Rohrer H. Scanning tunneling microscopy—from birth to adolescence. Reviews ofModern Physics,1987,59:615-625.
    [101] Binnig G, Rohrer H. In touch with atoms. Reviews of Modern Physics,1999,71:S324-S330.
    [102] Bai C. Scanning Tunneling Microscopy and Its Applications. Springer,2000.
    [103] Bonnell D A. Scanning tunneling microscopy and spectroscopy: theory, techniques, andapplications. VCH,1993.
    [104] Wiesendanger R, Guntherodt H-J. Scanning tunneling microscopy. Springer-Verlag,1993.
    [105]陈成钧.扫描隧道显微学引论.中国轻工业出版社,1996.
    [106] Song Y J, Otte A F, Shvarts V, et al. Invited review article: A10mK scanning probemicroscopy facility. Review of Scientific Instruments,2010,81:121101-121133.
    [107] Tersoff J, Hamann D R. Theory and application for the scanning tunneling microscope.Physical Review Letters,1983,50:1998-2001.
    [108] http://www.nobelprize.org/nobel_prizes/physics/laureates/1986/.
    [109] Hamers R J, Tromp R M, Demuth J E. Surface electronic structure of Si (111)-(7×7)resolved in real space. Physical Review Letters,1986,56:1972-1975.
    [110] Tersoff J, Hamann D R. Theory of the scanning tunneling microscope. Physical Review B,1985,31:805-813.
    [111] Hofer W A, Foster A S, Shluger A L. Theories of scanning probe microscopes at the atomicscale. Reviews of Modern Physics,2003,75:1287-1331.
    [112] Pan S H, Hudson E W, Davis J C.3He refrigerator based very low temperature scanningtunneling microscope. Review of Scientific Instruments,1999,70:1459-1463.
    [113] Inc. SPM1000User's Manual and XPMPro2.0Manual (RHK Technology).http://rhk-tech.com/.
    [114] Horcas I, Fernandez R, Gomez-Rodriguez J M, et al. WSXM: A software for scanning probemicroscopy and a tool for nanotechnology. Review of Scientific Instruments,2007,78:013705
    [115] http://www.signalrecovery.com/.
    [116] Hoffman J E, A search for alternative electronic order in the high temperature superconductorBi2Sr2CaCu2O8by scanning tunneling microscopy,2003, PhD Thesis, Harvard University.
    [117] Eigler D M, Schweizer E K. Positioning single atoms with a scanning tunneling microscope.Nature,1990,344:524-526.
    [118] Stroscio J A, Eigler D M. Atomic and molecular manipulation with the scanning tunnelingmicroscope. Science,1991,254:319-326.
    [119] Ma X, Jiang P, Qi Y, et al. Experimental observation of quantum oscillation of surfacechemical reactivities. Proceedings of the National Academy of Sciences,2007,104:9204-9208.
    [120] Gavioli L, Kimberlin K R, Tringides M C, et al. Novel growth of Ag islands on Si(111):Plateaus with a singular height. Physical Review Letters,1999,82:129-132.
    [121] Zhang Y, Brar V W, Girit C, et al. Origin of spatial charge inhomogeneity in graphene.Nature Physics,2009,5:722-726.
    [122] White G K. Experimental techniques in low-temperature physics. Oxford University Press,1979.
    [123] Enss C, Hunklinger S. Low-temperature physics. Springer,2005.
    [124] Pobell F. Matter and methods at low temperatures (third edition). Springer,2006.
    [125] High field magnet. Cryogenic company manual.
    [126] Miller J R. The NHMFL45-T hybrid magnet system: past, present, and future. AppliedSuperconductivity, IEEE Transactions on,2003,13:1385-1390.
    [127]王亚愚.凝聚态物理实验选讲PDF.
    [128] http://www.unisoku.com/.
    [129] Konig M, Wiedmann S, Brune C, et al. Quantum spin Hall insulator state in HgTe quantumwells. Science,2007,318:766-770.
    [130] Knez I, Du R-R, Sullivan G. Evidence for helical edge modes in inverted InAs/GaSb quantumwells. Physical Review Letters,2011,107:136603.
    [131] Murakami S. Quantum spin Hall effect and enhanced magnetic response by spin-orbitcoupling. Physical Review Letters,2006,97:236805
    [132] Wada M, Murakami S, Freimuth F, et al. Localized edge states in two-dimensionaltopological insulators: Ultrathin Bi films. Physical Review B,2011,83:121310.
    [133] Liu Z, Liu C-X, Wu Y-S, et al. Stable nontrivial Z2topology in ultrathin Bi (111) Films: Afirst-principles study. Physical Review Letters,2011,107:136805.
    [134] Kapitza P. The study of the specific resistance of bismuth crystals and its change in strongmagnetic fields and some allied problems. Proceedings of the Royal Society of London Seriesa-Containing Papers of a Mathematical and Physical Character,1928,119:358-386.
    [135] Shoenberg D. The magnetic, properties of bismuth III. Further measurements on the deHaas-van Alphen effect. Proceedings of the Royal Society of London Series a-Mathematicaland Physical Sciences,1939,170:0341-0364.
    [136] Behnia K, Balicas L, Kopelevich Y. Signatures of electron fractionalization in ultraquantumbismuth. Science,2007,317:1729-1731.
    [137] Souers P C, Jura G. Negative temperature coefficient of resistance in Bismuth I. Science,1964,143:467-469.
    [138] Fu L, Kane C L. Topological insulators with inversion symmetry. Physical Review B,2007,76:045302.
    [139] Hoffman C A, Meyer J R, Bartoli F J, et al. Semimetal-to-semiconductor transition in bismuththin films. Physical Review B,1993,48:11431-11434.
    [140] Jnawali G, Hattab H, Bobisch C A, et al. Nanoscale dislocation patterning in Bi(111)/Si(001)heteroepitaxy. Surface Science,2009,603:2057-2061.
    [141] Nagao T, Sadowski J T, Saito M, et al. Nanofilm allotrope and phase transformation ofultrathin Bi film on Si(111)-7×7. Physical Review Letters,2004,93:105501.
    [142] Kowalczyk P J, Mahapatra O, McCarthy D N, et al. STM and XPS investigations of bismuthislands on HOPG. Surface Science,2011,605:659-667.
    [143] Hirahara T, Bihlmayer G, Sakamoto Y, et al. Interfacing2D and3D topological insulators:Bi(111) bilayer on Bi2Te3. Physical Review Letters,2011,107.
    [144]北京天科和达蓝光半导体有限公司. http://www.tankeblue.com/.
    [145] Song C L, Wang Y L, Jiang Y P, et al. Topological insulator Bi2Se3thin films grown ondouble-layer graphene by molecular beam epitaxy. Applied Physics Letters,2010,97:143118.
    [146] Jiang Y, Sun Y Y, Chen M, et al. Fermi-level tuning of epitaxial Sb2Te3thin films ongraphene by regulating intrinsic defects and substrate transfer doping. Physical ReviewLetters,2012,108:066809.
    [147] Hass J, de Heer W A, Conrad E H. The growth and morphology of epitaxial multilayergraphene. Journal of Physics-Condensed Matter,2008,20:323202.
    [148] Huang H, Chen W, Chen S, et al. Bottom-up growth of epitaxial graphene on6H-SiC(0001).ACS Nano,2008,2:2513-2518.
    [149] Rutter G M. Atomic scale properties of epitaxial graphene grown on SiC(0001), Ph.D. Thesis.Georgia Institute of Technology,2008.
    [150]宋灿立.石墨烯基底上量子材料的制备和扫描隧道显微镜研究[博士论文].北京:清华大学物理系,2011.
    [151]王以林.拓扑绝缘体Bi2Se3薄膜的Cu和Cr掺杂及石墨烯能带结构调制研究[博士论文].中国科学院物理研究所2011.
    [152] Hupalo M, Conrad E H, Tringides M C. Growth mechanism for epitaxial graphene on vicinal6H-SiC(0001) surfaces: A scanning tunneling microscopy study. Physical Review B,2009,80:041401.
    [153] Wang Q-Y. private communication.
    [154] Zhang Y, Brar V W, Wang F, et al. Giant phonon-induced conductance in scanningtunnelling spectroscopy of gate-tunable graphene. Nature Physics,2008,4:627-630.
    [155] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review B,1993,47:558-561.
    [156] Bl chl P E. Projector augmented-wave method. Physical Review B,1994,50:17953-17979.
    [157] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple.Physical Review Letters,1996,77:3865-3868.
    [158] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals andsemiconductors using a plane-wave basis set. Computational Materials Science,1996,6:15-50.
    [159] Hohage M, Bott M, Morgenstern M, et al. Atomic processes in low temperature Pt-dendritegrowth on Pt(111). Physical Review Letters,1996,76:2366-2369.
    [160] Arthur J R. Molecular beam epitaxy. Surface Science,2002,500:189-217.
    [161] Qi Y, Ma X, Jiang P, et al. Atomic-layer-resolved local work functions of Pb thin films andtheir dependence on quantum well states. Applied Physics Letters,2007,90:013109.
    [162] Haneman D. Photoelectric emission and work functions of InSb, GaAs, Bi2Te3andGermanium. Journal of Physics and Chemistry of Solids,1959,11:205-214.
    [163] Crommie M F, Lutz C P, Eigler D M. Imaging standing waves in a2-dimensionalelectron-gas. Nature,1993,363:524-527.
    [164] Crommie M F, Lutz C P, Eigler D M. Confinement of electrons to quantum corrals on a metalsurface. Science,1993,262:218-220.
    [165] Crommie M F, Lutz C P, Eigler D M. Imaging standing waves in a two-dimensional electrongas. Nature,1993,363:524-527.
    [166] Heller E J, Crommie M F, Lutz C P, et al. Scattering and absorption of surface electron wavesin quantum corrals. Nature,1994,369:464-466.
    [167] Manoharan H C, Lutz C P, Eigler D M. Quantum mirages formed by coherent projection ofelectronic structure. Nature,2000,403:512-515.
    [168] Fiete G A, Heller E J. Colloquium: Theory of quantum corrals and quantum mirages.Reviews of Modern Physics,2003,75:933-948.
    [169] Hasegawa Y, Avouris P. Direct observation of standing wave formation at surface steps usingscanning tunneling spectroscopy. Physical Review Letters,1993,71:1071-1074.
    [170] Avouris P, Lyo I W, Walkup R E, et al. Real-space imaging of electron scattering phenomenaat metal surfaces. Journal of Vacuum Science&Technology B,1994,12:1447-1455.
    [171] Avouris P, Lyo I-W. Observation of quantum-size effects at room temperature on metalsurfaces with STM. Science,1994,264:942-945.
    [172] Sprunger P T, Petersen L, Plummer E W, et al. Giant Friedel oscillations on theBeryllium(0001) Surface. Science,1997,275:1764-1767.
    [173] Kanisawa K, Butcher M J, Yamaguchi H, et al. Imaging of friedel oscillation patterns oftwo-dimensionally accumulated electrons at epitaxially grown InAs(111)A surfaces. PhysicalReview Letters,2001,86:3384-3387.
    [174] van der Wielen M C M M, van Roij A J A, van Kempen H. Direct observation of Friedeloscillations around incorporated SiGadopants in GaAs by low-temperature scanning tunnelingmicroscopy. Physical Review Letters,1996,76:1075-1078.
    [175] Rutter G M, Crain J N, Guisinger N P, et al. Scattering and interference in epitaxial graphene.Science,2007,317:219-222.
    [176] Hoffman J E, McElroy K, Lee D-H, et al. Imaging quasiparticle interference inBi2Sr2CaCu2O8+δ. Science,2002,297:1148-1151.
    [177] Chuang T-M, Allan M P, Lee J, et al. Nematic electronic structure in the “Parent” state ofthe iron-based superconductor Ca(Fe1–xCox)2As2. Science,2010,327:181-184.
    [178] Zhou X D, Ye C, Cai P, et al. Quasiparticle interference of C2symmetric surface states in aLaOFeAs parent compound. Physical Review Letters,2011,106:087001.
    [179] Braun K F, Rieder K H. Engineering electronic lifetimes in artificial atomic structures.Physical Review Letters,2002,88:096801.
    [180] Jensen H, Kr ger J, Berndt R, et al. Electron dynamics in vacancy islands: Scanningtunneling spectroscopy on Ag(111). Physical Review B,2005,71:155417.
    [181] Niebergall L, Rodary G, Ding H F, et al. Electron confinement in hexagonal vacancy islands:Theory and experiment. Physical Review B,2006,74:195436.
    [182] Li J, Schneider W-D, Berndt R, et al. Electron confinement to nanoscale Ag islands onAg(111): A quantitative Study. Physical Review Letters,1998,80:3332-3335.
    [183] Kliewer J, Berndt R, Chulkov E V, et al. Dimensionality effects in the lifetime of surfacestates. Science,2000,288:1399-1402.
    [184] Bürgi L, Jeandupeux O, Hirstein A, et al. Confinement of surface state electrons inFabry-Pérot resonators. Physical Review Letters,1998,81:5370-5373.
    [185] Bürgi L, Jeandupeux O, Brune H, et al. Probing hot-electron dynamics at surfaces with a coldscanning tunneling microscope. Physical Review Letters,1999,82:4516-4519.
    [186] Crampin S, Jensen H, Kr ger J, et al. Resonator design for use in scanning tunnelingspectroscopy studies of surface electron lifetimes. Physical Review B,2005,72:035443.
    [187] Walls J D, Heller E J. Spin-orbit coupling induced interference in quantum corrals. NanoLetters,2007,7:3377-3382.
    [188] Gomes K K, Ko W, Mar W, et al. Quantum imaging of topologically unpaired spin-polarizedDirac fermions.2009. Prerpint at .
    [189] Seo J, Roushan P, Beidenkopf H, et al. Transmission of topological surface states throughsurface barriers. Nature,2010,466:343-346.
    [190] Zhang T, Cheng P, Chen X, et al. Experimental demonstration of topological surface statesprotected by time-reversal symmetry. Physical Review Letters,2009,103:266803.
    [191] Alpichshev Z, Analytis J G, Chu J H, et al. STM Imaging of electronic waves on the surfaceof Bi2Te3: Topologically protected surface states and hexagonal warping effects. PhysicalReview Letters,2010,104:016401.
    [192] Wang J, Li W, Cheng P, et al. Power-law decay of standing waves on the surface oftopological insulators. Physical Review B,2011,84:235447.
    [193] Okada Y, Dhital C, Zhou W, et al. Direct observation of broken time-reversal symmetry onthe surface of a magnetically doped topological insulator. Physical Review Letters,2011,106:206805.
    [194] Fu L. Hexagonal Warping effects in the surface states of the topological insulator Bi2Te3.Physical Review Letters,2009,103:266801.
    [195] Chen Y L, Analytis J G, Chu J-H, et al. Experimental realization of a three-dimensionaltopological insulator, Bi2Te3. Science,2009,325:178-181.
    [196] Chen M, Peng J-P, Zhang H-M, et al. Molecular beam epitaxy of bilayer Bi(111) films ontopological insulator Bi2Te3: A scanning tunneling microscopy study. Applied Physics Letters,2012,101:081603-081604.
    [197] Pan Z H, Fedorov A V, Gardner D, et al. Measurement of an exceptionally weakelectron-phonon coupling on the surface of the topological insulator Bi2Se3usingangle-resolved photoemission spectroscopy. Physical Review Letters,2012,108:187001.
    [198] Ashcroft N W, Mermin N D. Solid state physics. Holt, Rinehart and Winston,1976.
    [199] Jiang Y, Wang Y, Chen M, et al. Landau quantization and the thickness limit of topologicalinsulator thin films of Sb2Te3. Physical Review Letters,2012,108:016401.
    [200] Bennett C H, DiVincenzo D P. Quantum information and computation. Nature,2000,404:247-255.
    [201] Sprunger P T, Petersen L, Plummer E W, et al. Giant Friedel oscillations on theBeryllium(0001) surface. Science,1997,275:1764-1767.
    [202] Beidenkopf H, Roushan P, Seo J, et al. Spatial fluctuations of helical Dirac fermions on thesurface of topological insulators. Nature Physics,2011,7:939-943.
    [203] Okada Y, Dhital C, Zhou W, et al. Direct observation of broken time-reversal symmetry onthe surface of a magnetically doped topological insulator. Physical Review Letters,2011,106:206805.
    [204] Alpichshev Z, Biswas R R, Balatsky A V, et al. STM imaging of impurity resonances onBi2Se3. Physical Review Letters,2012,108:206402.
    [205] Domke C, Ebert P, Heinrich M, et al. Microscopic identification of the compensationmechanisms in Si-doped GaAs. Physical Review B,1996,54:10288-10291.
    [206] Marczinowski F, Wiebe J, Tang J M, et al. Local electronic structure near Mn acceptors inInAs: Surface-induced symmetry breaking and coupling to host states. Physical ReviewLetters,2007,99:157202.
    [207] Ebert P, Heinrich M, Simon M, et al. Thermal formation of Zn-dopant-vacancy defectcomplexes on InP(110) surfaces. Physical Review B,1996,53:4580-4590.
    [208] Liu Y, Weinert M, Li L. Spiral growth without dislocations: molecular beam epitaxy of thetopological insulator Bi2Se3on epitaxial graphene/SiC(0001). Physical Review Letters,2012,108:115501-115501.
    [209] Ferhat M, Tedenac J C, Nagao J. Mechanisms of spiral growth in Bi2Te3thin films grown bythe hot-wall-epitaxy technique. Journal of Crystal Growth,2000,218:250-258.
    [210] Li Y-Y, Wang G, Zhu X-G, et al. Intrinsic Topological insulator Bi2Te3thin films on Si andtheir thickness limit. Advanced Materials,2010,22:4002-4007.
    [211] Song C-L, Wang Y-L, Jiang Y-P, et al. Topological insulator Bi2Se3thin films grown ondouble-layer graphene by molecular beam epitaxy. Applied Physics Letters,2010,97:143118-143113.
    [212] Wang G, Zhu X-G, Sun Y-Y, et al. Topological insulator thin films of Bi2Te3with controlledelectronic structure. Advanced Materials,2011,23:2929.
    [213] Liu C-X, Zhang H, Yan B, et al. Oscillatory crossover from two-dimensional tothree-dimensional topological insulators. Physical Review B,2010,81:041307.
    [214] Chiang T C. Photoemission studies of quantum well states in thin films. Surface ScienceReports,2000,39:181-235.
    [215] Biswas R R, Balatsky A V. Impurity-induced states on the surface of three-dimensionaltopological insulators. Physical Review B,2010,81:233405.
    [216] Fu L. Hexagonal warping effects in the surface states of the topological insulator Bi2Te3.Physical Review Letters,2009,103:266801.
    [217] Beidenkopf H, Roushan P, Seo J, et al. Spatial fluctuations of helical Dirac fermions on thesurface of topological insulators. Nature Physics,2011,7:939-943.
    [218] Zhang J, Chang C-Z, Zhang Z, et al. Band structure engineering in (Bi1xSbx)2Te3ternarytopological insulators. Nature Communication,2011,2:574.
    [219] Ando T, Fowler A B, Stern F. Electronic properties of two-dimensional systems. Reviews ofModern Physics,1982,54:437-672.
    [220] Grimes C C, Adams G. Evidence for a liquid-to-crystal phase transition in a classical,two-dimensional sheet of electrons. Physical Review Letters,1979,42:795-798.
    [221]张童.单原子层金属薄膜超导电性及拓扑绝缘体表面态的STM研究[博士论文].北京:中国科学院物理研究所,2010.
    [222] Morgenstern M, Klijn J, Meyer C, et al. Real-space observation of drift states in atwo-dimensional electron system at high magnetic fields. Physical Review Letters,2003,90:056804.
    [223] Li G, Andrei E Y. Observation of Landau levels of Dirac fermions in graphite. NaturePhysics,2007,3:623-627.
    [224] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals. Proceedings ofthe National Academy of Sciences of the United States of America,2005,102:10451-10453.
    [225] Cheng P, Song C, Zhang T, et al. Landau quantization of topological surface states in Bi2Se3.Physical Review Letters,2010,105:076801.
    [226] Klitzing K v, Dorda G, Pepper M. New method for high-accuracy determination of thefine-structure constant based on quantized Hall resistance. Physical Review Letters,1980,45:494-497.
    [227] Zhang Y, Tan Y-W, Stormer H L, et al. Experimental observation of the quantum Hall effectand Berry's phase in graphene. Nature,2005,438:201-204.
    [228] Chu R L, Shi J R, Shen S Q. Surface edge state and half-quantized Hall conductance intopological insulators. Phys. Rev. B,2011,84:085312.
    [229]王亚愚.凝聚态物理实验选讲课件.2010.
    [230] Yoshioka D. The quantum Hall effect. Springer,2002.
    [231] Jiang Y, Wang Y, Chen M, et al. Landau quantization and the thickness limit of topologicalinsulator thin films of Sb2Te3. Physical Review Letters,2012,108:016401.
    [232] Zhang J, Chang C-Z, Zhang Z, et al. Band structure engineering in (Bi1-xSbx)2Te3ternarytopological insulators. Nature Communication,2011,2:574.
    [233] Kong D, Chen Y, Cha J J, et al. Ambipolar field effect in the ternary topological insulator(BixSb1-x)2Te3by composition tuning. Nature Nanotechnology,2011,6:705-709.
    [234] Jiang Y, Sun Y Y, Chen M, et al. Fermi-level tuning of epitaxial Sb2Te3thin films ongraphene by regulating intrinsic defects and substrate transfer doping. Physical ReviewLetters,2012,108:066809.
    [235]程鹏.拓扑绝缘体表面态的STM研究[博士论文].北京:清华大学,2010.
    [236] Shan W-Y, Lu J, Lu H-Z, et al. Vacancy-induced bound states in topological insulators. Phys.Rev. B,2011,84:035307.
    [237] Schwab P, Dzierzawa M. Landau levels in a topological insulator. Phys. Rev. B,2012,85:155403.
    [238] Kim S, Ye M, Kuroda K, et al. Surface Scattering via Bulk Continuum States in the3DTopological Insulator Bi2Se3. Physical Review Letters,2011,107:056803.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700