用户名: 密码: 验证码:
超冷原子规则和混沌输运的相干控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输运现象是物理学中许多问题的核心。近年来,利用外场相干控制有相互作用的超冷原子的输运吸引了人们极大的兴趣。本文以Bose-Hubbard模型和GP方程为基础分别研究了两个相互作用玻色原子和玻色爱因斯坦凝聚体在周期驱动场下的隧穿动力学。全文分为五章,作者自己的研究工作主要集中在第二、三、四章。文章安排如下:
     第一章为绪论,简要介绍超冷原子物理的发展和量子阱的实验制备,以及少原子在紧束缚模型中的动力学现象和玻色爱因斯坦凝聚体的输运现象。
     第二章,我们研究了囚禁在三阱势中的两个排斥玻色子在高频驱动场下的量子隧穿。利用多时间尺度渐近分析,我们证实了在远离共振强的相互作用区域中对态的主要隧穿动力学是二级隧穿,并且在这个区域中对态之间或者非对态之间会出现选择性的隧穿相干破坏。两类态的Floquet准能带被解析给出,准能带中到二级修正项的精细结构也被展示出来。基于精确的模型,解析结果被数值结果证实。这些结果在实验中对控制关联隧穿特别相关。长时间尺度的二级隧穿能方便地用来绝热操控对态粒子的关联隧穿,并且可以作为进一步理解在驱动晶格系统中粒子输运行为的基础。三阱系统的结果也能推广到三能级系统和三个量子点系统,展现出更丰富的物理现象。
     第三章,我们研究了囚禁在含有一个杂质光学晶格中两个玻色子在时间周期驱动下的相干控制。在高频近似下我们利用幺正变换解析地推导出了不含时的有效哈密顿量。在动力学局域化条件下我们研究了杂质和原子间相互作用强度对两个原子动力学的影响。当杂质势强度和交流驱动频率的比值是整数时两个原子会在含有杂质的格点和两个相邻格点间发生隧穿。原子间是弱的相互作用时,两个原子能在三个格点中分开运动。但是原子间是强的相互作用时,两个原子不会分开而是以束缚对的形式隧穿。当原子间的相互作用强度等于杂质势的强度时两个原子在全光学晶格中发生CDT,两者之比为其它整数时,由于能从驱动场吸引能量两个原子趋向于分开运动。
     第四章,使用有效粒子近似方法,我们研究了双周期驱动下囚禁在准一维对称光学超晶格中利用时间棘齿效应混沌输运由相互吸引的玻色爱因斯坦凝聚体所组成的物质波孤子。在安德森情景中,众所周知混沌能够代替无序。对于某些特殊系统更高程度的无序能诱使安德森局域化。在高或者低混沌区域中物质波孤子会以高或者低概率转变成混沌。我们证实在低频率和适度频率区域,通过变化驱动位相来打破系统的时间反演对称性能增大高混沌区域的大小。空间指数局域化的参数区域将相应地增大相同的大小,那么包括棘齿效应区域和它的反效应区域的低混沌区域和去局域化区域相应地减小。局域化相对于驱动频率的正相关也被揭示。这些结果表明高混沌能够代替高度无序,从而帮助安德森局域化。从这些结论出发,我们提出通过调节驱动频率和振幅增强或者抑制,甚至反转时间棘齿效应,来控制物质波孤子的定向运动。
     第五章,我们对本文工作进行了总结,并对时空周期势中超冷原子的输运这个研究领域的前景作了简单的展望。
Transport phenomena are the heart of many problems in physics. In recent years, the coherent control of interacting ultracold atomic transport by employing external field has attracted great interest. We investigate the tunneling dynamics of two interacting bosons and Bose-Einstein condensate in this thesis via utilizing a periodic driving field, based on the Bose-Hubbard model and GP equation, respectively. The thesis is divided into five chapters. Our own main works are concentrated on the chapters two, three and four. This thesis is organized as follows.
     In the first chapter, we give a brief introduction about the development of ultracold atom physics and the experimental realization of quantum well, and the dynamics of few-atom held in tight-binding model and transport phenomena of Bose-Einstein condensate.
     In chapter two, we investigate quantum tunneling of two repulsive bosons in a triple-well potential subject to a high-frequency driving field. By means of the multiple-time-scale asymptotic analysis, we evidence a far-off-resonant strongly-interacting regime in which the dominant tunneling of paired states is a second order process, and the selected coherent destruction of tunneling occurs either be-tween doublons, or between unpaired states. Two Floquet quasienergy bands of the both kinds of states are given analytically, where a fine structure up to the second order corrections is displayed. The analytical results are confirmed numerically based on the exact model, and may be particularly relevant to controlling corre-lated tunneling in experiments. The second order results of long time scale could be conveniently applied to adiabatic manipulation of the paired particle correlated tunneling, and may serve as a useful stepping stone to understand the transport behavior of particles in a driven lattice system. The results from the triple-well system can also be extended to the three-level system and triple-quantum-dot system, exhibiting richer new physics.
     In chapter three, we investigate the coherent control of two bosons held in a one-dimensional optical lattices with an impurity via time-periodic driving field. In the high-frequency driving regime, we deduce analytically the time-independent effective Hamiltonian by using a unitary transformation. We study the effects of the impurity and the interaction strength between the atoms on the dynamics of the two atoms in the dynamic localization condition. The tunneling of two atoms can take place between the impurity and its two nearest-neighbor sites when the ratio of the impurity potential strength and the ac driving frequency is an integer. For weakly interacting strength of atoms, the atoms can move independently around the three sites, but for more strongly interacting strength, the atoms can form a stable bound pair, and they cannot move independently. Two atoms will occur CDT in the whole optical lattice when the interaction strength between the atoms is equal to the impurity strength. When the ratio of the interaction strength and the impurity strength becomes other integers, the atoms tend to separate due to they can absorb energy from the driving field.
     In chapter four, under the effective particle approximation, we study temporal ratchet effect for chaotically transporting a matter-wave soliton consisting of an attractive Bose-Einstein condensate held in a quasi-one-dimensional symmetric optical supperlattice with biperiodic driving. It has been known that chaos can substitute for disorder in Anderson's scenario and only a higher level of disorder can induce Anderson localization for some special systems, and a matter-wave soliton could transit to chaos with high or low probability in the high-or low-chaoticity region. We demonstrate that varying the driving phase to break time reversal symmetry of the system can enlarge a size of the high-chaoticity region for the low-and moderate-frequency regions. Consequently, the parameter region of exponential spatial localization is enlarged the same size and the delocalization region which includes the subregions of ratchet effect and its reversal related to the low chaoticity is correspondingly shorten. The positive dependence of the localization on the driving frequency has also been revealed. The results mean that the high-chaoticity could replace the higher disorder and assists Anderson localization. From the results we suggest a method for controlling directed motion of the matter-wave soliton by adjusting the driving frequency and amplitudes to strengthen or suppress even reverse the temporal ratchet effect.
     In chapter five, we give a conclusion of the work and an outlook about the transport of ultracold atom in the spatiotemporal potential.
引文
[1]S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure [J]. Phys. Rev. Lett.,1985,55:48.
    [2]M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor [J]. Science, 1995,269:198.
    [3]C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions [J]. Phys. Rev. Lett.,1995,75:1687.
    [4]K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Bose-Einstein Condensation in a Gas of Sodium Atoms [J]. Phys. Rev. Lett.,1995,75:3969.
    [5]T. W. Hansch, and A. L. Schwalow, Cooling of Gases by Laser Radiation [J]. Opt Commun.,1975,13:68.
    [6]W. Ketterle, Nobel lecture:When atoms behave as waves:Bose-Einstein conden-sation and the atom laser [J]. Rev. Mod. Phys.,2002,74:1131.
    [7]C. A. Regal, M. Greiner, and D. S. Jin, Observation of Resonance Condensation of Fermionic Atom Pairs [J]. Phys. Rev. Lett.,2004,92:040403.
    [8]L. Esaki and R. Tsu, Superlattice and Negative Differential Conductivity in Semi-conductor [J]. IBM. Res. Dev.,1970,14:61.
    [9]O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices [J]. Rev. Mod. Phys.,2006,78:179.
    [10]P. Coullet and N. Vandenberghe, Chaotic self-trapping of a weakly irreversible double Bose condensate [J]. Phys. Rev. E,2001,64:025202(R).
    [11]P. Schlagheck, F. Malet, J. C. Cremon, and S. M. Reimann, Transport and inter-action blockade of cold bosonic atoms in a triple-well potential [J]. New J. Phys., 2010,12:065020.
    [12]S. Folling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Muller, and I. Bloch, Direct observation of second-order atom tunnelling [J]. Nature,2007,448: 1029.
    [13]P. Cheinet, S. Trotzky, M. Feld, U. Schnorrberger, M. Moreno-Cardoner, S. Foiling, and I. Bloch, Counting Atoms Using Interaction Blockade in an Opti-cal Superlattice [J]. Phys. Rev. Lett.,2008,101:090404.
    [14]D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold Bosonic Atoms in Optical Lattices [J]. Phys. Rev. Lett,,1998,81:3108.
    [15]T. Jinasundera, C. Weiss, M. Holthaus, Many-particle tunnelling in a driven Bosonic Josephson junction [J]. Chem. Phys.,2006,322:118.
    [16]K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker Denschlag, A. J. Daley, A. Kantian, H. P. Biichler, and P. Zoller, Repulsively bound atom pairs in an optical lattice [J]. Nature,2006,441:853.
    [17]F. Bloch, Uber die Quantenmechanik der Elekronen in Kristallgittern [J]. Z. Phys., 1928,52:555.
    [18]J. Feldmann, K. Leo, J. Shah, D. A. B. Miller, J. E. Cunningham, T. Meier, G. von Plessen, A. Schulze, P. Thomas, and S. Schmitt-Rink, Optical investigation of Bloch oscillations in a semiconductor superlattice [J]. Phys. Rev. B,1992,46: 7252.
    [19]K. Leo, P. H. Bolivar, F. Briiggemann, R. Schwedler, and K. Kohler, Observation of Bloch oscillations in a semiconductor superlattice [J]. Solid State Commun., 1992,84:943.
    [20]黄昆原著韩汝琦改编, 固体物理学[M].北京:高等教育出版社,1988.
    [21]I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases [J]. Rev. Mod. Phys.,2008,80:885.
    [22]S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of ultracold atomic Fermi gases [J]. Rev. Mod. Phys.,2008,50:1215.
    [23]M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, Bloch Oscillations of Atoms in an Optical Potential [J]. Phys. Rev. Lett.,1996,76:4508.
    [24]B. P. Andenson, and M. A. Kasevich, Mascroscopic Quantum Interference from Atomic Tunnel Arrays [J]. Science,1998,282:1686.
    [25]D. H. Dunlap and V. M. Kenkre, Dynamic localization of a charged particle moving under the influence of an electric field [J]. Phys. Rev. B,1986,34:3625.
    [26]F. Grossmann, T. Dittrich, P. Jung, and P. Hanggi, Coherent destruction of tun-neling [J]. Phys. Rev. Lett.,1991,67:516.
    [27]A. Eckardt, T. Jinasundera, C. Weiss, and M. Holthaus, Analog of Photon-Assisted Tunneling in a Bose-Einstein Condensate [J]. Phys. Rev. Lett.,2005,95:200401.
    [28]C. Weiss, H. P. Breuer, Photon-assisted tunneling in optical lattices:Ballistic transport of interacting boson pairs [J]. Phys. Rev. A,2009,79:023608.
    [29]C. Sias, H. Lignier, Y. P. Singh, A. Zenesini, D. Ciampini, O. Morsch, and E. Arimondo, Observation of Photon-Assisted Tunneling in Optical Lattices [J]. Phys. Rev. Lett.,2008,100:040404.
    [30]C. E. Creffield, Quantum Control and Entanglement using Periodic Driving Fields [J]. Phys. Rev. Lett.,2007,99:110501.
    [31]S. Longhi and G. Delia Valle, Quantum transport in bipartite lattices via Landau-Zener tunneling [J]. Phys. Rev. A,2012,86:043633.
    [32]C. Witting, The Landau-Zener Formula [J]. J. Phys. Chem. B,2005,109:8428.
    [33]C. Weiss, Coherent control of population transfer between communicating defects [J]. Phys. Rev. B,2006,73:054301.
    [34]A.-Z. Zhang, P. Zhang, D. Suqing, X.-G. Zhao, and J.-Q. Liang, Dynamics of a superlattice with an impurity in an ac electric field [J]. Phys. Rev. B,2001,63: 045319.
    [35]M. Grifoni and P. Hanggi, Driven quantum tunneling [J]. Phys. Rep.,1998,304: 229.
    [36]E. P. Gross, Hydrodynamics of a Superfluid Condensate [J]. J. Math. Phys.,1963, 4:195.
    [37]K. E. Strecker, G. B. Partridge, A. G. Truscott, and R. G. Hulet, Formation and propagation of matter-wave soliton trains [J]. Nature,2002,417:150.
    [38]L.Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J.Cubizolles, L. D. Carr, Y. Castin, and C. Salomon, Formation of a Matter-Wave Bright Soliton [J]. Science, 2002,296:1290.
    [39]R. Scharf and A. R. Bishop, Soliton chaos in the nonlinear Schrodinger equation with spatially periodic perturbations [J]. Phys. Rev. A,1992,46:R2973.
    [40]H.-H. Chen and C.-S. Liu, Solitons in Nonuniform Media [J]. Phys. Rev. Lett., 1976,37:693.
    [41]R. Scharf and A. R. Bishop, Length-scale competition for the one-dimensional nonlinear Schrodinger equation with spatially periodic potentials [J]. Phys. Rev. E,1993,47:1375.
    [42]P. W. Anderson, Absence of diffusion in certain random lattices [J]. Phys. Rev., 1958,109:1492.
    [43]D. S. Wiersma, P. Bartolini, A. Lagendijk and R. Righini, Localization of light in a disordered medium [J]. Nature,1997,390:671.
    [44]F. Scheffold, R.. Lenke, R. Tweer, and G. Maret, Localization or classical diffusion of light [J]. Nature,1999,398:206.
    [45]M. Storzer, P. Gross, C. M. Aegerter, and G. Maret [J]. Phys. Rev. Lett.,2006, 96:063904.
    [46]Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg [J]. Phys. Rev. Lett.,2008,100:013906.
    [47]R. Dalichaouch, J. P. Armstrong, S. Schultz, P. M. Platzman, and S. L. McCall, Microwave localization by two-dimensional random scattering [J]. Nature,1991, 354:53.
    [48]A. A. Chabanov, M. Stoytchev, and A. Z. Genack, Statistical signatures of photon localization [J]. Nature,2000,404:850.
    [49]R. L. Weaver, Anderson localization of ultrasound [J]. Wave Motion,1990,12: 129.
    [50]J. Billy, V. Josse, Z.-C Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, Direct observation of Anderson localization of matter waves in a controlled disorder [J]. Nature,2008,453:891.
    [51]G. Roati, C. D'Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Anderson localization of a non-interacting Bose-Einstein condensate [J]. Nature,2008,453:895.
    [52]A. Gnoli, A. Petri, F. Dalton, G. Pontuale, G. Gradenigo, A. Sarracino, and A. Puglisi, Brownian Ratchet in a Thermal Bath Driven by Coulomb Friction [J]. Phys. Rev. Lett.,2013,110:120601.
    [53]L. Ermann, A. D. Chepelianskii, and D. L. Shepelyansky, Symmetry breaking for ratchet transport in the presence of interactions and a magnetic field [J]. Phys. Rev. E,2013,87:022912.
    [54]P. Hanggi, F. Marchesoni, Artificial Brownian motors:Controlling transport on the nanoscale [J]. Rev. Mod. Phys.,2009,81:387.
    [55]S. Flach, O. Yevtushenko, and Y. Zolotaryuk, Directed Current due to Broken Time-Space Symmetry [J]. Phys. Rev. Lett.,2000,84:2358.
    [56]D. Poletti, G. Benenti, G. Casati, and B.-W. Li, Interaction-induced quantum ratchet in a Bose-Einstein condensate [J]. Phys. Rev. A,2007,76:023421.
    [57]M. Sadgrove, M. Horikoshi, T. Sekimura, and K. Nakagawa, Rectified Momentum Transport for a Kicked Bose-Einstein Condensate [J]. Phys. Rev. Lett.,2007,99: 043002.
    [58]I. Dana, V. Ramareddy, I. Talukdar, and G. S. Summy, Experimental Realization of Quantum-Resonance Ratchets at Arbitrary Quasimomenta [J]. Phys. Rev. Lett., 2008,100:024103.
    [59]M. Salerno and N. R. Quintero, Soliton ratchets [J]. Phys. Rev. E,2002,65: 025602.
    [60]L. Morales-Molina, F. G. Mertens, A. Sanchez, Inhomogeneous soliton ratchets under two ac forces [J]. Phys. Rev. E,2006,73:046605(E).
    [61]D. Poletti, T. J. Alexander, E. A. Ostrovskaya, B.-W. Li, and Y. S. Kivshar, Dynamics of Matter-Wave Solitons in a Ratchet Potential [J]. Phys. Rev. Lett., 2008,101:150403.
    [62]M. Rietmann, R. Carretero-Gonzalez, and R. Chacon, Controlling directed trans-port of matter-wave solitons using the ratchet effect [J]. Phys. Rev. A,2011,83: 053617.
    [63]Y. Azizi and A. Valizadeh, Rectified motion of a Bose-Einstein condensate in a horizontally vibrating shallow optical lattice [J]. Phys. Rev. A,2011,83:013614.
    [64]S. Longhi and G. Della Valle, Realization of interacting quantum field theories in driven tight-binding lattices [J]. New J. Phys.,2012,14:053026.
    [65]P. Krai, I. Thanopulos, M. Shapiro, Colloquium:Coherently controlled adiabatic passage [J]. Rev. Mod. Phys.,2007,79:53.
    [66]M. M. Dignam and C. Martijn de Sterke, Conditions for Dynamic Localization in Generalized ac Electric Fields [J]. Phys. Rev. Lett.,2002,88:046806.
    [67]E. Kierig, U. Schnorrberger, A. Schietinger, J. Tomkovic, and M. K. Oberthaler, Single-Particle Tunneling in Strongly Driven Double-Well Potentials [J]. Phys. Rev. Lett.,2008,100:190405.
    [68]J. Villavicencio, I. Maldonado, E. Cota, and G. Platero, Quasienergy spectrum and tunneling current in ac-driven triple quantum dot shuttles [J]. New J. Phys., 2011,12:023032.
    [69]W. Hai, K. Hai, and Q. Chen, Transparent control of an exactly solvable two-level system via combined modulations [J]. Phys. Rev. A,2013,87:023403.
    [70]M. Esmann, N. Teichmann, and C. Weiss, Fractional-photon-assisted tunneling in an optical superlattice:Large contribution to particle transfer [J]. Phys. Rev. A, 2011,83:063634.
    [71]Q. Xie, S. Rong, H. Zhong, G. Lu, and W. Hai, Photon-assisted tunneling of a driven two-mode Bose-Einstein condensate [J]. Phys. Rev. A,2010,82:023616.
    [72]J. Gong, L. Morales-Molina, and P. Hanggi, Many-Body Coherent Destruction of Tunneling [J]. Phys. Rev. Lett.,2009,103:133002.
    [73]S. Longhi, Many-body selective destruction of tunneling in a bosonic junction [J]. Phys. Rev. A,2012,86:044102.
    [74]J.-Q. Liang, J.-L. Liu, W.-D. Li, and Z.-J. Li, Atom-pair tunneling and quan-tum phase transition in the strong-interaction regime [J]. Phys. Rev. A,2009,79: 033617.
    [75]Y.-M. Wang and J.-Q. Liang, Repulsive bound-atom pairs in an optical lattice with two-body interaction of nearest neighbors [J]. Phys. Rev. A,2010,81:045601.
    [76]K. Hai, W. Hai and Q. Chen, Controlling transport and entanglement of two particles in a bipartite lattice [J]. Phys. Rev. A,2010,82:053412.
    [77]S. Zollner, H. D. Meyer, and P. Schmelcher, Few-Boson Dynamics in Double Wells: Prom Single-Atom to Correlated Pair Tunneling, Phys. Rev. Lett.,2008,100: 040401; Tunneling dynamics of a few bosons in a double well [J]. Phys. Rev. A, 2008,78:013621.
    [78]M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Vortices and superfluidity in a strongly interacting Fermi gas [J]. Nature,2005, 435:1047.
    [79]M. Janowicz, Method of multiple scales in quantum optics [J]. Phys. Rep.,2003, 375:327.
    [80]S. Watanabe, Soliton and Generation of Tail in Nonlinear Dispersive Media with Weak Dissipation [J]. J. Phys. Soc. Jpn.,1978,45:276.
    [81]J. Yan, Y. Tang, Direct approach to the study of soliton perturbations [J]. Phys. Rev. E,1996,54:6816.
    [82]M. Frasca, Perturbative results on localization for a driven two-level system [J]. Phys. Rev. B,2003,68:165315.
    [83]H.-J. Li, C. Hang, G. Huang, and L. Deng, High-order nonlinear Schrodinger equation and superluminal optical solitons in room-temperature active-Raman-gain media [J]. Phys. Rev. A,2008,78:023822.
    [84]Q. Xie and W. Hai, Nonlinear Floquet states and quasienergies of a Bose-Einstein condensate in a driven double-well potential [J]. Phys. Rev. A,2009,80:053603.
    [85]S. Longhi, Coherent control of tunneling in driven tight-binding chains:Pertur-bative analysis [J]. Phys. Rev. B,2008,77:195326.
    [86]C. E. Cremeld and T. S. Monteiro, Tuning the Mott Transition in a Bose-Einstein Condensate by Multiple Photon Absorption [J]. Phys. Rev. Lett.,2006,96:210403.
    [87]S. Longhi and G. Delia Valle, Coherent destruction of tunneling of two interacting bosons in a tight-binding lattice [J]. Phys. Rev. A,2012,86:042104.
    [88]K. Bergmann, H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules [J]. Rev. Mod. Phys.,1998,70:1003.
    [89]T. Lahaye, T. Pfau. and L. Santos, Mesoscopic Ensembles of Polar Bosons in Triple-Well Potentials [J]. Phys. Rev. Lett.,2010,104:170404.
    [90]G. Lu, W. Hai, and Q. Xie, Coherent control of atomic tunneling in a driven triple well [J]. Phys. Rev. A,2011,83:013407.
    [91]B. Liu, L. B. Fu, S. P. Yang, and J. Liu, Josephson oscillation and transition to self-trapping for Bose-Einstein condensates in a triple-well trap [J]. Phys. Rev. A, 2007,75:033601.
    [92]L. Cao, I. Brouzos, S. Zollner, and P. Schmelcher, Interaction-driven interband tunneling of bosons in the triple well [J]. New J. Phys.,2011,13:033032.
    [93]C. J. Bradly, M. Rab, A. D. Greentree, and A. M. Martin, Coherent tunneling via adiabatic passage in a three-well Bose-Hubbard system [J]. Phys. Rev. A,2012, 85:053609.
    [94]W. Yi, A. J. Daley, G. Pupillo, and P. Zoller, State-dependent, addressable sub-wavelength lattices with cold atoms [J]. New J. Phys.,2008,10:073015.
    [95]K. Stiebler, B. Gertjerenken, N. Teichmann, and C. Weiss, Spatial two-particle NOON-states in periodically shaken three-well potentials [J]. J. Phys. B:At. Mol. Opt. Phys.,2011,44:055301.
    [96]P. I. Schneider, S. Grishkevich, and A. Saenz, Ab initio determination of Bose-Hubbard parameters for two ultracold atoms in an optical lattice using a three-well potential [J]. Phys. Rev. A,2009,80:013404.
    [97]M. Zou, G. Lu, W. Hai, R. Zou, Quantum manipulation of tunnelling for two bosons held in a driven triple-well [J]. J. Phys. B:At. Mol. Opt. Phys.,2013,46: 045004.
    [98]A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, and E. Arimondo, Coherent Control of Dressed Matter Waves [J]. Phys. Rev. Lett.,2009,102:100403.
    [99]G. Corrielli, A. Crespi, G. Della Valle, S. Longhi, R. Osellame, Fractional Bloch oscillations in photonic lattices [J]. Nature Commun.,2013,4:1555.
    [100]C. E. Creffield and G. Platero, Localization of two interacting electrons in quantum dot arrays driven by an ac field [J]. Phys. Rev. B,2004,69:165312.
    [101]Y. Chen, X. Bao, Z. Yuan, S. Chen, B. Zhao, and J. Pan, Heralded Generation of an Atomic NOON State [J]. Phys. Rev. Lett.,2010,104:043601.
    [102]M. Holthaus, Collapse of minibands in far-infrared irradiated superlattices [J]. Phys. Rev. Lett.,1992,69:351.
    [103]C. E. Creffield, Instability and control of a periodically driven Bose-Einstein con-densate [J]. Phys. Rev. A,2009,79:063612.
    [104]J. H. Shirley, Solution of the Schrodinger Equation with a Hamiltonian Periodic in Time [J]. Phys. Rev.,1965,138:B979; H. Sambe, Steady States and Quasienergies of a Quantum-Mechanical System in an Oscillating Field [J]. Phys. Rev. A,1973, 7:2203.
    [105]H. Pu, P. Maenner, W. Zhang, and H. Y. Ling, Adiabatic Condition for Nonlinear Systems [J]. Phys. Rev. Lett.,2007,98:050406.
    [106]O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices [J]. Rev. Mod. Phys.,2006,78:179.
    [107]H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch, and E. Ari-mondo, Dynamical Control of Matter-Wave Tunneling in Periodic Potentials [J]. Phys. Rev. Lett.,2007,99:220403.
    [108]D. W. Hone and M. Holthaus, Locally disordered lattices in strong ac electric fields [J]. Phys. Rev. B,1993,48:15123.
    [109]S. Longhi and G. Della Valle, Dynamic reflectionless defects in tight-binding lat-tices [J]. Phys. Rev. B,2011,84:193105.
    [110]L. Jin, B. Chen, and Z. Song, Coherent shift of localized bound pairs in the Bose-Hubbard model [J]. Phys. Rev. A,2009,79:032108.
    [111]A. Eckardt, C. Weiss, and M. Holthaus, Superfiuid-Insulator Transition in a Peri-odically Driven Optical Lattice [J]. Phys. Rev. Lett.,2005,95:260404.
    [112]K. Stiebler, B. Gertjerenken, N. Teichmann, and C. Weiss, Spatial two-particle NOON-states in periodically shaken three-well potentials [J]. J. Phys. B,2011,44: 055301.
    [113]F. Jiilicher, A. Ajdari, and J. Prost, Modeling molecular motors [J]. Rev. Mod. Phys.,1997,69:1269.
    [114]P. Reimann, Brownian motors:noisy transport far from equilibrium [J]. Phys. Rep.,2002,361:57.
    [115]T. Salger, S. Kling, T. Hecking, C. Geckeler, L. M. Molina, and M. Weitz, Directed transport of atoms in a Hamiltonian quantum ratchet [J]. Science,2009,326:1241.
    [116]P. H. Jones, M. Goonasekera, and F. Renzoni, Rectifying Fluctuations in an Op-tical Lattice [J]. Phys. E.ev. Lett.,2004,93:073904.
    [117]P. Reimann, Supersymmetric Ratchets [J]. Phys. Rev. Lett.,2001,86:4992.
    [118]D. Cubero, V. Lebedev, and F. Renzoni, Current reversals in a rocking ratchet: Dynamical versus symmetry-breaking mechanisms [J]. Phys. Rev. E,2010,82: 041116.
    [119]G. Lu, W. Hai, and H. Zhong, Quantum control in a double well with symmetric or asymmetric driving [J]. Phys. Rev. A,2009,80:013411.
    [120]R. Badard, Synchronization:The ratchet phenomenon [J]. Chaos, Solitons and Fractals,2009,41:906.
    [121]C. de Souza Silva, J. V. de Vondel, M. Morelle, and V. Moshchalkov, Controlled multiple reversals of a ratchet effect [J]. Nature,2006,440:651.
    [122]A. Kenfack, S. M. Sweetnam, and A. K. Pattanayak, Bifurcations and sudden current change in ensembles of classically chaotic ratchets [J]. Phys. Rev. E,2007, 75:056215.
    [123]S. Matthias, and F. Muller, Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets [J]. Nature,2003,424:53.
    [124]R. Bartussek, P. Hanggi, and J. G. Kissner, Periodically rocked thermal ratchets [J]. Europhys. Lett.,1994,28:459.
    [125]P. Jung, J. G. Kissner, and P. Hanggi, Regular and Chaotic Transport in Asym-metric Periodic Potentials:Inertia Ratchets [J]. Phys. Rev. Lett.,1996,76:3436.
    [126]T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Transport and Anderson localization in disordered two-dimensional photonic lattices [J]. Nature,2007,46: 52.
    [127]A. D. Martin, C. S. Adams, and S. A. Gardiner, Bright Matter-Wave Soliton Collisions in a Harmonic Trap:Regular and Chaotic Dynamics [J]. Phys. Rev. Lett.,2007,98:020402.
    [128]R. Chacon, Optimal control of ratchets without spatial asymmetry [J]. J. Phys. A:Math. Theor.,2007,40:F413.
    [129]R. Chacon, Criticality-induced universality in ratchets [J]. J. Phys. A:Math. Theor.,2010,43:322001.
    [130]S.V. Prants, Matter-wave chaos with a cold atom in a standing-wave laser field [J]. Chaos, Solitons and Fractals,2010,43:1.
    [131]E. N. Lorentz, Deterministic nonperiodic flow [J]. J. Atmos. Sci.,1963,20:130.
    [132]J. L. Mateos, Chaotic Transport and Current Reversal in Deterministic Ratchets [J]. Phys. Rev. Lett.,2000,84:258.
    [133]S. Fishman, D. R. Grempel, and R. E. Prange, Chaos, Quantum Recurrences, and Anderson Localization [J]. Phys. Rev. Lett.,1982,49:509.
    [134]S. Wimberger, A. Krug, and A. Buchleitner, Decay Rates and Survival Probabil-ities in Open Quantum Systems [J]. Phys. Rev. Lett.,2002,89:263601.
    [135]Q. Zhu. W. Hai, and S. Rong, Transition probability from matter-wave soliton to chaos [J]. Phys. Rev. E,2009,80:016203.
    [136]S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Qian Niu, and M. G. Raizen, Observation of Atomic Wannier-Stark Ladders in an Accelerating Optical Poten-tial [J]. Phys. Rev. Lett.,1996,76:4512.
    [137]J. Belmonte-Beitia, V. V. Konotop, V. M. Perez-Garcia, and V. E. Vekslerchik, Localized and periodic exact solutions to the nonlinear Schrodinger equation with spatially modulated parameters:Linear and nonlinear lattices [J]. Chaos, Solitons and Fractals,2009,41:1158.
    [138]Yuri S. Kivshar and B. A. Malomed, Dynamics of solitons in nearly integrable systems [J]. Rev. Mod. Phys.,1989,61:763.
    [139]L. Fallani, L, De Sarlo, J.E. Lye, M. Modugno, R. Saers, C. Fort, M. Inguscio, Observation of Dynamical Instability for a Bose-Einstein Condensate in a Moving 1D Optical Lattice [J]. Phys. Rev. Lett.,2004,93:140406.
    [140]F. Kh. Abdullaev and R. A. Kraenkel, Coherent atomic oscillations and reso-nances between coupled Bose-Einstein condensates with time-dependent trapping potential [J]. Phys. Rev. A,2000,62:023613.
    [141]M. Bartuccelli, P. L. Christiansen, N. F. Pedersen, and M. P. Soerensen, Prediction of chaos in a Josephson junction by the Melnikov-function technique [J]. Phys. Rev. B,1986,33:4686.
    [142]J. Feng, Q. Zhang, and W. Wang, Chaos of several typical asymmetric systems [J]. Chaos, Solitons and Fractals,2012,45:950.
    [143]C. Lee, W. Hai, L. Shi, X. Zhu, and K. Gao, Chaotic and frequency-locked atomic population oscillations between two coupled Bose-Einstein condensates [J]. Phys. Rev. A,2001,64:053604.
    [144]W. Hai, C. Lee, G. Chong, and L. Shi, Chaotic probability density in two peri-odically driven and weakly coupled Bose-Einstein condensates [J]. Phys. Rev. E, 2002,66:026202.
    [145]A. Alberti, V. V. Ivanov, G. M. Tino. and G. Ferrari, Engineering the quantum transport of atomic wavefunctions over macroscopic distances [J]. Nat. Phys.,2009, 5:547.
    [146]E. Haller, R. Hart, M. J. Mark, J. G. Danz, L. Reichsollner, and H. Nager, Inducing Transport in a Dissipation-Free Lattice with Super Bloch Oscillations [J]. Phys. Rev. Lett.,2010,104:200403.
    [147]K. Kudo, T.S. Monteiro, Theoretical analysis of super-Bloch oscillations [J]. Phys. Rev. A,2011,83:053627.
    [148]K. Jimenez-Garcia, L. J. LeBlanc, R. A.Williams, M. C. Beeler, A. R. Perry, and I. B. Spielman, Peierls Substitution in an Engineered Lattice Potential [J]. Phys. Rev. Lett.,2012,108:225303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700