用户名: 密码: 验证码:
空天飞行器再入飞行的模糊自适应预测控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空天飞行器(ASV)是各国正在大力发展的一种新型航空航天飞行器,具有很高的军事和民用价值。在其高超声速再入飞行过程中,ASV的大攻角再入使其速度、高度和姿态变化剧烈,呈现出强烈的非线性及耦合性等动态特性,并且受到大量的外界干扰和内部不确定的影响,这使得ASV的控制系统设计成为一项极具挑战的研究课题。围绕这一基础科学问题,本文对ASV再入飞行的高精度、强稳定、快速自适应预测控制问题展开了较为深入的研究。
     首先,建立和完善超声速和高超声速再入飞行条件下的ASV的质心运动方程和绕质心运动的6自由度动力学和运动学方程,开环分析表明了该模型能够反映ASV再入飞行的复杂非线性、耦合性以及快速时变性等特点,具有一定的代表性,可以满足未来ASV先进制导和控制等问题的理论研究和仿真验证需要。
     其次,利用一种有限时间预测控制方法,考虑了高超声速飞行条件下的ASV再入制导轨迹控制问题。结合ASV再入飞行中的约束条件,建立了飞行器的再入走廊,选择适当的阻力加速度信号作为飞行器的参考轨迹,然后基于泰勒展开设计了ASV再入制导轨迹预测控制系统,仿真结果表明了ASV制导控制系统的有效性。
     随后,针对具有不确定和复杂非线性等特性的ASV六自由度动力学方程,本文提出了基于模糊自适应重构系统的多输入多输出不确定非线性系统的预测控制律设计,并应用于解决空天飞行器模型不完全已知时的自适应姿态控制系统设计。通过模糊权值的在线调整设计出自适应模糊系统逼近被控对象中的未知函数,从而建立基于模糊重构系统的非线性预测控制系统。为了降低设计方法的保守性,根据系统的跟踪误差调整鲁棒控制器中的自适应参数,所设计的控制器保证了闭环系统所有信号一致最终有界。最后在ASV高超声速飞行条件下进行仿真验证,以检验该控制系统的有效性和鲁棒性。
     接着,进一步考虑到ASV再入飞行过程中所受的内部不确定和外界干扰的影响,将ASV的气动参数摄动和外界未知扰动统一看成系统的复合干扰,在理论分析的指导下提出一种基于补偿原理的非线性模糊预测控制新策略,通过模糊系统对复合误差进行了在线逼近,并将其代入控制器设计,从而抵消了复合干扰对整个闭环系统的影响,保证了非线性预测控制律的控制性能。同时,在模糊系统中增加“可变论域”的思想,根据系统的跟踪误差自动调整模糊论域的大小,以生成任意多条模糊规则,使得模糊系统的响应品质大大提高。
     理论分析表明高精度地逼近系统中存在的不确定,可大大提高控制器的控制效果,为此本文在前面研究的基础上结合干扰观测器技术,设计了基于模糊干扰观测器的非线性鲁棒预测控制方法,为解决非线性不确定系统的控制问题提供了新的途径。该设计方法充分利用了被控系统的有用信息,并结合模糊系统实现了对ASV复合干扰更为有效地逼近和控制,从而获得了更好的控制性能。基于Lyapunov稳定原理,本文给出了模糊干扰观测器的自适应调整律,并严格证明了系统的跟踪误差和干扰观测误差一致最终有界。
     最后,本文结合了滑模控制方法和预测控制方法,将滑模面引入非线性预测控制的二次型代数指标中,并利用代数指标的最优化设计滑模控制律,从而提出了一种基于预测滑模控制的非线性鲁棒自适应控制,使得控制器既有滑模控制鲁棒性强的特点,也具有连续预测控制的优化特点。同时由于模糊自适应系统的引入,使得控制器无需知道系统不确定的上界,从而大大减弱了滑模控制的抖振现象。
Aerospace vehicle (ASV),which is the next generation reusable flying vehicle, has very important martial value and civil value. During its hypersonic re-entry flying, big angle of attrack (AOA) bring the fast change of ASV’s speed, attitude and attitude, its equation subjects to serious nonlinear and coupling characteristic. Moreover, ASV subjects to the unkown disturbancea and uncertainties, so the design of fly control system of ASV is an attractive subject in the modem control area. In this dissertation, the adaptive predictive control methods of MIMO uncertain system are designed and used to solve the control problems involving in the fly control system of ASV.
     First of all, a simulation model of an ASV is presented, which includes the centroid motion of ASV and a six degree-of-freedom kinetic equations and motion equations. Its open-loop dynamics and stability characteristics demonstrate that the proposed model can behave the intricate nolinear, coupling and fast time-varying of ASV’s re-entry, so it can be used in the following theory research and evaluation of advanced guidance and control methods.
     Secondly, a kind of finite horizon predictive method is used to design the re-entry guidance control law of ASV under hypersonic fly condition. With the restrictions of ASV, the re-entry corridor is defined. By choosing an appropriate drag acclertaion as the reference trajectory, the ASV’s guidance predictive law is designed by talyor series expansion. Simulation results of the ASV guidance system indicate the acceptable performance of the designed law to track the reference signal.
     Thirdly, according to the complex nonlinear and uncertain ASV kinetics motion, a class of MIMO uncertain nonlinear predictive control shceme is investigated based on fuzzy reconfigurable systems, and its valid application on the robust adaptive flight control system of ASV with unkown model. By adjusting the fuzzy weight parameters on-line, the fuzzy system is used to approximate the unkown function and construct the nonlinear predictive control law. Furthermore, on the purpose of alleviating the conservatism of controller, an adaptive robust controller is constructed to compensate approximation error of fuzzy system. Using Lyapunov theory, it has been proven that the overall system were uniformly ultimately bounded. Finally, the flight control system of ASV under hypersonic condition is designed by the proposed method. Simulation results demonstrate the effectiveness of the method.
     In the following, the inner uncertainty and unkown disturbance of ASV are considered, which are regarded as composite disturbance. Under the guidance of theoretical analysis, a novel predictive control structure is developed by combining the current predictive method with the well-known compensation idea, the composite disturbance is compensated and elimeated by fuzzy systems, so the performance of the nonlinear predictive controller is guarraneted . Moreover, the concept of“variable universe”is introduced into fuzzy system, according to the tracking error, the contraction and expansion factor of variable universe fuzzy controller is adjusting, which lead to the improvement of response quality of fuzzy system.
     Theoretical analysis illustrates that the accurate approximation to the uncertainty can enchance the performance of the controller greatly. Combining with the previous research, this thesis investigates a class of nonlinear robust predictive control scheme based on fuzzy disturbance observer, the scheme can be provided as an effective method to a kind of nonlinear uncertain systems. Using the useful information of the controlled system, the method realized the accurate approximation and control, so the performace of controller is enhanced. By Lyapunov stability theory, the adjusting law of fuzzy disturbance observer is given, moreover, the ultimate boundness of the tracking error and oberserve error has been proven.
     Finally, considering the slide mode control and predictive control, this article puts the sliding surface into the quadratic index, and gets the sliding mode control law through the minimum of the index, so the nonlinear robust adaptive controller is constructed which is based on predictive sliding mode. The proposed scheme is highly robust as slide mode control, and has the virture of optimization as contious predictive control. Applying the fuzzy adaptive system to the controller, the prior knowledge about the upper bound of uncertainty can be removed, so the chattering of sliding mode is weakened greatly.
引文
[1]李大光.太空作战的指导思想[J].国际太空,2004(3): 27-30
    [2]《世界航天器运载器大全》编委会著.世界航天器运载器大全[M].北京:宇航出版社. 1996.
    [3] Bowcutt KG. A perspective on the future of aerospace vehicle design[C]. In 12th AIAA International Space Planes and Hypersonic Systems and Technologies, AIAA 2003- 6957
    [4]王振国,罗世彬,吴建军.可重复使用运载器研究进展[M],长沙:国防工业大学出版社. 2004.
    [5] Chudoba B, Huang X, Coleman G, et al. Future space tourism transportation design requirements[C]. In AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies, AIAA 2005-3445
    [6] Kuang Y T. Drag-Based Predictive Tracking Guidance for Mars Precision Landing[J]. Journal Of Guidance, Control And Dynamic, 2000, 23(4):620-628.
    [7]Sanjay B. Entry Trajectory Tracking Law via Feedback Linearization[J]. Journal Of Guidance, Control And Dynamic, 1998, 21(5): 726-732.
    [8] Amitabh S. Landing Footprint Computation for entry vehicles[J]. Guidance, Navigation, and Control Conference and Exhibit, 2004, AIAA 2004-4774.
    [9] Curtis Z. An automated method to compute orbital re-entry trajectories with heating constraints[J]. Guidance, Navigation, and Control Conference and Exhibit, 2002, AIAA 2002-4454.
    [10] Marrison C, Stengel R F. Design of robust control systems for a hypersonic aircraft [J]. Journal of Guidance, Control and Dynamics, 1998, 21(1):58-63
    [11] Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft [J], Journal of Guidance, Control and Dynamics, 2000, 23(4): 577-585
    [12] Hanson J M. Advanced Guidance and Control Project for Reusable Launch Vehicles [C]. In AIAA Guidance, Navigation, and Control Conference and Exhibit, 2000, AIAA 2000:1-10
    [13] Hanson J M. A Plan for Advanced Guidance and Control Technology for 2ND Generation Reusable Launch Vehicles[C]. In AIAA Guidance, Navigation and Control Conference and Exhibit, 2002, AIAA2002: 460-468
    [14] Hanson J M, Jones R E. Advanced Guidance and Control Project for Reusable Launch Vehicles: Test Results [C]. In AIAA Guidance, Navigation and Control Conference and Exhibit, 2002, AIAA2002: 508-518
    [15] Isidori A. Nonlinear control systems[M], 3rd Ed, London, UK:Springer-Verlag, 1995
    [16] McFarland M B, Calise A J. Adaptive nonlinear control of agile antiair missiles using neural networks [J]. IEEE Transactions on Control Systems Technology, 2000, 8(5):749-756.
    [17] Esfandiari F,Khalil H K. Output feedback stabilization of fully linearizable systems [J]. Int. J. Control, 1992, 56(5):1007-1037.
    [18] Brinker J S, Wise K A. Stability and flying qualities robustness of a dynamic inversion aircraft control law [J]. AIAA Journal of Guidance, Control, and Dynamics, 1996, 19(6): 1270-1277
    [19] Sastry S. Nonlinear systems: analysis, stability and control [M], 2nd Ed,New York:Springer-Verlag, 1999
    [20] Marino. R, Tomei. P. Robust stabilization of feedback linearizable time-varying uncertain nonlinear systems [J], Automatica, 1993, 29:181-189.
    [21] Miroslav. K, Jing. S, Petar V K. Robust Control of Nonlinear Systems with Input Unmodeled Dynamics[J]. IEEE Transactions on Automatic Control, 1996, 41(6): 913-920.
    [22] Sam G S, Wang J. Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients[J]. IEEE Trans on Automatic Control, 2003, 48(8):1463-1469
    [23] Isidori A, Marconi L, Serrani A. Robust nonlinear motion control of a helicopter[J]. IEEE Transactions on Automatic Control, 2003. 48(3):413-426
    [24] Huang. J. L, Cloutier. C. F and Evers. J.R. et al, Robust feedback linearization approach to autopilot design[C]. First IEEE Conference on Control Applications, 1992, 1:220-225
    [25] Lane S H, Stengel R F, Flight control design using nonlinear inverse dynamics[J]. Automatica, 1988, 24(4): 471-483
    [26] McFarland M B, Calise A J. Neural-Adaptive Nonlinear Autopilot Design for an Agile Anti-Air Missile [C]. In AIAA Guidance, Navigation and Control Conference, 1996: AIAA 1996: 1-9
    [27] McFarland M B, Calise A J. Multilayer Neural Networks and Adaptive NonlinearControl of Agile Anti-Air Missiles [C]. In AIAA Guidance, Navigation and Control Conference, 1997, AIAA 1997: 401-410
    [28] Johnson E N. Limited Authority Adaptive Flight Control [D]. Atlanta, Georgia Institute of Technology, 2000
    [29] Johnson E N, Calise A J, ElShirbiny H A, et al. Feedback Linearization with Neural Network Augmentation applied to X-33 Attitude Control [C]. In: AIAA Guidance, Navigation and Control Conference, 2000, AIAA 2000: 1-11
    [30] Johnson E N, Calise A J. Limited Authority Adaptive Flight Control for Reusable Launch Vehicles [J]. AIAA Journal of Guidance, Control, and Dynamics, 2003, 26(6):906-913.
    [31]朱荣刚,姜长生,邹庆元等.新一代歼击机超机动飞行的动态逆控制[J].航空学报,2003, 24 (3): 534-539
    [32]武国庆,姜长生,张锐等.基于径向基神经网络的不确定非线性系统的鲁棒自适应控制[J].航空学报, 2002, 23(6): 530-533
    [33]吴天宝,黄显林,卢鸿谦等.基于非线性动态逆方法的TF/TA控制器设计[J].宇航学报, 2004, 25(3): 289-294
    [34] Shamma J S, Athans M. Analysis of Gain scheduled control for Nonlinear Plants[J]. IEEE Transactions on Automatic Control, 1990, 35(8): 898-907
    [35] Rugh W J. Analytical framework for gain scheduling [J]. IEEE control system magazine, 1991, 11(1):79-84.
    [36] Rugh W J, Shamma J S. Research on gain scheduling[J]. Automatica, 2000, 36(10): 1401-1425
    [37] Palm R, Rehfuess U. Fuzzy controllers as gain scheduling approximators [J], Fuzzy sets and systems, 1997, 85(2): 233-246
    [38] Palm R, Stutz C. Open loop dynamic trajectory generator for a fuzzy gain scheduler[J]. Engineering Appl. Of Artificial Intelligence, 2003, 16(3): 213-225
    [39] Apkarian P, Gahinet P. A convex characterization of gain-scheduled H∞controllers[J]. IEEE Transaction on Automatic Control, 1995, 40(5): 853-864
    [40] Lee C H, Shin M H, Chung M J. A design of gain-scheduled control for a linear parameter varying system: an application to flight control[J]. Control Engineering Practice, 2001, 9(1): 11-21
    [41] Wang J L, Sundararajan N. A nonlinear flight controller design for aircraft[J], Control Engineering Practice, 1995, 3(6): 813-825
    [42] Snell, Nonlinear Dynamic-Inversion Flight Control of Supermaneuverable Aircraft [D], University of Minnesota, 1991
    [43] Agustin R.M, Mangoubi R.S, Hain R.M, et al. Robust failure detection for reentry vehicle attitude control systems [C], In AIAA Guidance, Navigation and Control Conference and Exhibit, 1998, AIAA, 1998: 1-14
    [44] Lu P. Regulation about time-varying trajectories: precision entry guidance illustrated [C]. In AIAA Guidance, Navigation and Control Conference and Exhibit, 1999, AIAA 1999: 704-713
    [45] Shtesel Y B, Zhu J J, Daniels D. Reusable launch vehicle attitude control using time-varying sliding modes[C], In AIAA Guidance, Navigation and Control Conference and Exhibit, 2002,AIAA 2002: 1409-1418
    [46] Jinhu Lu, Suochun Zhang. Controlling Chen’s chaotic attractor using backstepping design based on parameters identification [J], PhysicsLetters A, 2001, 286(4): 148–152.
    [47] Kenan E, Krener. J, Kokotovic P V. Backstepping design with local optimality matching [J]. IEEE Automatic Control, 2001, 46(7):1014-1027
    [48] Swaroop D, Hedrick. J K. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10): 1893-1899.
    [49] Yip.P, Hedrick. J K. Adaptive dynamic surface control: a simplified algorithm for adaptive backstepping control of nonlinear systems [J]. International Journal of Control, 1998, 71(5):959-979
    [50] Lian B H, Bang H, Hurtado J E. Adaptive Backstepping Control based Autopilot Design for Reentry Vehicle [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA 2004-5328
    [51] Sharma M, Farrell J A. Polycarpou M et al. Backstepping Flight Control using On-Line Function Approximation [C], AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA 2003-5713
    [52] Hu Y N, Jin Y Q, Cui P Y. RBF NN-Based Backstepping Control for Strict Feedback Block Nonlinear System and Its Application [C], International Symposium on Neural Networks, 2004, 3174:129-127
    [53]曹邦武,姜长生.基于回馈递推方法的导弹鲁棒飞行控制器设计[J].宇航学报, 2005, 26(2):148-151
    [54]舒迪前.预测控制系统及其应用[M].北京:机械工业出版社, 1995.
    [55] Rouhani. R, Mehra. R K. Model Algorithmic Control(MAC), Basic TheoreticalProperties[J]. Automatic, 1982,18(4):401-404
    [56] Cutler C R, Ramaker B L. Dynamic Matrix Control- A Computer Control Algorithmic[C]. Proc.of JACC. Sanfranciso, 1980, 13(6):1451-1464
    [57] Clarke D W, Mohtadi C, Tuffs P S. Generalized predictive control-The basic algorithm[J]. Automatica, 1987, 7(3):137-148
    [58]徐立鸿,冯纯伯.论广义预测控制[J].控制与决策, 1992,(7)4:241-246
    [59]慈春令,候培国.采用加权控制律的自适应广义预测极点配置控制器[J].控制理论与应用, 1994, 11(3):303-308
    [60] Qin S J, Badgwell T A. An overview of industrial model predictive control technology [C]. Chemical Process Control CACHE, 1997:232-256.
    [61] Mayne D.Q. Nonlinear model predictive control: An assessment [C ]. Chemical Process Control CACHE, 1997, 1997:217-231.
    [62] Chen H, Allgower F. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability[J]. Antomatica, 1998, 34(10): 1205 -1217
    [63]席裕庚.关于预测控制的进一步思考[J].控制理论与应用,1994, 11(2):219-221.
    [64] Genceli H, Nikolaou M. Design of robust constrained model predictive controllers with Volterra series[J]. AIChE, 1995, 41 (9): 2098-2107.
    [65] Rohit. S, Patwardhan S, Laksh M. Constrained nonlinear MPC using Hammerstein and Wiener models [J]. AIChE , 1998, 44 (7) :1611-1622.
    [66] Buescher K L, Baum C C. A two time scale approach to nonlinear model predictive control[C]. Proc American Control Conference, 1995. 2250-2256.
    [67] Roubos J A F, Mollov S, Babuska B, et.al. Fuzzy model based predictive control using Takagi Sngeno models[J]. Int Approx Research, 1999, 22: 3-30.
    [68]王殿辉,柴天佑.基于ANN模型的非线性自校正预测控制器[J ].自动化学报, 1997, 23 (3) : 396-399.
    [69] Andy Y T, Jang S S, David S, et.al. Predictive control of quality in batch polymerization using hybrid ANN model[J]. AIChE, 1996, 42 (2): 455-465.
    [70]刘保坤,王慧,曹明等.基于NN模型的直接优化预测控制[J].信息与控制, 1998, 27 (5): 386-390.
    [71] Buescher K L, Baum C C, A two-time scale approach to nonlinear model predictive control[C], Proceeding American Control Conference, Seatle, 1995, 2250-2256.
    [72] Zamarreno J M, Vega P. Neural predictive control: Application to a highly nonlinear system[C]. Proceeding 13th IFAC World Congress, SanFrancisco, 1996, 19-24.
    [73]刘军,赵霞,许晓鸣.基于NN非线性模型的扩展DMC预测控制[J],信息与控制, 1998, 27 (5): 391-393.
    [74] Garcia C E. Quadratic dynamic matrix control of nonlinear processes: An application to a batch reaction process [C], AIChE Annual Meeting. SanFrancisco, 1984, 301-307
    [75] Gattu G, Zafirium E, Nonlinear quadratic dynamic matrix control with state estimation [J]. Industry Engineer Chemical Research, 1992, 31 (4): 1096-1104.
    [76] Peterson T, Hernandez E, Arkun Y et.al. A nonlinear DMC algorithm and its application to a semi batch polymerization reactor [J], Chemical Engineer Science, 1992, 47 (4) :737-753
    [77] Chow C M, Kuznetsov A G, Clarke D W. Using multi models in predictive control[C], Proc 3rd Europe Control Conference, Rome, 1995, 1732-1737.
    [78] Xi Y G, Wang F, W u G H. Nonlinear multi-model predictive control[C], Proceeding 13th IFAC World Congress, San Francisco, 1996,485-490.
    [79] Kothare M V, Balak R V, Morari M. Robust constrained model predictive control using linear matrix inequalities[J], Automatic, 1996, 32 (10): 1361-1379.
    [80] Lu Y, Arkun Y Q. Min-Max M PC algorithm s for LPV systems[J], Automatic, 2000, 36 (4): 527-540.
    [81] Matteo R, Marco L. A multirate predictive approach to orbit control of small spacecraft[C], Proceedings of the American Control Conference, Anchorage, 2002:1843-1848
    [82] Hyochoong B. Predictive control for the attitude maneuver of a flexible spacecraft, Aerospace Science and Technology[J], 2004, 8(1): 443–452.
    [83] Michael T F. Receding Horizon Control of a Linear Parameter Varying Model of the Raptor 50 Helicopter[J]. AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA2005-6372:1-17
    [84] Chen W H. Optimal control of nonlinear systems: a predictive control approach [J]. Automatic, 2003, 39(1):633-641.
    [85] Fan M, Tits A, Doyle J C. Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics[J]. IEEE Transactions on Automatic Control, 1991, 36(1): 25-38
    [86] Youla D, Jabr H, Bongiorno J. Modern Wiener-Hopf design of optimal controllers Part II: The multivariable case[J]. IEEE Transactions on Automatic Control, 1976, 21(3): 319 - 338
    [87] Zhou K. On the parameterization H∞controllers [J]. IEEE Transactions on Automatic Control, 1992, 37(9): 1442– 1446
    [88] Glover K, McFarlane D. Robust stabilization of normalized coprime factor plant descriptions with H∞bounded uncertainty [J]. IEEE Transactions on Automatic Control, 1989, 34(8): 821-830
    [89]姜长生,吴庆宪,陈文华等编著.现代鲁棒控制基础[M],哈尔滨:哈尔滨工业大学出版社, 2005
    [90] Narendra K S, Annaswamy A M. Stable Adaptive Systems[M]. NJ: Prentice Hall, 1989
    [91] Polycarpou M M, Ioannou P A. A Robust Adaptive Nonlinear Control Design [J]. Automatica,1996, 32(3): 423-427
    [92] Kumpati S. Narendra, Anuradha M. Annaswamy, Stable Adaptive Systems[M]. NJ: Prentice Hall, 1989.
    [93] Shankar S, Marc B. Adaptive Control[M]. Printice Hall, Englewood, New Jersey, 1993.
    [94] Sastry S S, Isidori A. Adaptive Control of Linearizable Systems[J]. IEEE trans. On Automatic control, 1989, 34(11): 1123-1131
    [95] Jiang Z P, Praly L. Design of Robust Adaptive Controllers for Nonlinear Systems with Dynamic Uncertainties[J].Automatica, 1998, 34(7): 825-840
    [96] Khalil H K. Adaptive Output Feedback Control of Nonlinear Systems Represented by Input-Output Models[J]. IEEE Trans On Automatic control, 1996, 48(6): l041-l045
    [97] Aloliwi B, Khalil H K. Robust adaptive Output Feedback control of Nonlinear Systems without Persistence of Excitation[J]. Automatica, 1997, 33(11):2025-2032
    [98] Sridhar S, Khalil H K. Output feedback control of nonlinear systems using RBF neural networks[J]. IEEE Transactions on Neural Network, 2000, 11(1): 69-79.
    [99] Liu Y S, Li X Y. Robust Adaptive Control of Nonlinear Systems Represented by Input-Output Models[J]. IEEE Trans On Automatic control, 2001, 48(6):1041-1045.
    [100] Wu H W, Mendel. J.M. On choosing models for linguistic connector words for Mamdani fuzzy logic systems[J] IEEE Transactions on Fuzzy Systems,2004, 12(1):29-44
    [101] Liu P Y. Mamdani fuzzy system: universal approximation to a class of random processes[J]. IEEE Transactions on Fuzzy Systems, 2002, 10(6): 756-766
    [102] Pytelkova. R, Husek. P. Stability of slowly varying Takagi-Sugeno fuzzy systems[C],IFSA World Congress and 20th NAFIPS International Conference, 2001, 1:227-232
    [103] Hori T, Tanaka K, Wang H O. A piecewise Takagi-Sugeno fuzzy model construction and relaxation of stability conditions[C]. Proceedings of the 41st IEEE Conference on Decision and Control, 2002, 2:2149-2150
    [104] Golea N. Indirect fuzzy adaptive model-following control for robot manipulators[C]. 2002 Proceedings of the 2002 International Conference on Control Applications, 2002 1:198-202
    [105]师五喜,自适应律修改的间接自适应模糊控制[J],系统工程与电子技术, 2005, 27(10):1788-1790
    [106] Han X L, Shao C T. A Hybrid Adaptive Fuzzy Control for A Class of Nonlinear MIMO Systems[J], IEEE Transactions on Fuzzy set and systems, 2003, 11(1):24-34
    [107] Faa J L, Po H S, Song L Y. Recurrent Radial Basis Function Network-Based Fuzzy Neural Network Control for Permanent-Magnet[J]. IEEE Transactions on Magnetics, 2006, 42(11):3694-3705
    [108] Rong J W, Po C C. Intelligent Tracking Control for Robot Manipulator Including Actuator Dynamics via TSK-Type Fuzzy Neural Network[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(4):552-559
    [109]丁刚,张曾科,韩曾晋.非线性系统的鲁棒自适应模糊控制[J].自动化学报, 2002, 28(3):356-362
    [110] Tong S T, Li H X, Chen G R. Adaptive Fuzzy Decentralized Control for a Class of Large-Scale Nonlinear Systems[J]. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics, 2004, 34(1): 770-775
    [111] Li H X, Tong S C. A Hybrid Adaptive Fuzzy Control for a Class of Nonlinear MIMO Systems[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(1): 24-34
    [112]郭锁风,申功璋,吴成富等编著先进飞行控制系统[M].北京:国防工业出版社, 2003
    [113] Marrison C, Stengel R F. Design of robust control systems for a hypersonic aircraft [J]. Journal of Guidance, Control and Dynamics, 1998, 21(1): 58-63
    [114] Hanson J M. Advanced Guidance and Control Project for Reusable Launch Vehicles [C]. In AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, 2000, AIAA2000: 1-10
    [115] Hanson J M. A Plan for Advanced Guidance and Control Technology for 2nd Generation Reusable Launch Vehicles [C]. In AIAA Guidance, Navigation andControl Conference and Exhibit, Reston, 2002, AIAA2002: 460-468
    [116] John D S. Hypersonic Vehicle Simulation Model: Winged-Cone Configuration[R], NASA Technical Memorandum 102610, 1990.
    [117] Shahriar K. Six-DOF Modeling and Simulation of a Generic Hypersonic Vehicle for Conceptual Design Studies[C]. Modeling and Simulation Technologies Conference, AIAA2004-4805
    [118]赵汉元.飞行器再入动力学和制导[M].长沙:国防科技大学出版社, 1997.11
    [119]鲁道夫.布罗克豪斯著,飞行控制[M].北京:国防工业出版社, 1999.9
    [120] Zhu J J, Banker D, Hall C E. X-33 Ascent Flight Control Deign by Trajectory Linearization- A Singular Perturbation Approach [C]. In AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, 2000, AIAA2000: 1-19
    [121] Bevacqua T, Best E, Huizenga A, et al. Improved trajectory linearization flight controller for Reusable Launch Vehicles [C]. In 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, 2004, AIAA2004:1-16
    [122]陈谋.不确定非线性综合火力/飞行/推进系统鲁棒控制方法研究[D].南京:南京航空航天大学, 2003
    [123] Fen W. LMI-based robust model predictive control and its application to an industrial CSTR problem[J]. Journal of Process Control, 2001, 11: 649-659
    [124] Silvina I B, Jorge A S, Jos′e L F. Use of state estimation for inferential nonlinear MPC: a case study[J]. Chemical Engineering Journal, 2005, 106: 13-24
    [125] LeylaO, Mayuresh V K. Stability analysis of a multi-model predictive control algorithm with application to control of chemical reactors[J]. Journal of Process Control, 2006, 16:81-90
    [126] Meadows E S, Rawlings J B. Receding horizon control with an infinite horizon[C], In Proc. American Control Conference, 1993, 2926–2930
    [127] Keerthi S S, Gilbert E G. Optimal infinite-horizon feedback laws for a general class of constrained discrete time systems: Stability and moving-horizon approximations. [J]. Opt Theory and Application, 1988, 57(2):265-293
    [128] Meadows E S, Henson M A, Eaton J W, et.al. Receding horizon control and discontinuous state feedback stabilization[J]. Int. J. Contr, 1995, 62(5):1217–1229
    [129] Wei R. Trajectory Tracking for Unmanned Air Vehicles With Velocity and Heading Rate Constraints[J]. IEEE Trans On Automatic Control, 2004, 12(5):706-716
    [130] Mayne D Q. Optimization in model predictive control[C]. Proc IFAC, Helsingor,1995: 229-242
    [131] Alamir. M, Bornard. G.. Stability of a truncated infinite constrained receding horizon scheme: The general discrete nonlinear case[J]. Automatica, 1995, 31(9):1353-1356
    [132] Fontes F A. A general framework to design stabilizing nonlinear model predictive controllers[J]. System Control Letter, 2000, 42(2):127–143
    [133] Oliveira S, Kothare D, Morari M. Contractive model predictive control for constrained nonlinear systems[J]. IEEE Trans. Automat. Control, 2000, 45(6): 1053-1071
    [134] Mayne D Q, Rawlings J B, Rao C V, et.al. Constrained model predictive control: stability and optimality[J]. Automatica, 2000, 26(6):789–814
    [135]蒋铁铮,陈陈,曹国云.同步发电机励磁非线性预测控制技术[J].控制与决策, 2005, 20(4): 467-470
    [136]蒋铁铮,陈陈,艾芊.汽轮发电机主汽门开度的非线性最优预测控制[J],控制理论与应用, 2006, 23(3): 458-462
    [137] Wang L X. Fuzzy Systems are Universal Approximators [C]. In: Proceedings IEEE International Conference on Fuzzy Systems, San Diego, 1992: 1163-1170
    [138]王立新著,王迎军译.模糊系统与模糊控制教程[M],北京:清华大学出版社, 2003
    [139]姜长生,王从庆,魏海坤等.智能控制与应用[M],北京:科学出版社, 2007
    [140]张乃尧,金晖.对稳定的模糊自适应控制方案的研究与改进[J].自动化学报, 1997, 23 (2) : 160 - 166.
    [141]张天平.一类非线性系统的间接自适应模糊控制器的研究[J].控制与决策, 2002, 17 (2): 199 - 202.
    [142] CHEKIREB H, TADJINE M, BOUCHARA D. Direct adaptive fuzzy control of nonlinear system class with applications [J]. Control and Intelligent Systems, 2003, 31(2): 201-204.
    [143] TONG S C, LIH X , CHEN G R. Adaptive fuzzy decentralized control for a class of large scale nonlinear systems[J]. IEEE Trans on Systems, Man, and Cybernetics, 2004, 34(1): 770-775.
    [144] PARK J H , KIM S H. Direct adaptive output feedback fuzzy controller for a nonaffine nonlinear system[J]. IEEE Proc Control Theory and Applications, 2004, 151 (1):65-72.
    [145] HAMZAOUI A, ESSOUNBOUL I N , BENMAHAMMED K, et.al. State observerbased robust adaptivefuzzy controller for nonlinear uncertain and perturbed systems[J]. IEEE Trans on Systems, Man, and Cybernetics, 2004, 34(2): 942-950.
    [146]戴华,矩阵论[M].北京:科学出版社, 2001
    [147] Khalil H K, Nonlinear Systems [M], 3rd Ed, Upper Saddle River, New Jersey: Prentice-Hall, 2002
    [148]朱亮,姜长生,张春雨.基于径向基神经网络干扰观测器的空天飞行器自适应轨迹线性化控制[J].航空学报,2007,28(3): 673-677
    [149] Salim L. Adaptive fuzzy control of a class of MIMO nonlinear systems[J]. Fuzzy Sets and Systems, 2005, 151: 57-77
    [150]王佐伟,一种组合自适应模糊控制方法及其在月球探测车上的应用[J].宇航学报, 2005, 26(1): 1-6
    [151] Nardi F. Neural network based adaptive algorithms for nonlinear control [D]. Atlanta, Georgia Institute of Technology, 2000
    [152] Polycarpou M M, Oannou P A. A Robust Adaptive Nonlinear Control Design[J]. Automatica, 1996, 32(3): 423-427
    [153] Polycarpou M M. Stable adaptive neural control scheme for nonlinear systems [J]. IEEE Transactions on Automatic Control, 1996, 41(3): 447-451
    [154] Jiang T Y, Prasad J V R, Calise A J. Adaptive Fuzzy Logic Flight Controller for Rotorcraft [C]. In Proc. AIAA Guidance, Navigation, and Control, 1996, AIAA 1996-3850
    [155]王银河,李志远.一类基于模糊逻辑系统的非线性系统自适应跟踪控制[J].控制与决策, 2004, 19(10): 1121-1124
    [156]王银河,戴冠中.一类非线性不确定系统的模糊自适应控制[J],控制理论与应用, 2004, 21(2): 271-274
    [157]刘国荣,万百五.一类非线性MIMO系统的直接自适应模糊鲁棒控制[J].控制理论与应用, 2002, 19(5): 693-698
    [158]魏新江,井开伟.基于逼近误差的非线性自适应模糊控制[J].东北大学学报(自然科学版), 2004, 25(5): 449-452
    [159]杨盐生.不确定系统的鲁棒控制及其应用[M].北京:科学出版社, 2004
    [160]张春雨,方炜,姜长生.基于T-S模糊系统的空天飞行器鲁棒自适应轨迹线性化控制[J],航空学报,2007,28(5):1153-1161
    [161]李洪兴.从模糊控制的数学本质看模糊逻辑的成功[J].模糊系统与数学, 1995, 9(4):1-14
    [162]李洪兴.模糊控制的数学本质与一类高精度模糊控制器的设计[J].控制理论与应用, 1997, 14(6):868-876
    [163]李洪兴.变论域自适应模糊控制器[J].中国科学(E辑), 1999, 29(1): 32-42
    [164]李洪兴.模糊控制的插值机理[J].中国科学(E辑),1998,28(3): 259-267
    [165]李洪兴.非线性系统的变论域稳定自适应模糊控制[J].中国科学(E辑), 2002, 32 (2): 211-223.
    [166]郭纯,王江,乔国栋.自主汽车的侧向H_自适应变论域模糊控制[J].控制理论与应用, 2005, 22(6):905-912
    [167]王江,乔国栋,邓斌.变论域自适应模糊控制及其在Chua’s混沌电路中的应用[J].控制理论与应用, 2006, 23(3):433-438
    [168]司洪伟,李东旭.自适应变论域模糊控制器在结构振动控制中的应用[J].振动与冲击, 2007, 26(5):81-84
    [169] Shahruz S M. Performance enhancement of a class of nonlinear systems by disturbance observer[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(3): 319-323
    [170] Tomita M., Senjyu T, Doki S, et all, New sensorless control for brushless DC motors using disturbance observers and adaptive velocity estimations, IEEE Transactions on Industrial Electronics, 1998, 45(2): 274– 282
    [171] Gorez R, Galardini D, Zhu K Y. Internal model control and disturbance observers[C], In Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, 1991: 229-234
    [172] Yokoyama T, Kawamura A. Disturbance observer based fully digital controlled PWM inverter for CVCF operation[J]. IEEE Transactions on Power Electronics, 1994, 9(5): 473– 480
    [173] Chen X K, Komada S, Fukuda T. Design of a Nonlinear Disturbance Observer[J]. IEEE Transactions of Industrial Electronics, 2000, 47(2): 429-437
    [174] Chen X K, Su C Y, Fukuda T. A nonlinear disturbance observer for multivariable systems and its application to magnetic bearing systems[J]. IEEE Transactions on Control Systems Technology, 2004, 12(4): 569-577
    [175] Chen W H. Harmonic Disturbance Observer for Nonlinear systems[J]. Journal of Dynamic Systems, Measurement and Control, 2003, 125: 114-117
    [176] Chen W H. Disturbance Observer Based Control for Nonlinear Systems[J], IEEE/ASME Transactions on Mechatronics, 2004, 9(4):706-710
    [177] Chen W H. Nonlinear Disturbance Observer Enhanced Dynamic Inversion Control of Missiles [J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):161-166
    [178]姜长生,陈谋.基于RBF神经网络的一类不确定非线性系统自适应[J].航空学报,2003, 16(1): 36-41
    [179]朱亮,姜长生,张春雨.基于径向基神经网络干扰观测器的空天飞行器自适应轨迹线性化控制[J].航空学报, 2007, 28(3):673-677
    [180]朱亮.空天飞行器不确定非线性鲁棒自适应控制[D].南京:南京航空航天大学, 2006
    [181] Kim E. A fuzzy disturbance observer and its application to control[J]. IEEE Transactions on Fuzzy Systems, 2002, 10(1): 77-84
    [182] Kim E. A discrete-time fuzzy disturbance observer and its application to control[J]. IEEE Transactions on Fuzzy Systems, 2003, 11(3): 399-410
    [183] Chi. H. W, Tsung. C. L, Tsu.T. L, et all. Adaptive Hybrid Intelligent Control for Uncertain Nonlinear Dynamical Systems[J], IEEE Transactions On Systems, Man, And Cybernetics 2002, 32(5): 583-597
    [184]张明君,张化光.一种鲁棒直接自适应模糊控制算法[J].东北大学学报, 2006, 27(1):5~8
    [185]朱丽业,方园,吴惕华.模糊自适应控制算法的新方案[J].控制理论与应用2007, 24(2):289-293
    [186] Sunan. H, Kok. K. T, Tong. H. L. An Improvement on Stable Adaptive Control for a Class of Nonlinear Systems[J]. IEEE Transactions On Automatic Control, 2004, 49(8): 1398-1403
    [187] Yang. Y.S, Chang. J. Z. Robust Adaptive Control of Uncertain Nonlinear Systems Using Fuzzy Logic Systems[C]. Proceedings of the 2005 IEEE International Symposium on Intelligent Control, 2005: 47-52
    [188] Yang. Y. S, Xiao. F. W. Adaptive HN tracking control for a class of uncertain nonlinear systems using radial-basis-function neural networks[J]. Neurocomputing 2007, 70: 932-941
    [189] Yang YS, Direct Robust Adaptive Fuzzy Control (DRAFC) for Uncertain Nonlinear Systems Using Small Gain Theorem [J], Fuzzy Sets and Systems, 2005, 151: 79-97
    [190] Vélez-Díaz D, Tang Y. Adaptive Robust Fuzzy Control of Nonlinear Systems[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2004, 34(3): 1596-1601
    [191] Utkin. V. I. Variable structure systems with sliding modes[J]. IEEE Transactions Automatic Control, 1977, 22(2):212-222
    [192] Yu. X. H, Xu. J. X. Advances in variable structure system[M]. World Scientific Publishing, Singapore, 2000
    [193] Yeh. F. K,Chien. H. H, Fu. L. C. Design of optimal midcourse guidance sliding mode control for missiles with TVC[J]. IEEE Transaction on Aerospace and Electronic Systems, 2003, 39(3):824-837
    [194] Chen. Y. P, Chang. J. L, Chu. S. R. PC-based sliding mode control applied to parallel-type double inverted pendulum system [J]. Mechatronics, 1999, 9:553-564
    [195] Perruquetti. W, Barbot. J. P. Sliding mode control in engineering[M]. Marcel Dekker Inc, New York, 2002
    [196] Utkin. A, Guldner. J, Shi. J. X. Sliding mode control in electromechanical system[M], Taylor & Francis, 1999
    [197] Chen M S, Hwang Y R, Tomizuka M. A state-dependent boundary layer design for sliding mode control [J], IEEE Transactions on Automatic Control, 2002, 47(10): 1677-1681
    [198] Kang B P, Ju J L. Sliding mode controller with filtered signal for robot manipulators using virtual plant controller [J], Mechatronics, 1997, 7(3): 277-286
    [199] Ha Q P, Nguyen Q H, Rye D C, et all. Fuzzy sliding-mode controllers with applications [J], IEEE Transactions on Industrial Electronics, 2001, 48(1):38-41
    [200] K B Park. Terminal sliding mode control of second-order nonlinear uncertain systems [J], Int. J. Robust Nonlinear Control, 1999, 9:769-780
    [201] Singh. S. N, Steinberg. M, Digirolamo. M. S. Nonlinear predictive control of feedback linearizable systems and flight control system design[J]. Journal of Guidance, Control and Dynamics, 1995, 18 (5): 1023-1028
    [202]胡剑波,陈新海.反馈线性化系统的非线性预测滑模控制[J].航空学报, 1997, 18 (5): 579-582
    [203]周建锁,刘志远,裴润.一种非线性连续预测变结构控制方案[J].电机与控制学报, 2000, 4(4): 227-229
    [204]刘福才,王娟,石淼等.混沌系统的非线性连续预测变结构控制与同步[J].物理学报, 2002, 51(12): 2707-2712

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700