用户名: 密码: 验证码:
轧机传动系统扭振测量模型及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轧机传动系统是轧机中的重要组成部分,承担着向轧辊输送转动机械能量的工作。随着轧制速度和强度的不断提高,轧机传动系统频繁出现异常扭振失稳现象,造成轧机部件疲劳损伤、使用寿命降低,进而影响轧制产品质量和生产效率。因此,轧机传动系统扭振有效抑制是实现轧机稳定运行的关键,准确的扭振测量模型是轧机传动系统扭振抑制的前提,本课题在国家十五重大技术装备研制项目“大型宽带钢冷连轧成套设备研制/轧机传动系统扭振关键技术问题的研究及应用(批准号:ZZ02-13B- 02-03-1)”的资助下,进行了轧机传动系统扭振测量模型的研究。课题在分析轧机传动系统扭振产生机理的基础上,从研究轧机传动系统动力学模型入手,建立了轧机传动系统扭振测量模型,并对测量模型进行了动态响应求解,通过实验验证了测量模型的有效性和可行性。
     分析轧机传动系统扭振产生机理和轧制载荷等因素对扭振的影响规律,基于集中参数建模方法研究轧机单支直串式集中参数系统模型和多级分支式集中参数系统模型,运用达朗伯-拉格朗日动力学原理,建立轧机传动系统两自由度和多自由度系统动力学模型,求解系统的固有特性。
     基于轧机传动系统扭振动力学模型,建立简化的轧机传动系统扭振线性测量模型,对突变载荷作用下和周期载荷作用下的测量模型进行研究。基于扭振线性测量模型,考虑典型非线性因素,建立轧机传动系统扭振非线性测量模型,构造李雅普诺夫函数分析非线性测量模型的稳定性,并运用参数摄动法对不同谐波激励下的非线性测量模型进行了研究。针对轧机传动系统结构复杂性和影响因素的复杂性等原因造成的某些关键点不可测的问题,建立轧机扭振软测量模型,实现不可测点的扭振测量。
     建立轧机传动系统多自由度扭振测量模型,研究轧机扭振测量模型在不同边界条件下、典型工程载荷作用下以及考虑间隙作用下,系统外扰为时间函数、速度函数、位移函数的等形式下的动态响应,以揭示轧机传动系统扭振的演化机制,为轧机扭振测量奠定理论基础。
     为了对测量信号进行有效特征提取,以实现对测量模型的验证,针对扭振测量信号具有的非线性和非平稳特性,研究基于经验模态分解(EMD)的扭振信号处理方法,给出EMD分解算法,分析EMD分解中噪声所引起的模态裂解现象和端点效应对分解效果的影响,研究中值滤波去噪算法、非线性小波阈值去噪算法和包络极值延拓算法,提高EMD分解效果的有效性。
     设计扭振测量系统,在轧机扭振实验平台上完成系统的动态实验,对测量信号进行EMD分解和Hilbert变换,提取扭振信号的特征,验证测量模型的有效性和可行性。
The rolling mill’s drive system, which transmits the rotating mechanical energy to roller, is an important component of the rolling mill. With the continuous improvement of the rolling speed and intensity, the abnormal instability phenomenon offen occurs due to the torsional vibration of the rolling mill’s drive system. The torsional vibration causes fatigue damage and life reduction of the rolling parts. Further, the torsional vibration affects products quality and production efficiency. Torsional vibration suppression of the rolling mill’s drive system is the key to stable operation of rolling mill, and the accurate measuring model is the premise of torsional vibration suppression. The project is supported by the national major technologies and equipment development projects for 10th-5-year Plan of China (Development of the large broadband steel cold rolling complete sets of equipment/Research and application on the key technology of the rolling mill’s drive system torsional vibration.Grant No.ZZ02-13B-02-03-1). The theory and experiment of the rolling mill’s drive system measuring model were studied. On the basis of torsional vibration mechanism and drive system dynamics model, the rolling mill’s drive system measuring model was proposed. The dynamic response solution of the measuring model was obtained. The experimental results showed the effectiveness and feasibility of the measurement model.
     Firstly, the torsional vibration mechanics of rolling mill’s drive system was studied, and the influence of rolling load on torsional vibration was analyzed. Based on the lumped parameter modeling method, single straight string lumped parameter system model and multiple branch lumped parameter system model were studied. According to D’Alembert-Lagrange dynamic principle, the two degrees of freedom dynamic model and the multiple degrees of freedom dynamic model of the rolling mill’s drive system were established, and the inherent characteristics of system were known.
     Secondly, on the basis of torsional vibration dynamic model, the torsional vibration linear measuring model of the simplified rolling mill’s drive system was established, and the measuring model under mutation loading and cyclic loading was studied. Based on the torsional vibration linear measuring model and typical nonlinear factors, the torsional vibration nonlinear measuring model of the rolling mill drive system was proposed. By constructing Lyapunov function, the stability of the nonlinear measuring model was analyzed. The nonlinear measuring model under different frequency forcing excitation was studied using the method of perturbation. For the key point unmeasured problem which was caused by the structure complicacy and infection factor complicacy, the soft measuring model was established and the torsional vibration measurement of the unmeasured point was realized.
     Thirdly, the torsional vibration multiple degrees of freedom measuring model was established on rolling mill drive system. When the system disturbance forms are time function, velocity function and displacement function, the dynamic response of the measuring model under the different boundary conditions, the typical load and the space was studied. The torsional vibration evolution mechanism of the rolling mill drive system was revealed, and the theoretical foundation of the rolling mill’s torsional vibration measurement was established.
     Fourthly, in order to certify the measuring model, the measured signal feature must be extracted effectively. For the nonlinear and nonstationary characteristics of the torsional vibration measured signal, the torsional vibration signal processing method based on Empirical Mode Decomposition (EMD) was studied. The EMD algorithm was given, and the mode fission phenomenon caused by noise signal and the influence of the end effect on decomposition results were analyzed. The medium filtering denoising algorithm, the nonlinear wavelet threshold denoising algorithm and the envelope extreme extension algorithm were studied. The validity of EMD was improved.
     Finally, the torsional vibration measurement system was designed, and the dynamic experiment was finished on the torsional vibration analogue platform. The torsional vibration feature of the measurement signal was extracted by empirical mode decomposition and Hilbert trasnsform. The availability and feasibility of the measuring model was verified.
引文
1 J.H.Paluh, G.R.Hills, T.C.Wojtkowski. Design and Selection of Universal Joints for Rolling Mills. Iron and Steel Engineer, 1997, 74(12): 42-48
    2 R.C.Zhang, C.N.Tong. Torsional Vibration Control of the Main Drive System of a Rolling Mill Based on an Extended State Observer and Linear Quadratic Control. Journal of Vibration and Control, 2006, 12(3): 313-327
    3 J.zhong, A.L.Wang, Y.X.Wu, etc. Micro Scale Design and Experimental Research of Rolling Interface. Transactions of Nonferrous Metals Society of China 2002, 12(1):21-25
    4 K.W.Wang, D.Segalman. Vibration of Rotating Systems. American Society of Mechanical Engineers, Design Engineering Division, 1993, 60(3): 382-386
    5 P.Belli, S.Bittanti, D.Marco. On the Origin of Torsional Vibrations in Hot Rolling Mills and a Possible Remedy. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2004, 126(4): 811-823
    6李勇,王君,胡贤磊,等.新型液压轧机控制方案的研究.钢铁,2007,42(6):42-46
    7 H.J.Li, J.Z.Xu, G.D.Wang. Improvement on Conventional Load Distribution Algorithm in Hot Tandem Mills. Journal of Iron and Steel Research,2007,14(2):36-41
    8 T.Kong, D.C.Yang. Modelling of Tandem Rolling Mills Including Tensional Stress Propagation. Proceedings of the Institution of Mechanical Engineers Part E: Journal of Process Mechanical Engineering, 2003, 207(2): 143-150
    9邹家祥.轧钢机械(第3版).北京:冶金工业出版社.2000:3-9
    10 H.P.Tang, Y.Z.Yan, J.Zhong. Storsional Self-excited Vibration of Rolling Mill. Transactions of Nonferrous Metals Society of China 2002, 12(2):291-293
    11 X.L.Hu, J.Wang, Z.D.Wang. Application of Shape Lock-on Method in Plate Rolling. Journal of iron and steel research,2007,14(2):24-26
    12 V.P.Singh, S.N.Samir. Torsional Vibrations in Branch System-A Transfer Matrix Approach. Journal of the Institution of Engineers: Mechanical Engineering Division, 2002, 83(4): 52-55
    13 L.Zhang, L.Y.Zhang, J.Wang.Prediction of Rolling Load in Hot Strip Mill by Innovations Feedback Neural Networks.Journal of Iron and Steel Research,2007,14(2):42-45
    14张显.四辊板带轧机主传动系统的承载能力研究.[武汉科技大学硕士学位论文].2005:1-2
    15 J.C.Wang, C.Z.Chen. On the Optimization of a Rolling Force Model for a Hot Strip Finishing Line. 2007, 46(4):527-531
    16沈标正,陈践,段保国,等.轧机扭振控制策略与实施(上).冶金自动化,2002,26(3):17-20
    17赵弘.轧机扭振及抑制研究.[北京科技大学博士学位论文].2006:1-2
    18 C.W.Thomas R.P.Stratford, H.Jewik. Torque Amplification and Torsional Vibration in Large Mill Drives. Iron and Steel Engineer,1969,5:31-35
    19 D.H.Mao, Y.F.Zhang, Z.H.Nie, etc. Effects of Ultrasonic Treatment on Structure of Roll Casting Aluminum Strip. Journal of Central South University of Technology, 2007,14(3): 363-369
    20 J.J.He, S.Y.Yu, J.Zhong. Modeling for Driving Systems of Four-high Rolling Mill. Transactions of Nonferrous Metals Society of China 2002, 12(1):88-92
    21陈勇辉,刘世元,廖广兰.四辊冷带轧机三倍频颤振机理的研究.机械工程学报,2003,39(6):118- 123
    22 S.H.He, J.Zhong. Modeling and Identification of HAGC System of Temper Rolling Mill. Journal of Central South University of Technology, 2005,12(6):699-704
    23 A.TesuoS. Estimationo of Lubrication State by Obserbation of Rolled Strip Surface High Speed Cold Rolling of Mild Steel.ISCR,1980, (1):34-36
    24王征,张卫,李崇坚.大型热连轧机主传动系统机电振荡的研究,冶金自动化,2001,01:30-34
    25刘彬,杨海马,刘谨.轧机接轴动态扭矩测量及反馈控制模型的研究.仪器仪表学报, 2005, 26 (5):537-541
    26范小彬,臧勇,吴迪平,等.CSP热连轧机振动问题.机械工程学报,2007,43(8):198-201
    27 G.W.Cai, J.Zhong.Global Coupled Equations for Dynamic Analysis of Planishing Mill. Transactions of Nonferrous Metals Society of China, 2003, 13(1):14-19
    28 J.F.Wang, L.M.Cartright. Torsional Vibration Modeling and Dynamic Simulation of a Rolling Stand Power Transmission System. Iron and Steel Engineer, 1999, 76(7): 30-34
    29 H.E.David, M.A.Churches, Y.Anbe. Compensation of a Digitally Controlled Static Power Converter for the Damping of Rolling Mill Torsional Vibration. IEEE Transactions on Industry Applications, 2004, 28(2): 427-433
    30 M.L.Hajduk. Left Bracket Effect of Improper Selection of the rpm of Vertical and Horizontal Drives on Balanced Rolling Force Distribution in a Universal Rolling Mill. Right Bracket.Hutnicke Listy, 1972, 27(4):259-264
    31 K.Styblo. Left Bracket Effect of Torsional Vibrations of the Blooming Mill Driving Gear on the Biting Conditions Right Bracket. Hutnicke Listy, 1976, 31(7): 475-482
    32 Rawtani. Vibration Analysis of Branched System by Holzer Method-A Caution. Journal of the Institution of Engineers (India), Part ME: Mechanical Engineering Division, 1982, 63(9): 64-66
    33 A.K.Tieu, A.A.Jafari, A.Basu. Vibration Modes in Tandem Rolling Mills. Proceedings of the First Australasian Congress on Applied Mechanics,1996(1):887-892
    34 M.A.Younes, M.Shahtout, M.N.Damir. A parameters design approach to improve product quality and equipment performance in hot rolling. Journal of Materials Processing Technology, 2006, 171(1):83-92
    35 Y.N.Alnassar, M.Kalyon, M.Pakdemirli. Stability Analysis of Rotating Blade Vibration due to Torsional Excitation. Journal of Vibration and Control, 2007,13(9):1379-1391
    36 S.F.Asokanthan, P.A.Meehan. Non-linear Vibration of a Torsional System Driven by a Hooke’s Joint. Journal of Sound and Vibration, 2000,233(2): 297-310
    37 K.V.Avramov. Flexural Torsional Nonlinear Vibrations of Pre-twisted Rotating Beams with Asymmetric Cross sections.Journal of Vibration and Control, 2007,13 (4):329-364
    38 S. F. Asokanthan, P. A. Meehan.Non-linear Vibration of a Torsional System Driven by a Hooke’s Joint. Journal of Sound and Vibration, 2000,233(2): 297-310
    39 A.Wall, A.K.Tieu. Dynamic Factors and Gauge Accuracy in Cold Rolling. National Conference Publication Institution of Engineers, Australia, Vibration and Noise-Measurement Prediction and Control, 1990,36(2): 232-236
    40 M.Monse, V.Mueller, H.Cerv. Modelling and Dynamic Simulation of Electromechanical Systems of Equipment in the Rolling Mill Field. International Workshop on Advanced Motion Control. 1998(1):469-474
    41 H.Jewik, R.P.Stratford RP, C.W.Thomas.Torque Amplification and Torsional Vibration in Large Mill Drives. IEEE-Trans on Industry & Gen Applications, 1969, 5(3): 333-346
    42 S.R.Petersen. Impact Torsional Vibration of Direct-Current Hot Strip Mill Drive Motors.Iron and Steel Engineer,1964,10(1):105-110
    43 J.R.Herman. Determination of Hot Strip Mill Torque Amplification Factors. Iron & Steel Engineering,1969,46(12):49-58
    44 J.S.Rao, T.N.Shiau, J.R.Chang. Theoretical analysis of Lateral Response Due to torsional excitation of geared rotors. Mech Mach Theory,1998,33(6):761-783
    45 R.Gregorczyk. Theoretical Despcription of the Continuous Rolling Mill. Journal of materials Processing Technology,1996,61:338-346
    46 A.M.Kashay. Torque Amplification and Vibration Investigation Project. Iron and Steel Engineering, 1973,7:55-70
    47 J.Q.Pan, J.Pan, R.S.Ming. Three-dimensional Response and Intensity of Torsional Vibration in a Stepped Shaft. Journal of Sound and vibration,2000,236(1):115-128
    48 S.I.Chang. Torsional Instabilities and Non-linear Oscillation of a System Incorporating a Hooke's Joint. Journal of Sound and vibration,2000, 229(4):993-1002
    49 K.Koser, F.Pasin.Torsional Vibrations of the Drive Shafts of Mechanisms. Journal of Sound and Vibration,1997,199(4):559-565
    50 H.Honjyo, H.Watanabe. Impact Loading and Vibration of the Slab Mill.AISE yearbook,1975(5): 31-38
    51 J.J.Smith, R.P.Russell. Torque Monitoring for Failure Prevent on Mill Spindles and Couplings. Iron and Steel Engineer, 1976,22(11):37-39
    52 I.Yarita, K.Furukawa, Y.Seino. An Analysis of Chattering in Cold Rolling of Ultrathin Gauge Steel Strip. Transctions ISIJ,1978,19(1):1-10
    53 A.A.Jafari, A.K.Tieu, A.Basu. Asymmetrical Rolling and Self Excited Vibrations in a Hot Roughing Mill. Design Engineering Division Vibration of Rotating Systems,1993,60(4):193-202
    54 H.Naitoh, K.Suzuki.Compensation of a GTO-NPC Inverter for the Damping of Rolling Mill Torsional Vibration. IEEE Annual Power Electronics specialists Conference,1996,(12):925-930
    55 Z.Drzymala, A.Swiatoniowski. Nonlinear Vibration in Cold Rolling Mill.Mecanique & Industries, 2003,68(4): 151-158
    56 W.Dobrucki, A.Swiatoniowski. Directions in Inverstigations into the Dynamic Phenomena of Rolling Mill. Jouanal of Materials Processing Technology, 1996,61(4):323-327
    57 V.S.Deshpande, J.P.Modak.Maintenance Strategy for Tilting Table of Rolling Mill based on Reliability Considerations. Reliability Engineering &system Safety,2003,80(1):1-18
    58 A.Bar, A.Swiatoniowski. Interdependence between the Rolling Speed and Non-linear Vibrations of the Mill System. Journal of Materials Processing Technolog, 2004, 155(30):2116- 2121
    59 A.Bar, O.Bar. Types of Mid-frequency Vibrations Appraring during the Rolling Mill Operation. Journal of Materials Processing Technolog, 2005, 162(15):461-464
    60 W. Dobrucki, A.Bar. Changes in Roll-gap Shape in the Case of Vibrations in a Four-high Rolling Mill Stand. Jouanal of Materials Processing Technology, 2006,171(6):328-337
    61 M.S.Tehrani, P.Hartley, H.M.Naeini. Localosed Edge Bucking in Cold Rool Forming of Symmetric Channek Section. Thin-walled structure, 2006,44(2):184-196
    62 P.H.Hu, F.E.Kornel.A Dynamic Model of the Rolling Process. Part I: Homogeneous Model. International Journal of Machine Tools and Manufacture, 2000, 40(1):1-19
    63 P.H.Hu, F.E.Kornel. A Dynamic Model of the Rolling Process. Part II: Inhomogeneous Model. International Journal of Machine Tools and Manufacture, 2000, 40(1):21-31
    64范小彬,臧勇,吴迪平,等.CSP轧机振动和振纹的试验研究.钢铁,2006, 41(10):54-58
    65赵武,刘彬,蒋金水.基于拓扑网络的轧机扭振分析计算.机械工程学报, 2006,42(7):51-55
    66朱才朝,蒋祖信,李以农,等.1450精轧机组主传动系统扭振测试分析.重庆大学学报,2002,25(1): 120-124
    67钟掘,唐华平.高速轧机若干振动问题-复杂机电系统耦合动力学研究.振动、测试与诊断,2002, 22(1):1-8
    68陈先霖,邹家祥.轧钢机扭振的实测、电算与优化设计.北京钢铁学院学报,1980,2(4):22-26
    69林鹤,康祖立.初轧机轧制打滑引起的扭振响应.北京科技大学学报,1991,13(1):31-36
    70邹家祥,史小路,孙志辉,等.带钢冷连轧机自激振动诊断.钢铁,1997,32(7):64-68
    71李率民,邢相勤,陈松,等.3200mm轧机主传动系统扭振研究.轧钢,2004,21(1):15-17
    72黄培文,魏敏杰.轧钢机主传动系统结构参数的特征灵敏度分析.武汉冶金科技大学学报, 1998,21(1):44-49
    73张凤荣.四辊板带轧机主传动系统扭振分析.机械设计与制造,1995,(1):13-15
    74汪冰.1420mm冷轧机主传动系统扭转振动分析.淮海工学院学报,2004,13(3):22-24
    75孙林,黄培文.2800四辊轧机主传动系统瞬态响应计算.武汉冶金科技大学学报,2003,26 (3):279- 284
    76李友荣.1000mm初轧机主传动系统的扭转振动.武汉冶金科技大学学报,2003,26(4):387-397
    77唐华平,钟掘.单辊驱动轧机水平自激振动定性分析.机械工程学报, 2001,37(8):55-59
    78 H.P.Tang, R.Ding. Investigation for Parametric Vibration of Rrolling Mill. Transactions of Nonferrous Metals Society of China,2002,12(3):485-488
    79李平,刘晓星.HC轧机主传动扭振系统的建模及其动态性能的研究.昆明理工大学学报,2004, 29(2):31-35
    80陈莹莹,陈昌明,赵庭家.初轧机传动线有间隙时的打滑与自激振动.机械工程学报,1986,22(1): 93-103
    81魏立群,瞿志豪,柳谋渊,等.1420冷连轧机组自激振动分析.钢铁,2005,40(11):37-40
    82魏立群,瞿志豪,张杏耀,等.轧制润滑对1420冷连轧机机组自激振动的影响.钢铁研究学报, 2006,18(2):28-31
    83周金宇,陈占福.粗轧机主传动扭振分析.钢铁,2007,42(5):51-54
    84周建刚,任学平.热带钢连轧机主传动系统的动态性能研究.山东冶金2007,29(2):47-50
    85 Z.H.Wang, D.J.Wang. Dynamic Characteristics of a Rolling Mill Drive System with Backlash in Rolling Slippage. Journal of Materials Processing Technology, 2000,97(2):128-133
    86王章海,王德俊.打滑状态下轧机主传动系统的动态特性.东北大学学报,1998,19(5):520-523
    87陈勇辉,史铁林,杨叔子.四辊冷带轧机非线性参激振动的研究.机械工程学报,2003,39(4): 56-60
    88陈勇辉,史铁林,林梅香.四辊冷带轧机再生颤振稳定性的统一理论.中国机械工程,2003,14 (16):1408-1412
    89钦明浩,徐业宜,桂长林.机械系统中具有随机系数和带有间隙的自激振动理论和应用.机械工程学报,1998,34(5):13-19
    90李鸿光,闻邦椿.具有间隙和振动边界的自激振动系统的非线性振动.振动工程学报,2000,13 (1):122-127
    91李鸿光,孟光,闻邦椿.带间隙的双线性滞回系统的非线性振动.机械工程学报,2004,40(7):10- 13
    92赵弘,白晶.轧机振动及非线性分析.机械,2003,30(5):16-19
    93王丽莉.初轧机主传动系统扭转自激振动的稳定性.有色矿冶,2003,19(1):48-51
    94 G.Thomas.Interpolation Algorithms for Discrete Fourier Transforms of Weighted Signals. IEEE Transactions on Instrumentation and Measurement,2003,52(2):350-355
    95 C.Offelli, D.Petri. The Influence of Windowing on the Accuracy of Multifrequency Signal Parameter Estimation. IEEE Transactions on Instrumentation and Measurement,2002,51(2):256- 261
    96丁康,孔正国,何志达.振动调幅信号的循环平稳解调原理与应用.振动工程学报,2005,18(3):304-308
    97丁康,何志达,孔正国.基于离散频谱分析的自由衰减振动信号的幅值恢复.振动工程学报, 2005,18(2):172-178
    98丁康,孔正国.振动调幅调频信号的调制边频带分析及其解调方法.振动与冲击,2005,24(6):9- 12
    99屈梁生,刘雄.柔性转子全息现场动平衡技术及其应用.机械工程学报,2005,41 (12):102-107
    100李力,屈梁生.谱相关特性在机械信号特征提取中的应用研究.中国机械工程,2006,17(4):334- 338
    101 T.Gudra, K.J.Opielinski. Applying Spectrum Analysis and Cepstrum Analysis to Examine the Cavitation Threshold in Water and in Salt Solution. Ultrasonics, 2004, 42(9):621-627
    102 C. Fritsch, A.Veca. Detecting Small Flaws near the Interface in Pulse-echo. Ultrasonics, 2004,42 (9):797-801
    103 A.Hossen, U.Heute. Different Approximate Cepstra Using Subband-transforms: Theory and Applications. International Journal of Electronics and Communications,2003,57(4):247-254
    104 M.Muselli. Frequency Analysis of Binary Oscillators Triggered by a Random Noise. Physica D,2004,188(1):119-133
    105 [美]L.科恩著,白居宪译.时频分析:理论与应用.西安:西安交通大学出版社.2000
    106 P.D.Einziger.Gabor Transformation of an Aperture Field in Exponential Elementary Beams.IEEE Lectron.Lett,2004,24(2):665-666
    107 X.Shu, F.Shen. The Application of Time-Frequency Analysis for Extracting Radar Target in Chaff-interference. International Conference of Radar Proceeding.2001:571-575
    108 J.Yao.Complete Gabor Transformation for Signal Representation. IEEE Transactions on Image Processing, 2003,12(2):152-159
    109丁康,陈健林苏向荣.平稳和非平稳振动信号的若干处理方法及发展.振动工程学报,2003,16 (1):1-10
    110何正嘉,訾艳阳,孟庆丰,等.机械设备非平稳信号的故障诊断原理与应用.北京:高等教育出版社.2001:1-8
    111陈端,刘树棠.基于离散GABOR变换的抑制交叉项的新方法.西安交通大学学报,1997,31(9): 77-80
    112 L.Cohen. Time-frequency Distribution a Review.Proceedings of the IEEE, 2005, 93(7):941-981
    113 I.Daubechies. Orthonormal Base of Compactly Supported Wavelet. Communication on Pure and Applied Mathematics, 1988,41(1):909-996
    114 I.Daubechies. The Wavelet Transform Time-frequency Localization and Signal Analysis. IEEE Tansactions on Information Theory, 1990, 65(5):961-1006
    115 S.G.Mallat. A theory for Muhiresolusion Signal Decomposition: the Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1980,11(7):674-693
    116 P.R.Coifman, M.V.Wickerhauser. Entropy-based Algorithms for Best Basis Selection.IEEE Tansactions onInformation Theory, 1992, 38(2):313-318
    117 D.E.Newland. Harmonic wavelet analysis. Proc.R.Soc,Lond.A,1993,443:203-205
    118 Z.X.Xiong, K.Ramchandran, C.Herley. Flexible Tree-structured Signal Expansion Using Time Varying Wavelet Pachets.IEEE Tansactions on Signal Processing, 1997, 45(2):333-345
    119 N.E.Huang, Z.Shen, S.R.Long. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis. Proceedings of the Royal Society Lond.A, 1998, (454):903-995
    120 N.E.Huang. A New Method for Nonlinear and Non-stationary Time Series Analysis: Empirical Mode Decomposition and Hilbert Spectral analysis. Proceedings of SPIE,2000, (4056):197-209
    121 N. E. Huang. Review of Empirical Mode Decomposition analysis. Processings of SPIE, 2001, (4391):71-79
    122钟佑明,秦树人.Hilbert-Huang变换中的理论研究.振动与冲击,2002,21(4):14-17
    123马孝江,朱泓.论局域波法中瞬时频率分析.大连理工大学学报,2003,43(6):775-777
    124李鸿光,孟光.基于经验模式分解的混沌干扰下谐波信号的提取方法.物理学报2004,53(7): 2069-2073
    125于德介,程军圣,杨宇. Hilbert-Huang变换在齿轮故障诊断中的应用.机械工程学报,2005,41 (6):102-107
    126于德介,程军圣,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用.机械工程学报,2005,40 (8):115-118
    127谭善文,秦树人.Hilbert/Huang变换的滤波特性及其应用.重庆大学学报,2004,27(2):10-13
    128贾启芬,刘习军.机械与结构振动.天津:天津大学出版社,2007:49-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700