用户名: 密码: 验证码:
野生香蕉(Musa spp., AB group)抗寒相关基因的克隆与表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以福建三明野生香蕉(Musa spp., AB group, from Sanming City)叶片为材料,分别进行常温和低温胁迫下的几丁质酶基因和β-1,3-葡聚糖酶基因克隆,并采用实时荧光定量PCR技术分析常温和低温胁迫过程中其表达规律,以期获得抗冻蛋白基因,进一步了解其在常温和低温胁迫过程中的表达差异。主要研究结果如下:
     1三明野生香蕉低温胁迫下几丁质酶基因(ChiⅠ1、ChiⅠ2) cDNA全长的克隆及生物信息学分析
     以三明野生香蕉叶片为材料,采用RT-PCR结合RACE方法,获得了低温胁迫处理(4℃处理64h)下三明野生香蕉叶片几丁质酶基因的cDNA全长为1097bp,3'UTR为149bp, 3'poly(A)尾长17bp,将此基因命名为Chi 12(登录号:FJ222750);同时还获得了常温(28℃)下三明野生香蕉叶片几丁质酶基因的cDNA全长为1115bp,5'UTR为14bp,3'UTR为177bp,3'poly(A)尾长17bp,将此基因命名为ChiⅠ1(登录号:FJ858155)。这两个序列与登录GenBank的其它植物几丁质酶基因有很高的同源性。应用生物信息学方法分析结果表明:ChiⅠ1蛋白和ChiⅠ2蛋白均为酸性的亲水性跨膜蛋白,亚细胞定位为胞外空间,属于糖苷水解酶19家族成员,为Ⅰ类几丁质酶。ChiⅠ2蛋白具有两个几丁质结合区,这可能是其兼有抗冻活性及抗病菌活性的主要功能区域。三明野生香蕉ChiⅠ2基因与国际上已经报道的植物几丁质酶抗冻蛋白基因的结构很相似,初步推断ChiⅠ2基因是几丁质酶抗冻蛋白基因。
     2三明野生香蕉ChiⅠ1与ChiⅠ2基因DNA序列的克隆
     从DNA水平克隆得到三明野生香蕉ChiⅠ1与ChiⅠ2基因,均有ATG起始密码子和TAG终止密码子。ChiⅠ2基因DNA序列长1183bp(登录号:GU391234);ChiⅠ1基因DNA序列长1159bp(登录号:GU391235)。内含子分析表明ChiⅠ1与ChiⅠ2基因均由4个外显子和3个内含子组成,所有内含子的剪切位点均符合真核生物GT-AG规则。ChiⅠ2基因与ChiⅠ1基因相比第一个外显子增加了24bp,其余外显子与内含子部分均没有差别。这增多的24bp的外显子可能是几丁质酶抗冻蛋白基因的作用位点。
     3三明野生香蕉ChiⅠ1与ChiⅠ2基因启动子的克隆
     采用交错式热不对称PCR染色体步移方法克隆三明野生香蕉ChiⅠ1和ChiⅠ2基因部分启动子序列。ChiⅠ1基因启动子长323bp(登录号:GU391235); ChiⅠ2基因启动子长846bp(登录号:GU391234)。ChiⅠ1基因可能存在的基础启动子区域为第272-322处,其序列为:5'-GGCAGGAATCCATTTCTCTATATAAGCACCACCTCCCACCCACACCACCA-3'。预测转录起始点在第312bp处的C,含有与光反应、水杨酸响应、高转录水平及分生组织表达相关的顺式作用调控元件。Chi 12基因在第522-572bp处存在可能的基础启动子区域,其序列为:5'-GCAATTTATTTTAAAAAAAACTCTTGTGATAAGCTTTTATACCCTCATAT-3'。预测转录起始点在第562bp处的A,含有与光反应、厌氧感应、真菌诱发子、MeJA响应、赤霉素响应、水杨酸响应、高转录水平及生理节奏控制等相关的顺式作用调控元件。其中真菌诱发子响应要素对真菌诱导极其重要,主要存在于病程相关基因的启动子中,也是所在启动子的应激反应元件;而MeJA响应元件与抗寒伤害有关,说明三明野生香蕉Chi 12基因可能是既具有抗病又具有抗寒特性的几丁质酶抗冻蛋白基因。
     4三明野生香蕉低温胁迫下几丁质酶基因的表达分析
     采用18S rRNA基因作为内参基因,利用实时荧光定量PCR技术分析三明野生香蕉低温胁迫过程中ChiⅠ1基因与ChiⅠ2基因的转录水平表达变化。分析结果显示:ChiⅠ2基因在15℃处理30h时表达量达到最高,当温度达到4℃时,ChiⅠ2基因的表达量随胁迫时间的延长呈现先升后降再升的趋势;ChiⅠ1基因的相对表达量在4℃处理24h时达到最大值,整体表达趋势呈“M”型,很明显可以看出ChiⅠ2基因对温度变化敏感。一般认为15℃是影响香蕉生长的临界温度,当三明野生香蕉在15℃处理条件下,ChiⅠ2基因则迅速感应到低温伤害,大量表达;4℃低温表达时表明ChiⅠ2基因具有累积效应。而ChiⅠ1基因的表达表明其对温度和低温时间不敏感,只有当低温持续时间达到一定程度时,才诱发其表达。以上可以进一步说明三明野生香蕉ChiⅠ2基因是几丁质酶抗冻蛋白基因,而Chi I 1是Chi 12的同工酶。
     对三明野生香蕉外切和内切几丁质酶活性的研究发现两者均在4℃处理64h时达到酶活性的最高点,这可能是具有抗冻活性的几丁质酶基因在低温处理过程中表达的结果。
     5三明野生香蕉低温胁迫下β-1,3-葡聚糖酶基因(gsp、gsp1) cDNA全长的获得及生物信息学分析
     以三明野生香蕉叶片为材料,采用RT-PCR结合RACE方法,获得了低温胁迫处理(4℃处理64h)下三明野生香蕉叶片β-1,3-葡聚糖酶基因cDNA的ORF序列,全长915bp,编码304个氨基酸,命名为:gsp(登录号:FJ858156);同时还获得了常温(28℃)下三明野生香蕉叶片β-1,3-葡聚糖酶基因cDNA的ORF序列,全长951bp,编码316个氨基酸,命名为:gsp1(登录号:HQ018802)。gsp基因与gsp1基因序列与登录GenBank的其它香蕉品种的β-1,3-葡聚糖酶基因有很高的同源性。应用生物信息学方法分析结果表明:GSP蛋白和GSP1蛋白属于糖基水解酶第十七家族,是一种碱性β-1,3-葡聚糖酶,分别定位于细胞质与质膜上;GSP蛋白属于亲水蛋白,GSP1蛋白属于疏水蛋白,且gsp基因与gspl基因相比少了36bp,主要在N端,初步推测gsp基因可能是抗冻蛋白基因。
     6三明野生香蕉gsp与gsp1基因DNA序列的克隆
     从DNA水平克隆得到三明野生香蕉gsp与gspl基因,gsp基因基因组DNA序列长1540bp(登录号:HQ018804)。gsp1基因的基因组DNA序列长1531bp(登录号为:HQ018803)。内含子分析显示gsp基因内含子剪切不符合传统的GT-AG法则,含有一个625bp的内含子;而gsp1基因内含子剪切符合GT-AG法则,含有一个580bp的内含子。内含子的差异可能是β-1,3-葡聚糖酶抗冻蛋白基因与一般β-1,3-葡聚糖酶基因间的差异引起的。
     7三明野生香蕉低温胁迫下β-1,3-葡聚糖酶基因的表达
     采用18S rRNA基因作为内参基因,利用实时荧光定量PCR技术分析三明野生香蕉低温处理过程中gsp与gspl基因的转录水平表达变化。分析结果显示:三明野生香蕉叶片gsp基因在15℃处理30h时的相对表达量达到最大值,整体表达趋势与ChiⅠ2基因相似,而gspl基因在整个低温胁迫处理过程中实时表达量的变化不大,这一现象说明三明野生香蕉gsp基因与ChiⅠ2基因均能对低温胁迫做出快速应激反应,且具有累积效应,进一步说明gsp基因可能是β-1,3-葡聚糖酶抗冻蛋白基因。
     总之,本研究从具有抗寒特性的三明野生香蕉叶片中克隆到低温胁迫的几丁质酶基因和β-1,3-葡聚糖酶基因,根据基因的分子量、结构及其在低温胁迫下的表达等推断三明野生香蕉ChiⅠ2基因与gsp基因很可能是抗冻蛋白基因,为解决香蕉及其他热带亚热带作物抗寒育种提供目的基因;同时还克隆到了ChiⅠ1与ChiⅠ2基因启动子部分序列,有利于进一步了解野生香蕉的抗寒机制及抗寒基因的调控表达机制。
In the experiment, the leaves of the wild banana (Musa spp., AB group, from Sanming City) under normal temperature and cold stress were used as materials for cloning the chitinase andβ-1,3-glucanase genes for obtaining antifreeze protein genes. The rules of gene expression during normal temperature and cold stress were analyzed by real time fluorescence quantitative PCR (q-PCR) for comfirming antifreeze protein genes and revealing the expression difference of the two genes during normal temperature and cold stress. The main results were as follows:
     1 Cloning and bioinformatics analysis of the cDNA of chitinase genes(ChiⅠ1 and ChiⅠ2) of the wild banana from Sanming City under cold stress
     Full length cDNA (1097bp) of the chitinase gene was cloned from the wild banana leaves under cold stress (4℃64h) by RT-PCR combined with RACE. It contained 149bp in the 3'UTR and 3'-end including 17bp poly (A) tail, named as ChiⅠ2 (GenBank:FJ222750). Meanwhile, a full length of cDNA (1115bp) of chitinase gene was cloned from the wild banana leaves under the normal temperature (28℃), containing 14bp 5'UTR and 149bp 3'UTR and 3'-end including 17bp poly (A) tails, named as ChiⅠ1 (GenBank:FJ858155). The above two genes were highly homologous to corresponding genes of other plants reported in the database of NCBI. The results which were analyzed by using bioinformatic methods showed that the two proteins were acidic hydrophilic proteins with transmembrane domain and mainly located outside. They belonged to the chitinases family 19, chitinase classⅠ. ChiⅠ2 contained two chitin-binding domains, which maybe the main function domains combining antifreeze activity with antivirus activity. The structure of Chi 12 gene of the wild banana from Sanming City was similar to chitinase antifreeze protein which had reported in the world. Accordingly, Chi 12 gene was preliminary inferred to as a chitinase-AFP gene.
     2 The cloning of ChiⅠ1 and ChiⅠ2 genomics of the wild banana from Sanming City
     The DNA sequences of ChiⅠ1 and ChiⅠ2 genes of the wild banana from Sanming City were cloned, which ATG was the initiation codon and TAG was the stop codon. The full sequences of Chi 12 were 1183bp (GenBank:GU391234) and the full sequences of ChiⅠ1 were 1159bp (GenBank:GU391235). Sequence analyses indicated that ChiⅠ1 and ChiⅠ2 genes both contained four exons and three introns, which splicing sites obeyed with the GT-AG rule. The first exon of Chi 12 has 24bp more than the first exon of ChiⅠ1, which maybe the antifreeze site of chitinase-AFP. There was no difference of other exons and introns between ChiⅠ1 and Chi 12.
     3 Promoter cloning of ChiⅠ1 and ChiⅠ2 of the wild banana from Sanming City
     The promoter sequences of ChiⅠ1 and ChiⅠ2 of the wild banana from Sanming City were cloned by genomic walking methods of thermal asymmetric inter-laced PCR. The length of ChiⅠ1 promoter was 323bp (GenBank:GU391235) and the length of Chi 12 promoter was 846bp (GenBank:GU391234). The promoter of ChiⅠ1 had a likehood of basic promoter area from 272bp to 322bp with a predicted starting site of transcription as Cytonsine on the 312th base, and it contained some cis-action elements such as a module involved in light responsiveness, cis-acting element involved in salicylic acid responsiveness, and a cis-acting element conferring high transcription levels. The promoter of Chi 12 also had a possible basic promoter area from 522bp to 572bp with a predicted starting site, adeine on the 562th, containing some cis-action elements such as a module involved in light responsiveness, cis-acting regulatory element essential for anaerobic induction, fungal elicitor responsive element, cis-acting regulatory element involved in the MeJA-responsiveness, gibberellin-responsive element, cis-acting element involved in salicylic acid responsiveness, cis-acting element conferring high transcription levels and cis-acting regulatory element involved in circadian control. The fungal elicitor responsive element, which mainly existed in the promoter of pathogenesis-related protein genes and the element of promoter stress response, was very critical for inducing fungal response. The element was involved in MeJA-responsiveness associated with cold hardiness, which indicated that Chi 12 of the wild banana from Sanming City maybe a chitinase antifreeze protein gene relative to cold resistance and antivirus.
     4 The expression of chitinase gene of the wild banana from Sanming City under low temperature stress
     Using 18S rRNA as the reference gene, the expressions of ChiⅠ1 and ChiⅠ2 under cold stress were analyzed by q-PCR. The results showed that Chi 12 had the most abundant expression under treatment of 15℃for 30h. At 4℃, the expression of Chi 12 increased at the beginning of the cold stress treatment, then declined and finally increased at the end of 24h cold stress treatment. ChiⅠ1 had the most abundant expression under 24h 4℃treatment, with the whole procession of ChiⅠ1 expression presented as a 'M' curve. The results confirmed that Chi 12 was sensitive to temperature variation. Generally, the critical temperature of banana growing was 15℃. When the wild banana was treated under 15℃, Chi 12 gene responded to injury via low temperature, as seen in the high expression levels. The expression under 4℃indicated the Chi 12 gene had a cumulative effect. The expression showed that ChiⅠ1 gene was insensitive to temperature and cold stress time, only when the low temperature continued for some time, was the gene expressed. All these showed that Chi 12 gene of the wild banana was a chitinase-AFP gene, and ChiⅠ1was the isozyme of ChiⅠ2.
     Also, activity of exo-chitinase and endo-chitinase from the wild banana were measured, the results showed the activity of both genes were strongest after 64h 4℃treatment, which was supposed to be induced by the expression of the antifreeze gene from the chitinase family under cold stress.
     5 cDNA cloning and bioinformatics analysis ofβ-1,3-glucanase genes (gsp and gspl) of the wild banana from Sanming City under cold stress
     From the wild banana leaves under 64h 4℃treatment, the ORF ofβ-1,3-glucanase gene with a cDNA length of 915bp, encoding 304 amino acids, obtained by RT-PCR combined with RACE technology, named as gsp (GenBank:FJ858156). Meanwhile, an ORF of 951bp cDNA ofβ-1,3-glucanase gene was cloned from the wild banana leaves at the normal temperature (28℃), encoding 316 amino acids, was named as gsp1 (GenBank:HQ018802). The sequences of gsp and gspl gene of the wild banana were significantly homologous with that of other banana varieties in GenBank. There was a 36bp deletion in the N-terminal of gsp in contrast with gspl. The results which were analyzed by bioinformatic methods showed that GSP and GSP1 belonged to glycosyl hydrolases family 17, which were basiCityβ-1,3-glucanase. The two proteins mainly located at cytoplasm and plasma membrane, respectively. GSP protein was a kind of hydrophilic protein, but GSP1 protein was the kind of hydrophobic protein. In contrast to gspl, gps had a 36bp deletion in N-terminal. Preliminarily, the gsp gene was thought to be an antifreeze-protein gene.
     6 DNA cloning of gsp and gspl genes of the wild banana from Sanming City
     The DNA sequences of gsp and gspl genes of the wild banana from Sanming City were cloned. The full sequences of gsp were 1540bp (GenBank:HQ018804), and the full sequences of gspl were 1531bp (GenBank:HQ018803). Sequence analyses indicated that gsp contained a 625bp intron, which splicing sites didn't obey with the GT-AG rule. And gspl contained a 580bp intron, which splicing sites obeyed with the GT-AG rule. The differences of the intron between the two genes were most likely to the differences betweenβ-1,3-glucanase antifreeze protein gene and commonβ-1,3-glucanase gene.
     7 The expression ofβ-1,3-glucanase gene of the wild banana from Sanming City under cold stress
     Using 18S rRNA as the reference gene, the transcriptional expression levels of gsp and gspl genes in the low-temperature treatment process were analyzed by q-PCR. The result showed that the highest expression of gsp gene of the wild banana was at 15℃treated 30h, the trend of changes was similar to Chi 12 gene of the wild banana. Though the expression of gspl gene varied unconspicuously under cold stress. All these showed that gsp and Chi 12 gene of the wild banana could respond to cold stress rapidly and had cumulative effect. The results in further explanation showed that gsp gene maybeβ-1,3-glucanase antifreeze protein gene.
     In summary, in the study the chitinase andβ-1,3-glucanase genes with characteristics of cold resistance were cloned from the wild banana from Sanming City under cold stress. Based on the molecular weight, structure and the expression under cold stress, Chi 12 and gsp were probably deduced to be antifreeze protein genes. This information would provide target gene for cold-resistant gene-engineering of banana and other tropical and subtropical crops. Simultaneously, the promoter sequences of Chi I land Chi 12 were cloned, which might lead to reveal the mechanism of cold-resistance and the expression and regulation of cold-resistance genes of the wild banana.
引文
[1]陈爱葵,庄文宋,陈冬梅.植物几丁质酶及其基因工程研究进展[J].广东教育学院学报,2010,30(3):47-52.
    [2]陈兵,文建凡.内含子在生物信息学研究和基因工程中的应用[J].生命的化学,2010,30(1):59-63.
    [3]陈雷,李磊,李金花,等.植物LEA蛋白及其功能[J].中国农学通报,2009,25(24):143-146.
    [4]陈石,郑加协,周红玲,等.香蕉品种选育研究进展[J].中国热带农业,2010,32(1):55-58.
    [5]陈廷速,张军,曾定,等.香蕉农杆菌介导高效转化体系[J].西北农业学报,2002,15(1):20-23.
    [6]陈雅平,陈云凤,陈启助,等.大蕉苯丙氨酸解氨酶基因的克隆、鉴定和表达分析[J].热带亚热带植物学报,2007,(5):54-59.
    [7]崔欣,杨庆凯.植物几丁质酶在抗真菌病害基因工程中的应用[J].植物保护,2002,28(1):39-42.
    [8]代焕琴,郭索娟,卢存福.抗冻蛋白及其在食品工业中的应用[J].食品与发酵工业,2001,27(12):44-49.
    [9]邓顺阳,张党权,樊绍刚,等.黑麦草抗冻蛋白基因的cDNA克隆及序列分析[J].中南林业科技大学学报,2010,30(1):18-22.
    [10]杜道林,苏杰,周鹏,等.香蕉花叶病毒外壳斑白基因克隆及表达载体的构建[J].广西植物,2002,22(1):81-84.
    [11]杜中军,翟衡,黄俊生,等.基于STK激酶保守结构域克隆香蕉R基因和RLKs同源序列[J].农业生物技术学报,2005,13(6):817-818.
    [12]段肖翠,倪志云,路丙社,等.低温胁迫对阿月浑子抗寒生理指标的影响[J].河北农业大学学报,2005,28(4):48-50.
    [13]冯斗,榻维言,黄政树,等.茉莉酸甲酯对低温胁迫下香蕉幼苗的生理效应[J].果树学报,2009,26(3):390-393.
    [14]甘德芳,朱苏文,范军,等.大白菜几丁质酶CHB4基因的表达研究[J].激光生物学报,2007,16(2):216-221.
    [15]龚洁敏,金志强,孔德蓦,等.香蕉钙调蛋白基因的克隆及序列分析[J].热带作物学报,1994,15(1):65-71]
    [16]郭丽琼,林俊芳,熊盛,等.抗冷冻蛋白基因遗传转化草菇的研究[J].微生物学报,2005,45(1):39-43.
    [17]韩永斌,刘桂玲.抗冻蛋白及其在果蔬保鲜中的应用前景[J].天然产物研究与开发,2003,15(4):373-378.
    [18]郝凤,刘晓静,毛娟,等.抗冻蛋白基因AFP表达载体构建及转化紫花苜蓿初报[J].草地学报,2009,17(6):779-983.
    [19]何江峰,韩冰,郭慧琴,等.燕麦β-1,3-葡聚糖酶Ⅰ基因3’端cDNA的克隆及分析[J].生物技术,2007,17(1):5-8.
    [20]何江峰,韩冰,赵宏鑫.植物β-1,3-葡聚糖酶的研究进展[J].内蒙古农业科技,2006,(5):21-25.
    [21]侯丙凯,夏光敏,陈正华.植物基因工程表达载体的改进和优化策略[J].遗传,2001,23(5):492-497.
    [22]胡伟,杨晓颖,李美英,等.香蕉谷氨酸脱氢酶基因克隆与表达[J].西北植物学报,2009,29(3):429-434.
    [23]胡永华HBsAg基因的克隆及香燕果实表达载体的构建[D].华南农业大学硕士学位论文,2004.
    [24]黄俊生,王华,张世清.香蕉ACC氧化酶基因(MAO3)的克隆及其表达特性[J].园艺学报,2005,32(5):807-811.
    [25]黄永芬,汪清胤,付桂荣,等,美洲拟蝶抗冻蛋白基因(afp)导入番茄的研究[J].生物化学杂志,1997,13(4):418-422.
    [26]黄玉吉.根癌农杆菌介导的ACS反义基因和PEAS基因转化香蕉研究[D].福州:福建农林大学硕士学位论文,2006.
    [27]祭美菊,安黎哲,陈拓,等.天山寒区冰缘植物珠芽蓼叶片抗冻蛋白的发现[J].冰川冻土,2001,23(4): 210-216.
    [28]江勇,魏令波.分离和鉴定沙冬青抗冻蛋白质[J].植物学报,1999,41(9):967-971.
    [29]江勇.抗冻蛋白在植物生理中的作用[J].植物学报,1999,41(7):677-685.
    [30]蒋选利,李振岐,康振生,等.几丁质酶与植物的抗病性[J].西北农业学报,2002,11(3):71-75.
    [31]金志强,彭世清.香蕉ACC合成酶cDNA的PCR扩增及序列测定.热带作物学报,1998,19(1):48-51.
    [32]金志强,张德有,徐碧玉.香蕉凝集素基因的克隆及在成熟果实中的特异性表达[J].遗传学报,2004,31(5):508-512.
    [33]金志强.香蕉果实生长发育的生理学与分子生物学.中国农业大学出版社,2006,P129-130.
    [34]康国章,欧志英,王正询,等.水杨酸诱导提高香蕉幼苗耐寒性的机制研究.园艺学报,2003a,30(2):141-146.
    [35]赖钟雄,陈源,林玉玲,等.福州野生蕉Musa spp., AA Group)的发现及其分类学地位的初步确定[J].亚热带农业研究,2007,3(1):1-5.
    [36]赖钟雄,陈源,林玉玲,等.三明野生蕉基本生物学特性调查[J].亚热带农业研究,2006,4(2):241-244.
    [37]李华平,胡晋生,Kelly Barry,等.黄瓜花叶病毒香蕉株系衣壳蛋白转基因烟草的研究[J].病毒学报,1996,12(3):235-242.
    [38]李华平,胡晋生,王敏,等.香蕉茎尖遗传转化法研究[J].热带作物学报,2000,21(4):33-39.
    [39]李敬阳,张建斌,徐碧玉,等.香蕉愈伤组织原生质体分离研究[J].分子植物育种,2008,6(4):819-824.
    [40]李璐,王晓军,赵安民.新疆雪莲新的内切几丁质酶类冷诱导基因的分离、克隆和测序[J].植物生理学通讯,2005,41(6):731-736.
    [41]李茂富,李绍鹏,赵维峰.壳聚糖提高香蕉幼苗抗冷性的效应[J].植物生理学通讯,2005,41(4):464-466.
    [42]李燕强,金志强,徐碧玉.香蕉果实RNA提取方法的改进和比较[J].福建热作科技,2005,30(2):37-39.
    [43]梁慧敏,夏阳,杜峰,等.低温胁迫对草地早熟禾抗性生理生化指标的影响[J].草地学报,2001,9(4):283-286.
    [44]梁秋芬.香蕉几丁质酶活性及基因表达与采后成熟[D].广州:华南农业大学硕士学位论文,2006.
    [45]林日荣.香蕉.广州:广东科学技术出版社,1979:86-87.
    [46]凌兴汉.香蕉冻害及防守措施探讨[J].广东农业科学,1980,6:32-34.
    [47]刘长全.香蕉寒害研究进展[J].果树学报,2006,23(3):448-453.
    [48]刘代,魏岳荣,胡家金,等.野生阿宽蕉胚性细胞悬浮系原生质体分离及植株再生[J].分子植物育种,2010,8(3):542-546.
    [49]刘德兵,魏军亚,李飞,等.香蕉rbcS基因启动子的克隆及序列分析[J].西北植物学报,2010,30(2):237-242.
    [50]刘德兵,魏军亚,李绍鹏,等.香蕉RuBPCase小亚基基因全长cDNA的克隆和分析[J].热带作物学报,2007,28(3):57-61.
    [51]刘德兵.低温胁迫对香蕉生理特性的影响及冷诱导基因的分离[D].华南热带农业大学博士论文,2007.
    [52]刘海,林德球,徐杰,等.一种适合于富含多糖和酚类物质的香蕉果实RNA提取方法[J].果树学报,2006,23(1):136-137.
    [53]刘琳,杨晓颖,金志强,等.香蕉MuMADS2基因表达产物的亚细胞定位[J].热带作物学报,2010,31(5):777-781.
    [54]刘荣梅,李凤兰,胡国富,等.植物抗寒基因工程研究[J].东北农业大学学报,2008,39(2):275-279.
    [55]卢存福,简令成,匡廷云.低温诱导唐古特红景天细胞分泌抗冻蛋白[J].生物化学与生物物理进展,2000,27(5):555-559.
    [56]卢一凡,邓继光.内含子对提高转基因动物基因表达效率的影响[J].生物化学与生物物理进展,1995,22(4):322-326.
    [57]路静,赵华燕,何奕昆,等.高等植物启动子及其应用研究进展[J].自然科学进展,2004,14(8):856-862.
    [58]吕庆芳,丰锋,张秀枝.香蕉叶片组织细胞结构特性与耐寒性的关系[J].湛江海洋大学学报,2000,20(2):48-51.
    [59]马纪,李春平,邱立明等.花粉管介导的准噶尔小胸鳖甲抗冻蛋白转基因棉花的筛选[J].新疆农业科学,2008,45(3):381-385.
    [60]彭筱娜,易自力,蒋建雄.植物抗寒性研究进展[J].生物技术通报,2007,4:15-18.
    [61]山蓝,王保莉,张继澎.从富含多糖和多酚的柿果中提取具有转录活性RNA的方法[J].植物生理学通讯,2002,38(5):463-466.
    [62]沈漫,王明庥,黄敏仁.植物抗寒机理研究进展[J].植物学通报,1997,14(2):1-8.
    [63]苏文潘,李茂富,黄华孙.甜菜碱对低温胁迫下香蕉幼苗细胞膜保护酶活性的影响[J].广西农业科学,2005,36(1):21-23.
    [64]孙清鹏,许煌灿,张方秋,等.低温胁迫对大叶相思和马占相思某些生理特性的影响[J].林业科学研究,2002,15(1):34-40.
    [65]孙燕琳.沙棘几丁质酶基因的克隆和序列分析[D].中国科学院大连物理化学研究所硕士学位论文,2007.
    [66]田云,卢向阳,张海文.抗冻蛋白研究进展[J].中国生物工程杂志,2002,22(6):48-53.
    [67]王朝霞,江昌俊,蔡海云.茶树β-1,3-葡聚糖酶基因cDNA片段的克隆与序列分析[J].安徽教育学院学报,2006,24(3):67-77.
    [68]王海震,王莹,刘定干.真核生物mRNA3'非翻译区的功能[J].生物化学与生物物理进展,2008,35(9):980-985.
    [69]王鸿鹤,黄霞,邱国华,等.基因枪法转化香蕉薄片外植体的参数优化[J].中山大学学报(自然科学版),2000,39(2):87-91.
    [70]王维香,魏令波,张虎.沙冬青热稳定蛋白的分离纯化及其部分性质研究[J].四川大学学报(自然科学版),2007,44(4):131.
    [71]王新力,彭学贤.香蕉果实特异性ACC合酶基因启动子区的克隆及其功能初探[J].生物工程学报,2001a,17(3):293-296.
    [72]王新力,彭学贤.香蕉果实成熟相关基因ACO1启动子区的克隆及其功能初探[J].生物工程学报,2001b,17(4):428-431.
    [73]王艳,邱立明,谢文娟,等.昆虫抗冻蛋白基因转化烟草的抗寒性[J].作物学报,2008,34(3):397-402.
    [74]王莹,龙亮华.豌豆中抗寒相关性miRNAs功能特异性验证及其克隆的研究[J].辽宁师范大学学报(自然科学版),2010,33(2):231-236.
    [75]王颖,麦维军.高等植物启动子的研究进展[J].西北植物学报,2003,23(11):2024-2048.
    [76]王园,王甲水,谢学立,等.香蕉泛素结合酶基因与果实成熟关系的研究[J].园艺学报,2010b,37(5):705-712.
    [77]王园,王甲水,张建斌,等.腺苷酸核糖基化作用因子1(MaArfl)基因的克隆及序列结构分析[J].果树学报,2010a,27(3):404-409.
    [78]王悦冰,郎志宏,黄大防.内含子对真核基因表达调控的影响[J].生物技术通报,2008,4:1-4.
    [79]王转梅,陈崇顺,王轶,等.烟草品种XanthiNN碱性β-1,3-葡聚糖酶基因的克隆与生物信息学分析[J].江苏农业科学,2009,1:28-31.
    [80]魏令波,江勇,舒念红,等.沙冬青叶片热稳定抗冻蛋白特性分析.植物学报,1999,41(8):837-841
    [81]魏嵬.山葡萄classⅢ几丁质酶基因VCH3启动子功能鉴定[D].吉林农业大学硕士学位论文,2004.
    [82]魏岳荣,黄学林,黄霞,等.“过山香”香蕉多芽体的诱导及其体细胞胚发生[J].园艺学报,2005,32(3):414-419.
    [83]魏岳荣,黄学林,李佳,等.贡蕉胚性细胞悬浮系的建立和植株再生[J].生物工程学报,2005,21(1):58-65.
    [84]魏岳荣,杨护,黄秉智,等Picloram,ABA和TDZ对香蕉体细胞胚胎发生的影响明.园艺学报,2007,34(1):81-86.
    [85]巫光宏,詹福建,黄卓烈,等.低温胁迫对马占相思树代谢的影响研究[J].林业科学研究,2001,14(6):633-640.
    [86]吴雪峰,赵开军,陈毓荃.植物启动子的诱导模序[J].中国生物工程杂志,2004,24(12):14-21.
    [87]吴雪峰.芥菜BjCHI1启动子的分离及功能初步分析[D].西北农林科技大学硕士学位论文,2004.
    [88]夏江东,程在全,吴渝生,等.高等植物启动子功能和结构研究进展[J].云南农业大学学报,2006,21(1):7-14.
    [89]肖宁.拟南芥CBF1基因的克隆及其对香蕉胚性悬浮细胞转化的研究[D].中山大学硕士学位论文,2006.
    [90]肖望,黄霞,魏岳荣,等.‘过山香’香蕉原生质体培养及植株再生[J].园艺学报,2008,35(6):873-878.
    [91]谢树章,秦平伟,张迷,等.蜡梅几丁质酶基因的克隆与原核表达[J].林业科学,2009,45(12):36-41.
    [92]谢先芝,吴乃虎.高等植物基因的内含子[J].科学通报,2002,47(10):731-737.
    [93]徐碧玉,刘歌,金志强.香蕉Actin1启动子的分离及启动活性的分析[J].热带作物学报,2005,26(1):34-37.
    [94]徐碧玉,刘歌,金志强.香蕉凝集素基因启动子的分离、序列分析及鉴定[J].生物工程学报,2006,22(6):945-949.
    [95]徐碧玉,苏伟,张建斌,等.香蕉果实SMART cDNA文库的构建及利用PCR方法筛选香蕉Actin2基因[J].热带亚热带植物学报,2005,13(5):375-380.
    [96]徐春香,何勇强,尉义明,等.抗冻蛋白(afp)基因表达载体的构建及对香蕉胚性悬浮细胞系的转化[J].广西植物,2009,29(5):664-668.
    [97]徐立新,林栖凤,李冠一,等.用微弹轰击法将GUS基因导入香蕉茎尖组织细胞[J].海南大学学报(自然科学版),1994,12(4):308-310.
    [98]杨晓颖,刘菊华,徐碧玉,等.香蕉MuMADS2的克隆、序列分析和表达分析[J].分子植物育种,2008,6(4):781-786.
    [99]叶济蓉,张妙霞,黄玉吉,等.香蕉生物技术研究进展[J].武夷科学,2004,20(1):155-164.
    [100]尹明安,崔鸿文,樊代明,等.胡萝卜抗冻蛋白基因克隆及植物表达载体构建[J].西北农林科技大学学报(自然科学版),2001,29(1):6-10.
    [101]袁维风,徐德聪,钱玉梅.植物抗寒基因及基因工程研究[J].宿州学院学报,2009,24(6):109-112.
    [102]詹彬,安沙舟,杨丽娟,等.新疆沙冬青抗冻蛋白基因保守区序列的克隆及其分析[J].新疆农业科学,2009,46(6):1307-1310.
    [103]张超.冬小麦麸皮抗冻蛋白结构及其抗冻机理的研究[D].江南大学博士学位论文,2008.
    [104]张党权,谭晓风,乌云塔娜,等.植物抗冻蛋白及其高级结构研究进展[J].中南林学院学报,2005,25(4):110-114.
    [105]张德有,徐碧玉,金志强.香蕉果胶裂解酶基因的克隆[J].植物生理与分子生物学学报,2003,29(5):401-404.
    [106]张妙霞,赖钟雄,赵巧阳.野生香蕉叶片总RNA提取方法研究[J].中国农学通报,2009,25(14):51-54.
    [107]张妙霞.香蕉与龙眼转化受体系统建立及转化PEAS基因初步研究[D].福州:福建农林大学硕士学位论文,2004.
    [108]张艳,高健,徐有明.毛竹β-1,3-葡聚糖酶基因的克隆及序列分析[J].分子植物育种,2010,8(3):533-541.
    [109]张银东,张锡炎,曾宪松,等.香蕉CMV-BH外壳蛋白基因转化香蕉的研究初报[J].热带作物学报,1995,16(增刊):19-25.
    [110]张羽航,鲍时翔,郑学勤,等.脂肪酸饱和酶的研究进展[J].生物技术通报,1998,18(4):1-8.
    [111]张钰,吴加林,黄永芬,等.转美洲拟蝶抗冻蛋白基因(afp)番茄过氧化物酶、过氧化氢酶、超氧歧化酶 活性测定[J].哈尔滨师范大学自然科学学报,1998,14(4):188-193.
    [112]张志忠,吴菁华,吕柳新,等.植物几丁质酶及其应用研究进展[J].福建农林大学学报(自然科学版),2005,34(4):494-499.
    [113]赵宏亮Maasrl在香蕉果实采后不同时期的表达及功能分析[D].华南农业大学硕士学位论文,2006.
    [114]赵凌,王才林,张亚东,等.花粉管介导的转抗冻蛋白基因(AFP)水稻[J].江苏农业学报,2006,22(4):315-317.
    [115]赵巧阳.香蕉根癌农杆菌介导ACS反义基因遗传转化及ACS基因克隆[D].福州:福建农林大学硕士学位论文,2009.
    [116]钟其旺,樊廷俊.鱼类抗冻蛋白的研究进展[J].生物化学与生物物理学报,2002,34(2):124-130.
    [117]周玉萍,郑燕玲,田长恩,等.脱落酸、多效唑和油菜素内酯对低温期间香蕉过氧化物酶和电导率的影响[J].广西植物,2002,22(5):444-448.
    [118]朱新霞,高剑峰,祝建波,等.小拟南芥Chitinase基因的克隆与核苷酸序列分析[J].生物技术,2005,14(5):10-13.
    [119]庄军平,苏菁,陈维信.香蕉果实果胶裂解酶基因cDNA克隆及序列分析[J].果树学报,2006a,23(2):227-231.
    [120]庄军平,苏菁,陈维信.一种从香蕉果实提取高质量RNA的方法[J].分子植物育种,2006b,4(1):143-146.
    [121]Adam J M, Alan M B, Peter L D, et al. Identification of the ice-binding face of a plant antifreeze protein[J]. FEBS Letters,2009,583:815-819.
    [122]Amomwittawat N, Wang S, Banatlao J, et al. Effects of polyhydroxy compounds on beetle antifreeze protein activity [J]. Biochimica Biophysic Acta,2009,1794 (2):341-346.
    [123]Ancillo G, Hoegen E, Kombrink E. The promoter of the potato chitinase C gene directs expression to epidermal cells[J]. Planta,2003,217(4):566-576.
    [124]Arav A, Rubinsky B, Seren E, et al. The role of thermal hysteresis proteins during cryopreserva-tion of oocytes and embryos[J]. Theriogenology,1994,41(1):107-112.
    [125]Ariizumi T, Kishitani S, Inatsugi R, et al. An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings [J]. Plant Cell Physiol,2002,43 (7):751-758.
    [126]Assani A, Chabane D, Foroughi-Wehr B, et al. An imporved protocol for microcallus production and whole plant regeneration from recalcitrant banana protoplasts(Musa spp.)[J]. Plant Cell Tiss. Org. Cult,2006, 85(3):257-264.
    [127]Assani A, Haicour R, Wenzel G, et al. Influence of donor material and genotype on protoplast regeneration in banana and plantain cultivars(Musa spp.)[J]. Plant Science,2002,162(3):355-362.
    [128]Assani R, Haicour Q Wenzel Q et al. Plant generation from protoplasts of dessert banana cv. grande naine (Musa spp., Cavendish sub-group AAA) via somatic embryogenesis[J]. Plant Cell Rep,2001,20(6): 482-488.
    [129]Bakry F, Carreel F, Jenny C, et al. Genetic improvement of banana, In:Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops:Tropical Species [J]. Springer Science & Business Media,2009:3-50.
    [130]Bar M, Scherf T, Fass D. Two-dimensional surface display of functional groups on a beta-helical antifreeze protein scaffold [J]. Protein Engineering Design and Selection,2008,21 (2):107-114.
    [131]Becker D K, Dugdale B, Smith M K, et al. Genetic transformation of Cavendish banana(Musa spp. AAA group) cv 'Grand Nain' via microprojectile bombardment[J]. Plant Cell Reports,2000,19(3):229-234.
    [132]Blanco C, Diaz-Perales A, Collada C, et al. Class 1 chitinases as potential panallergens involved in the latex-fruit syndrome[J]. J. Allergy Clin. Immunol,1999,103:507-513.
    [133]Broglie K E, Gaynor J J, Broglie R M. Ethylene-regulated gene expression:molecular cloning of the genes encoding an endochitinase from Phaseolus vulgaris[J]. Proc. Natl. Acad. Sci. U.S.A,1986,83(1): 6820-6824.
    [134]Bustin S A. Quantification of mRNA using real-time reverse transcription PCR RT-PCR:trends and problems[J]. J. Mol. Endocrinol,2002,29:23-29.
    [135]Cabib E. The synthesis and degradation of chitin[J]. Adv Enzymol Relat Areas Mol Biol,1987,59:59-101.
    [136]Carrington J C, Ambros V. Role of microRNAs in plant and animal development [J]. Science,2003, 301(5631):336-338.
    [137]Chinnusamy V, Zhu J, Zhu J K. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science,2007,12(10):444-451..
    [138]Chun J U, Yu X M, Griffith M. Genetic studies of antifreeze proteins and their correlation with winter survival in wheat [J]. Euphytica,1998,102:219-226.
    [139]Clarke H R G, Davis J M, Wilbert S M, et al. Wound-induced and developmental activation of a poplar tree chitinase gene promoter in transgenic tobacco[J]. Plant molecular Biology,1994,25:799-815.
    [140]Clendennen K S, May D G. Differential gene expression in ripening banana fruit[J]. Plant Physiol,1997,115: 463-469.
    [141]Kesari R, Trivedi P K, Nath P. Ethylene-induced ripening in banana evokes expression of defense and stress related genes in fruit tissue[J]. Postharvest Biol Technol,2007,46:136-143
    [142]Clendennen S K, Lopez-Gomez R, Gomez-Lim M, et al. The abundant 31-kilodalton banana pulp protein is homologous to class-Ill acidic chitinases[J]. Phytochemistry,1998,47(4):613-619.
    [143]Crevel R W R, Fedyk J K, Spurgeon M J. Antifreeze proteins:characteristics, occurrence and human exposure [J]. Food and Chemical Toxicology,2002,40:899-903.
    [144]Cronauer S S, Krikorian A D. Plant regeneration via somatic embryogenesis in the seeded diploid banana Musa ornate Roxb[J]. Plant Cell Rep,1988,7:23-25.
    [145]Dale J, Dugdale B, Webb M, et al. Strategies for transgenic disease resistance in banana[Z].2006, www.African crops. net.
    [146]Dave R S, Mitra R K. A low temperature induced apoplastic protein isolated from Arachis hypogaea[J]. Phytochemistry,1998,49:2207-2213.
    [147]Dave R S, Mitra R K. A low temperature induced apoplastic protein isolated from Arachis hypogaea[J]. Phytochemistry,1998,49:2207-2213.
    [148]Davies P L, Sykes B D. Antifreeze proteins[J]. Current Opinions in Structrual Biology,1997,7:828-834.
    [149]Davies P L, Hew C L. Biochemistry of fish antifreeze proteins[J].Federation of Ameriean Soeieties for Experimental Biology Journal,1990,4(8):2460-2467.
    [150]Davis J M, Clarke H R, Bradshaw H D, et al. Populus chitinase genes:structure, organization, and similarity of translated sequences to herbaceous plant chitinases[J]. Plant Mol Biol.,1991,17(4):631-639.
    [151]De Vries A L, Wohlschlag D E, Freezing resistance in some Antarctic fishes[J]. Science,1969, 163:1074-1075.
    [152]Deng G, Andrews D W, Laursen R A. Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis[J]. FEBS Lett,1997,402(1):17-20.
    [153]Deng Q Laursen R A. Isolation and characterization of an antifreeze protein from the longhorn sculpin, Myoxocephalus octodecimspinosis[J]. Biochim Biophys Acta,1998,1388(2):305-314.
    [154]Der S D, Zhou A, Williams B R Q et al. Identification of genes differentially regulated by interfere on α, β or y using oligonucle-otide arrays[J]. P Natl Acad Sci USA,1998,95:15623-15628.
    [155]Dhed'a D, Dumortier F, Panis B, et al. Plant regeneration in cell suspension cultures of the cooking banana cv.'Bluggoe'(Musa spp. ABB group)[J]. Fruits,1991,46(2):125-135.
    [156]Dohm A, Ludwig C, Schilling D, et al. Transformation of roses with genes for antifungal proteins.[J].Aca Hort,2001,547:27-33.
    [157]Dominguez-Puigjaner E, Immaculand L, Vendrell M, et al. A cDNA clone highly expressed in ripe banana fruits shows homology to pectate lyases [J]. Plant Physiol,1997,114:1071-1076.
    [158]Dugdale B, Becker D K, Harding R M, et al. Intron-mediated enhancement of the banana bunchy top virus promoter in banana (Musa spp.) embryogenic cells and plants[J]. Plant Cell Rep,2001,20:220-226.
    [159]Duman J Q Olsen M T. Thermal hyseresis protein activity in bacteria fungi and phylogennetically deviser plants [J]. Cryobiology,1993,30:322-328.
    [160]Duman J G Antifreeze and ice nucleator proteins in terrestrial arthropods [J]. Annu. Rev. Physiol.,2001,63: 327-357.
    [161]Escalant J V, Teisson C, Cote F X. Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars (Musa spp.)[J].In Vitro Cell Dev. Biol,1994,30:181-186.
    [162]Escalant J V, Teisson C. Somatic embryogenesis and plants from immature zygotic embryos of species Musa acuminata and Musa balbisiana[J].Plant Cell Rep,1989,7:181-186.
    [163]Fan Y, Liu B, Wang H B, et al. Cloning of an antifreeze protein gene from carrot and its influence on cold tolerance in transgenic tobacco plants[J]. Plant Cell Rep,2002,21(4):296-301.
    [164]Feeny R E, Yin Y. Antifreeze proteins:current status and possible food uses[J].Trends in Food Science and Technology,1998,9(3):102-106.
    [165]Fei Y B, Wei L B, Gao S Q, et al. Isolation, purification and characterization of secondary structure of antifreeze protein from Ammopiptanthus mongolicus [J]. Chin Sci Bull,2001,46:495-498.
    [166]Feng D R, Liu B, Li W Y, et al. Over-expression of a cold-induced plasma membrane protein gene (MpRCI) from plantain enhances low temperature-resistance in transgenic tobacco [J]. Environmental and Experimental Botany,2009,65:395-402
    [167]Fletcher G L, Hew C L and Davies P L. Antifreeze proteins of teleost fishes [J]. Annu. Rev. Physiol.,2001, 63:359-390.
    [168]Gachon C, Mingam A, Charrier B. Real-time PCR:what relevance to plant studies? [J]. J. Exp. Bot,2004,55: 1445-1454.
    [169]Ganapathi T R, Higgs N S, Balint-KurtI P J, et al. Agrobacterium-mediated transformation of embryogenic cell suspensions of the banana cultivar Rasthali (AAB) [J].Plant Cell Reports,2001,20:157-162.
    [170]Garnham C P, Gilbert J A, Hartman C P, et al. A Ca2+ -dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold[J]. Biochem J,2008,411:171-180.
    [171]Gibson S, Arondel V, Iba K, et al. Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana[J].Plant Physiol,1994,106(4):1615-1621.
    [172]Gilberto S M, Luciana O F, Dulce E O. Plant glycine-rich proteins:a family or just proteins with a common motif?[J]. Biochim Biophys Acta.2000,1492(1):1-14.
    [173]Godoy J A, Pardo J M, Pintor-Toro J A.A tomato cDNA inducible by salt stress and abscisic acid:nucleotide sequence and expression pattern [J]. Plant Mol Biol,1990,15:695-705.
    [174]Grahaml A, Liou Y C, Walker V K, et al. Hyperactive antifreeze protein from beetles[J].Nature,1997,388: 727-728.
    [175]Grapin A, Ortiz J L, Domergue R, et al. Establishment of embryogenic callus and initiation and regeneration of embryogenic cell suspensions from female and male immature flowers of Musa [J].Infomusa,1998,7: 13-15.
    [176]Grapin A, Schwendiman J, Teisson C. Somatic embryogenesis in plantain banana[J].In Vitro Cell. Dev. Biol Plant,1996,32:66-71.
    [177]Gregory D M, Afza R. Generation of transgenic banana (Musa acuminata) plant via Agrobacterium-mediated transformation[J]. Biotechnology,1995,13:486-492.
    [178]Griffith M, Ala P, Yang D S, et al. Antifreeze protein produced endogenously in winter rye leaves[J]. Plant Physiol,1992,100:593-596.
    [179]Griffith M, Yaish M W. Antifreeze proteins in over wintering plants:A tale of two activities[J]. Trends Plant Sci,2004,9(8):399-405.
    [180]Grotewold E, Drummoud B J, Bower B, et al.The myb-homologouss Pgene controls phlohapheue pigmentation in maize floral organs by di-rectlY activating a flavouoid biosynthetic gene suhset RL[J]. Plant Cell.1994,76:543-553.
    [181]Guilmor S J, Sebolt A M, Salazar M P, et al. Overexpression of the Arobidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J]. Plant Physiol,2000,124: 1854-1865.
    [182]Guy C L, Niemi K J, Brambl R. Altered gene expression during cold acclimation of spinach[J]. Proc Natl Acad Sci USA,1985,82:3673-3677.
    [183]Haake V, Cook D, Riechmannj L, et al. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiology,2002,130 (2):639-648.
    [184]Hannah M A, Heyer A G, Hincha D K, et al. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana[J]. PLoS Genet.,2005,1(2):179-196.
    [185]Heintzen C, Melzer S, Fischer R, et al. A light-and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue[J].Plant J,1994,5:799-813.
    [186]Hidalgo P M, Galan J J, Chaves C M, et al. Analysis of CXCL12 3'UTR G> A polymorphism in colorectal cancer[J]. Oncol Rep,2007,18(6):1583-1587.
    [187]Hightower R, Baden C, Penzes E, et al. Expression of antifreeze proteins in transgenic plants[J]. Plant Molecular Biology,1991,17(5):1013-1021
    [188]Higuchi R, Fockler C, et al. Kinetic PCR analysis:real-time monitoring of DNA amplification reactions[J]. Biotechnology,1993,11 (9):1026-1030.
    [189]Hineha D K, Meins F, Sehmitt J M. Beta-1,3-glucanase is cryoprotective in vitro and is accumulated in leaves during cold acclimation[J].Plant Physiology,1997,114:1077-1083.
    [190]Holmberg N, Farres J, Bailey J E, et al. Targeted expression of a synthetic codon optimized gene, encoding the spruce budworm antifreeze protein, leads to accumulation of antifreeze activity in the apoplasts of transgenic tobacco[J]. Gene,2001,275:115-124.
    [191]Hon W C, Griffith M, Chong P, et al. Extraction and isolation of antifreeze proteins from winter rye(Secale cereale) leaves[J].Plant Physiology,1994,104:971-980.
    [192]Hon W C, Griffith M, Mlynarz A, et al. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins[J]. Plant Physiol.,1995,109(3):879-889.
    [193]Hong J K, Hwang B K. Induction by pathogen, salt and drought of a basic class II chitinase mRNA and its in situ localization in pepper (Capsicum annuum)[J]. Physiol Plant,2002,114(4):549-558.
    [194]Huang P L, Do YY, Huang F C, et al. Characterization and expression analysis of a banana gene encoding 1-aminocyclopropane-1-carboxylate oxidase[J]. Biochem Mol Bio Int,1997,41:941-950.
    [195]Huang T, Duman J G Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA binding activity from winter bittersweet nightshade Solanum duleamara [J].Plant Molecular Biology,2002, 48(4):339-350.
    [196]Huang T, Duman J G Purification and characterization of thermal hysteresis protein from cold-acclimated kale, Brassica oleracea [J]. Cryobiology,1995,32:577-581.
    [197]Huang T, Nicodemus J, Zarka D Q et al. Expression of an insect(Dendroides canadensis) antifreeze protein in Arabidopsis thaliana results in a decrease in plant freezing temperature[J]. Plant Mol. Biol,2002,50: 333-344
    [198]Huang X, Lu X Y, Zhao J T, et al. MaSERK1 gene expression associated with somatic embryogenic competence and disease resistance response in banana (Musa spp.)[J]. Plant Mol Biol Rep,2010, 28:309-316.
    [199]Jain M, Nijhawan A, Tyagi A K, et al. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR[J]. Biochem Biophys Res Commun,2006,345:646-651.
    [200]James A, Jimene Z, Mart R, et al. Plant & Animal Genomes XIV Conference. San Diego,2006,9.
    [201]Jianming Fan, Hongbin Wang, Dongru Feng, et al. Molecular characterization of plantain class I chitinase gene and its expression in response to infection by gloeosporium musarum eke and massee and other abiotic stimuli[J]. Journal of Biochemistry,2007,142(5):561-570.
    [202]Jin X, Feng D, Wang H, et al. A novel tissue-specific plantain β-1,3-glucanase gene that is regulated in response to infection by Fusarium oxysporum fsp. cubense[J]. Biotechnology letters,2007,29:1431-1437.
    [203]Jones-Rhoades M W, Bartel D P. Computational identification of plant microRNAs and their targets, including a stress induced miRNA [J]. Mol Cell,2004,14(6):787-799.
    [204]Kandul N P, Noor M A. Large introns in relation to alternative splicing and gene evolution:a case study of Drosophila bruno-3[J].BMC Genet,2009,10:67-82.
    [205]Kang G Z, Wang Z X, Sun G C. Participation of H2O2 in enhancement of cold chilling by salicylic acid in banana seedlings[J]. Acta Botanica Sinica,2003c,45(5):571-574.
    [206]Kang G, Wang Z, Sun G Participation of H2O2 in enhancement of cold chilling by salicylic acid in banana seedlings[J]. Acta Botanica Sinica,2003b,45(5):567-573.
    [207]Kawahara H, Iwanaka Y, Higa S, et al. A novel, intracellular-antifreeze protein in an antarctic bacterium, Flavobacterium xanthum[J]. Cryo Letters,2007,28(1):39-49.
    [208]Kenneth J L, Thomas D S. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method[J]. Methods,2001,25:402-408.
    [209]Kenward K D, Altschuler M, Hildebrand D, et al. Accumulation of type I fish antifreeze protein in transgenic tobacco is cold-specific[J]. Plant Mol. Biol,1993,23(2):377-385.
    [210]Kenward K D, Brandle J, McPherson J, et al.Type Ⅱ fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance[J].Transgenic Res,1999,8(2):105-117.
    [211]Khanna H, Becker D, Kleidon J, et al. Centrifugation assisted Agrobacterium Tumefaciens-mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp.Cavendish AAA and Lady finger (AAB) [J].Molecular breeding.2004,14:239-252.
    [212]Kim S R, Choi J L, Costa M A, et al. Identification of G-box sequence as an essential element for methyl jasmonate response of potato proteinase inhibitor Ⅱ promoter[J]. Plant Physiol,1992,99:627~631.
    [213]Ko T S, Lee S, Schaefer S C, et al. Characterization of a tissue-specific and developmentally regulated small β-1,3-glucanase gene family in Prunus persica[J]. Plant Physiol. and Biochem.,2003,41:955-963.
    [214]Kurkela S, Franck M. Cloning and characterization of cold and ABA-inducible Arabidopsis gene [J]. Plant Molecular Biology,1990,18:127-129.
    [215]Li N, Kendrick B S, Manning M C, et al. Secondary structure of antifreeze proteins from overwintering larvae of the beetle Dendroides canadensis. Arch Biochem Biophys,1998,360:25-32.
    [216]Li Y C, Yang Y C, Hsu. J S, et al. Cloning and immunolocalization of an antifungal chitinase in jelly fig (ficus awkeot-sang) achenes [J]. Phytochemistry,2005,66(8):879-886.
    [217]Lima V M, Magioli C, Liliane B A, et al. Bean class IV chitinase promoter is modulated during plant development and under abiotic stress[J]. Physiologia Plantarum,2002,116(4):512-521.
    [218]Lin C, Thomashow M F. DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene corl5 and characterization of the COR 15 polypeptide [J]. Plant Physiol,1992,99:519-525.
    [219]Lin Y L, Lai Z X. Reference gene selection for qPCR analysis during somatic embryogenesis in Longan tree[J]. Plant Science,2010,178:359-365.
    [220]Ling H, Recklies A D. The chitinase 3-like protein human cartilage glycoprotein 39 inhibits cellular responses to the inflammatory cytokines interleukin-1 and tumour necrosis factor-alpha[J]. Biochem J,2004, 380:651-659.
    [221]Linthorst H, Melchers L, Mayer A, et al. Analysis of gene families encoding acidic and basic β-1,3-glucanases of tobacco[J]. Proc. Natl. Acad. Sci. USA,1990,87(22):8756-8760.
    [222]Liu B, Xue X, Cui S, et al. Cloning and characterization of a wheat b-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. Tritic[J]i. Mol Biol Rep,2010,37:1045-1052.
    [223]Liu J, Xu B, Hu L, et al. Involvement of a banana MADS-box transcription factor gene in ethylene-induced fruit ripening[J]. Plant Cell Reports,2009,28:103-111.
    [224]Liu X, Shiomi S, Nakatsuka A, et al. Characterization of Ethylene Biosynthesis Associated with Ripening in Banana Fruit. Plant Physiol,1999,121(4):1257-1265.
    [225]Llopart A, Comeron J M, Brunet F G, et al. Intron presence-absence polymorphism in Drosophila driven by positive Darwinian selection[J]. Proc Natl Acad Sci USA,2002,99:8121-8126.
    [226]Low W K, Miao M, Ewart K V, et al. Skin-type antifreeze protein from the shorthorn sculpin, Myoxocephalus scorpius[J]. J Biol Chem,1998,273 (36):23098-23103.
    [227]Luo M, Lin L, Hill R D, et al. Primary structure of an environmental stress and abscisic acid-inducible alfalfa protein[J].Plant Mol.Biol.,1991,17:1267-1269.
    [228]Luo M, Liu J H, Mohapatra S, et al. Characterization of a gene family encoding abscisic acid-and environmental stress-inducible proteins of alfalfa [J].J. Biol.Chem.,1992,267(22):15367-15374.
    [229]Lusso M, Kuc J. The effect of sense and antisense expression of PR-N gene for β-1,3-glucanase on disease resistance of tobacco to fungi and virus.[J].Physiol Mol Plant Pathol,1996,49:267-283.
    [230]Lynch M, Kewalramani A. Messenger RNA Surveillance and the Evolutionary Proliferation of Introns[J]. Mol. Biol. Evol.,2003,20(4):563-571
    [231]Ma J, Liu D, Tang P. Cloning of Spinach SAD gene, its construction and transformation to tobacco[J]. Supplement to Plant Physiol,1996,111 (2):814.
    [232]MA S S. Somatic embryogenesis and plant regeneration from cell suspension culture of banana In proceedings of symposium on tissue culture of horticultural crops[D].Taipei, Taiwan,1991.
    [233]Marshall C B, Fletcher G L, Davies P L. Hyperactive antifreeze protein in a fish[J]. Nature,2004,429:153.
    [234]Matsumoto K, Vilarinhos A D, Oka S. Somatic hybridization by electrofusion of banana protoplasts[J]. Euphytica,2002,125(3):317-324.
    [235]May G D, Afza R, Mason H S, et al. Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transfonnation[J]. Nature Biotechnology,1995,13:486-492.
    [236]Maziah, M, Sariah M, Sreeramanan S. Transgenic banana rastali (AAB) with β-1,3-glucanase gene for tolerance to fusarium wilt race 1 disease via Agrobacterium-mediated transformation system[J]. Plant Pathol J,2007,6:271-282.
    [237]Medina J, Bargues M, Terol J, et al. The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid orde hydration[J].Plant Physiology,1999,119:463-470.
    [238]Medina-Suarez R, Manning K, Fletcher J, et al. Gene expression in the pulp of ripening bananas[J]. Plant Physiol.,1997,11(5):453-461.
    [239]Megia R, Hacour R, Tizroutine S, et al. Plant regeneration from cultured protoplasts of the cooking banana cv. Bluggoe (Musa spp., ABB group). Plant Cell Rep,1993,13(1):41-44.
    [240]Memelink J, Linthorst JMH, Schilperoort A R, et al. Tobacco gene encoding acidic and basiciso forms of pathogenesis-related proteins display different expression patterns.[J].Plant Mol Biol,1990,14:119-126.
    [241]Meyer K, Keil M, Naldrett M J. A leucine-rich repeat protein of carrot that exhibits antifreeze activity[J]. FEBS Lett,1999,447(2):171-178.
    [242]Michael W, Robert W, Ron B, et al. Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60:A dehydrin from peach (Prunuspersica)[J]. Physiologia Plantarum,1999,105:600-608.
    [243]Mikael K A, Jose M A, Martin B, et al. The real-time polymerase chain reaction[J]. MoLecular Aspects of Medicine,2006, (27):95-125.
    [244]Mikkola J H, Alenius H, Kalkkinen N, et al. Hevein-like protein domains as a possible cause for allergen cross-reactivity between latex and banana[J]. J. Allergy Clin. Immunol.1998,102:1005-1012.
    [245]Minic Z, Brown S, Kouchkovsky Y D, et al. Purification and characterization of a novel chitinase-lysozyme, of another chitinase, both hydrolysing Rhizobium meliloti Nod factors, and of a pathogenesis-related protein from Medicago sativa roots[J]. Biochem. J.1998,332:329-335.
    [246]Mohapatra D, Mishra S, Sutar N, et al. Banana and its by-product utilisation:an overview [J]. Journal of Scientific &Industrial Research,2010,69:323-329.
    [247]Nakamura Y, Sawada H, Kobayashi S, et al. Expression of soybean β-1,3-endoglucanase cDNA and effect on disease tolerance in kiwifruit plants[J].Plant Cell Rep,1999,18:527-532.
    [248]Nascimento J R O, Cordenunsi B R, Lajolo F M, et al. Banana sucrose-phosphate synthase gene expression during fruit ripening[J]. Planta,1997,203:283-288.
    [249]Nina Moller-Nielsen. Large scale in vivo screening for promoter activation in transgenic banana(Musa spp.). Faculty of Agricultural and Applied Biological Sciences,2003.
    [250]Panis B, Wauwe A V, Swennen R. Plant regeneration through direct somatic embryogenesis from protoplasts of banana (Musa spp.)[J]. Plant Cell Rep,1993,12:403-407.
    [251]Panter S N, Jones D A. Age-related resistance to plant pathogens[J]. Advances in Botanical Research,2002, 38:251-280.
    [252]Peumans J, Proost P, Swennen L, et al. The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins[J]. Plant Physiology,2002,130: 1063-1072
    [253]Pham L, Dahiya R, Rubinsky B. An in vivo study of antifreeze protein adjuvant cryosurgery[J]. Cryobiology, 1999,38(2):169-175.
    [254]Pua E C, Chandramouli S, Han P, et al. Malate synthase gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Williams) [J]. J. Exp. Bot,2003a,54 (381):309-316.
    [255]Pua E C, Lee Y C. Expression of a ripening-related cytochrome P450 cDNA in Cavendish banana (Musa acuminata cv. Williams)[J]. Gene,2003b,305(1):133-140.
    [256]Pudney P D, Buckley S L, Sidebottom C M, et al.The physico-chemical characterization of a boiling stable antifreeze protein from a perennial grass (Lolium perenne)[J]. Arch. Biochem. Biophys.2003,410(2): 238-245.
    [257]Quansah L. Molecular Basis of Catecholamine Biosynthesis in Banana Fruit[D]. Thesis submitted to the RH Smith Faculty of Agriculture, Food and Environmental Quality Sciences of the Hebrew University of Jerusalem for the degree of Master of Science in Agriculture,2009.
    [258]Receveur-Brechot V, Czjzek M, Barre A, et al. Crystal structure at 1.45-A resolution of the major allergen endo-beta-1,3-glucanase of banana as a molecular basis for the latex-fruit syndrome[J]. Proteins,2006,63(1): 235-242.
    [259]Robinson S P, Jacobs A K, Dry I B. A class IV chitinase is highly expressed in grape berries during ripening [J].Plant Physiology,1997,114(3):771-778.
    [260]Roby D, Broglie K, Gaynor J, et al. Regulation of a chitinase gene promoter by ethylene and elicitors in bean protoplasts[J]. Plant Physiology,1991,97:433-439.
    [261]Romero G O, Simmons C, Yaneshita M, et al. Characterization of rice endo-[beta]-glucanase genes (Gns2-Gnsl4) defines a new subgroup within the gene family[J]. Gene,1998,223:311-320.
    [262]Roy Choudhury S, Roy S, Das R, et al. DiVerential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and diVerent photoperiods during fruit ripening and functional analysis of banana SPS gene promoter[J]. Planta,2008,229(1):207-223.
    [263]Roy Choudhury S, Roy S, Sengupta D N. Characterization of cultivar differences in beta-1,3 glucanase gene expression, glucanase activity and fruit pulp softening rates during fruit ripening in three naturally occurring banana cultivars[J]. Plant Cell Rep,2009,28(11):1641-1653.
    [264]Sabala I, Egertsdotter U, Fircks H V, et al. Abscisic acid-induced secretion of an antifreeze-like protein in embryogenic cell lines of Picea abies [J]. Journal of Plant Physiology 1996,149:163-170.
    [265]Sagi L, Panis B, Remy S, et al. Genetic transformation of banana and plantain (Musa spp.) via particle bombardement[J]. Bio/Technol,1995a,13:481-485.
    [266]Sagi L, Remy S, Verelst B, et al. Transient gene expression in transformed banana(Musa cv.'Bluggoe') protoplasts and embryogenic cell suspensions[J]. Euphytica,1995b,85:89-95.
    [267]Samac D A, Shah D M. Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter[J]. The Plant Cell,1991,3(10):1063-1072.
    [268]Sanchez-Monge R, Blanco C, Diaz-Perales A, et al. Isolation and characterization of major banana allergens: identification as fruit class I chitinases[J]. Clin Exp Allergy.1999,29(5):673-680.
    [269]Santos C M, Martins N F, Horberg H, et al. Analysis of expressed sequence tags from Musa acuminata ssp. burmannicoides, var. Calcutta 4(AA) leaves submitted to temperature stresses[J]. Theor Appl Genet.2005, 110(8):1517-1522.
    [270]Santos E, Remy S, Thiry E, et al. Characterization and isolation of a T-DNA tagged banana promoter active during in vitro culture and low temperature stress[J]. BMC Plant Biology,2009,9:77-92.
    [271]Schenk P M, Remans T, Sagi L, et al. Promoters for pregenomic RNA of banana streak badnavirus are active for transgene expression in monocot and dicot plants[J]. Plant Mol Biol 2001,47:399-412.
    [272]Schenk P M, Sagi L, Remans T, et al. A promoter from sugarcane bacilliform badnavirus drives transgene expression in banana and other monocot and dicot plants[J]. Plant Mol Biol,1999,39:1221-1230.
    [273]Schindler U, Beckmann H, Cashmore A R. TGA1 and G-Box binding factors:two distinct classes of Arabidopsis leucine zipper proteins compete for the G-Box-like element TGACGTGG[J]. The Plant Cell, 1992,(4):1309-1319.
    [274]Schouten H J, Krens F A, Jacobsen E. Cisgenic plants are similar to traditionally bred plants:International regulations for genetically modified organisms should be altered to exempt cisgenesis[J]. EMBO Rep,2006, 7:750-753.
    [275]Sela-Buurlage M B, Ponstein A S, Bres-Vloemans S A, et al. Only specific tobacco(Nicotiana tabacum) chitinases and β-1,3-glucanase exhibit antifungal activity[J].Plant Physiol,1993,101:857-863.
    [276]Shi Y, Zhang Y, Shih D S. Cloning and expression analysis of two β-1,3-glucanase genes from Strawberry[J]. Journal of Plant Physiology,2006,163(9):956-967.
    [277]Shmueli E. Chilling and frost damage in banana leaves[J]. Bull Res Coun Israel Sect D,1960,80:225-238.
    [278]Sidebottom C M, Buckley S L, Pudney P D, et al. Phytochemistry:Heat-stable antifreeze protein from grass [J]. Nature,2000,406:256.
    [279]Sieg F, Schroder W, Schmitt J M, et al. Purification and characterization of a cryoprotective protein (cryoprotectin) from the leaves of cold-acclimated cabbage[J]. Plant Physiol,1996,111:215-221.
    [280]Smallwood M, Worrall D, Byass L, et al. Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota)[J].Biochem.J. 1999,340:385-391.
    [281]Sonnichsen F D, Sykes B D, Davies P L. Comparative modeling of the three-dimensional structure of type II antifreeze protein[J]. Protein Sci,1995,4 (3):460-471.
    [282]Stangarlin J R, Pascholati S F. Activities of ribulose-1,5-bisphosphate carboxylase (rubisco), chlorophyllase, beta-1,3 glucanase and chitinase and chlorophyll content in bean cultivars (Phaseolus vulgaris) infected with Uromyces appendiculatus [J]. Phytopathologica,2000,26(1):34-42.
    [283]Steffen P Q Carolyn MS, Peter L D, et al. Structure of type I antifreeze protein and mutants in supercooled water[J]. Biophys J,2001,81(3):1677-1683
    [284]Stocking J, Gilmour S J, Thomashow M F, et al. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to C-repeat/DRE, acis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci USA, 1997,94:1035-1040.
    [285]Stressmann M., Kitao S, Griffith M,et. al. Calcium interacts with antifreeze proteins and chitinase from cold-acclimated winter rye[J]. Plant Physiol.,2004,135:364-376.
    [286]Sugimoto K, Takeda S, Hirochika H. Transcriptional activation mediated by binding of a plant GATA-type zinc finger protein AGP1 to the AG-motif (AGATCCAA) of the wound-inducible Myb gene NtMyb2[J]. Plant J,2003,36(4):550-564.
    [287]Sunkar R, Zhu J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. Plant Cell,2004,16(8):2001-2019.
    [288]Tablin F, Oliver A E, Walker N J, et al. Membrane phase transition of intact human platelets:correlation with cold-induced activation[J]. J Cell Physiol,1996,168:305-313
    [289]Taira T, Toma N, Ishihara M. Purification, characterization, and antifungal activity of chitinase from pineapple(Ananas comosus)leaf[J]. Bioscience, Biotechnology, and Biochemistry,2005,69(1):189-196.
    [290]Thimmapuram J, Ko T S, Korban S S. Characterization and expression of β-1,3-glucanase genes in peach[J]. Mol. Genet. Genomics,2001,265:469-479.
    [291]Thomashow M F. Plant cold acclimation:freezing tolerance genes and regulatory mechanisms[J]. Trends in Plant Science,2007,12 (10):444-451.
    [292]Thomashow M F. Role of cold-responsive genes in plant freezing tolerance[J]. Plant Physiol,1998,118:1-7.
    [293]Tyshenko M G, Doucet D, Davies P I, et al.The antifreeze potential of the spruce budworm thermal hysteresis protein[J].Nat Biotechnol,1997,15(9):887-890.
    [294]Wang L H, Wusteman M C, Smallwood M, et al. The stability during low-temperature storage of an antifreeze protein isolated from the roots of cold-acclimated carrots[J]. Cryobiology,2002,44(3):307-310.
    [295]Wang W, Wei L. Purification of boiling-soluble antifreeze protein from the legume Ammopip-tanthus mongolicus[J]. Preparative Biochemistry and Biotechnology,2003,33(1):67-80.
    [296]Wang Y, Qiu L, Dai C, et al. Expression of insect (Microdera puntipennis dzungarica) antifreeze protein MpAFP149 confers the cold tolerance to transgenic tobacco[J]. Plant Cell Rep,2008,27(8):1349-1358.
    [297]Wang Y, Wu J, Xu B Y, et al. Cloning of an ADP-ribosylation factor gene from banana (Musa acuminata) and its expression patterns in postharvest ripening fruit[J].Journal of Plant Physiology,2010,167(12): 989-995.
    [298]Weiser G J. Cold resistance and injury in woody plants[J]. Science,1979,169:1269-1278.
    [299]Wierzbieki A, Madura J D. Modeling studies of binding of sea raven type II antifreeze Protein to ice [J].Chemical Information Comput Science,1997,37(6):1006.
    [300]Wisniewski M, Webb R, Balsamo R, et al. Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60:A dehydrin from peach (Prunus persica) [J]. Physiologia Plantarum,1999,105(4): 600~608.
    [301]Worrall D, Elias L, Ashford D, et al. A carrot leucine-rich-repeat protein that inhibits ice recrystallization[J]. Science,1998,282 (5386):115-117.
    [302]Xiao W, Huang X L, Huang X, et al. Plant regeneration from protoplasts of Musa acuminata cv. Mas (AA) via somatic embryogenesis[J]. Plant Cell Tiss Org Cult,2007,90(2):191-200.
    [303]Xu D, Duan X, Wang B. Expression of late embryogenesis abundant protein gene, HVA1, from harley confers tolerance to water degicit and salt stress in transgenic rice[J].Plant Physical,1996,110:249-257.
    [304]Xu P, Wang J, Fincher G B. Evolution and differential expression of the (1-3)-beta-glucan endohydrolase-encoding gene family in barley, Hordeum vulgare[J]. Gene,1992,120:157-165.
    [305]Yamashita Y, Nakamura N, Omiya K, et al. Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin[J]. Biosci Biotechnol Biochem,2002,66 (2):239-247.
    [306]Yeh S, Moffatt BA, Griffith M, et al. Chitinase genes responsive to cold induce antifreeze proteins in winter cereals[J]. Plant Physiol,2000,124:1251-1263.
    [307]Yoshihama M, Nguyen H D, Kenmochi N. Intron Dynamics in Ribosomal Protein Genes[J]. PLoS ONE, 2007,2(1):e141.
    [308]Yu S O W. Antifreeze proteins:activity comparisons and de novo design of an ice-biding protein[D]. A thesis submitted to the Department of Biochemistry In conformity with the requirements for the degree of Master of Science. Queen's University Kingston, Ontario, Canada,2010.
    [309]Zhao K, Chye M. Methyl jasmonate induces expression of a novel Brassica juncea chitinase with two chitin-binding domains[J].Plant Mol.Biol,1999,40:1009-1018.
    [310]Zhu Q, Doerner P W, Lamb C J. Stress induction and developmental regulation of a rice chitinase promoter in transgenic tobacco[J]. Plant Journal,1993,3:203-212.
    [311]Zhu Q, Lamb C J. Isolation and characterization of a rice gene encoding a basic chitinase[J]. Mol. Gen. Genet,1991,226:289-296.
    [312]Zhu Z, Zheng T, Homer R J, et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation[J]. Science,2004,304:1678-1682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700