用户名: 密码: 验证码:
铜阳极泥中碲的回收与提纯及其基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碲被誉为“工业的维生素,现代高新技术的桥梁”,在材料领域发挥着越来越重要的作用。由于其资源缺乏,如何经济高效地分离、回收碲并制备高纯碲,正成为人们关注的焦点。目前碲主要来源于铜阳极泥,研究铜阳极泥中碲的回收与提纯具有重要的价值与现实意义。本文以铜阳极泥为原料,发明了硫酸预浸分铜-碳酸钠转化脱铅-硫酸焙烧蒸硒-盐酸浸碲铋、催化还原法回收碲、化学法提纯等新工艺提取、回收碲并制备高纯碲,并对卤素催化还原硫酸溶液中Te(Ⅳ)的机理和碲提纯过程中的热力学进行了研究。
     首先铜阳极泥经过硫酸预浸分铜,得到分铜液。当反应温度为80℃、硫酸与物料中铜物质的量之比为1.5:1、液固比为3:1、反应时间为1.5h时,铜浸出率为89.5%、碲浸出率为20.4%。
     分铜阳极泥与Na2C03混和湿磨后,过滤除去硫酸根,随后阳极泥中的铅用硝酸除去。当Na2C03与分铜阳极泥中铅物质的量之比为2.5:1、液固比为2:1、球料比为8:1、反应时间为3h时,对阳极泥进行碳酸钠转化,分离硫酸根后用硝酸浸出,当硝酸与铅物质的量之比为6:1时,铅去除率为70%。
     分铅阳极泥与浓硫酸混匀后焙烧,对硒进行分离。当硫酸与物料中硒碲物质的量之比为1.2:1、反应温度为680℃、反应时间为3h时,硒去除率达到95%。
     分硒阳极泥用盐酸浸出碲,得到盐酸浸碲液。当盐酸浓度为6mol.L-1、液固比为3:1、反应温度为80℃、反应时间为2h时,铜阳极泥中碲总浸出率为93.6%,贵金属金银得到富集,金由0.152%上升到0.34%,银由7.81%上升到14.34%。
     硫酸预浸分铜液经蒸发结晶后,得到常温结晶母液。母液中的硒通过S02或Na2S03还原分离。当反应温度为80℃、硫酸浓度为240g·L-1、SO2流量为35ml·min-1、反应时间为2h时,用SO2从2L硫酸铜结晶母液分离硒,硒回收率为96.50%,碲沉淀率仅为1.05%。分硒后溶液通过C1-催化-SO2还原,碲回收率为99.60%。
     硫酸预浸分铜液通过深度蒸发结晶脱铜,获得高浓度硫酸结晶母液,其硫酸浓度为880g·L-1-1000g·L-1。通过卤素催化SO2还原回收高浓度硫酸结晶母液中的碲。当反应温度为85℃、硫酸浓度为880g·L-1、Cl-浓度为0.5mol·L-1、SO2流量40L-h-1、反应时间为2h时,碲的回收率为99.25%。5m3的工业实验表明,碲回收率为98.32%,固体产物中碲、铜和氯的质量分数分别为51.10%、27.35%和13.68%。XRD结果表明,产物为单质碲和氯化亚铜的混和物。
     通过硫脲配合浸出、双氧水氧化-硫酸浸出、硝酸氧化浸出三种方法的对比,选择硝酸氧化浸出法分离碲铜渣中的碲和铜。按Cu2C12生成CuCl2和Cu(NO3)2、Te生成TeO2、起氧化作用的HNO3生成NO2进行计算,当硝酸用量为理论用量的0.96倍时,铜去除率为97.50%、碲浸出率为1.05%,铜与碲得到有效分离,碲转化为TeO2。
     分铜后的碲渣通过两次氧化-盐酸浸出、预还原除硒,还原得到碲粉。碲粉在450℃和氢气气氛下处理,得到符合YS/T222-1996标准的4N+碲。
     利用离子交换、紫外-可见分光光度、XRD、溶解度测定等手段对Cl-催化的机理进行了研究。研究表明,在低浓度硫酸溶液中Te(Ⅳ)以TeOOH+形式存在,硫酸浓度超过700g·L-1后,溶液中TeOOH4脱水缩合形成环状结构的Te2O3SO4,导致Te(Ⅳ)稳定性增强,难以被S02还原。Cl-可破坏高浓度硫酸溶液中Te2O3SO4的结构,随着溶液中Cl-浓度的增加,Te(Ⅳ)逐步向TeOCl2、TeCl4、H2TeCl6转化,Te(Ⅳ)的活性增强。Cl-催化反应动力学研究表明,当溶液中Cl-浓度为0.1mol·L-1时,其活化能为44.87kJ·mol-1;Cl-浓度为0.3mol·L-1时,其活化能为36.714kJ·mol-1.XRD表明,以Cl-和Br-为催化剂时产物为单质碲,以I-为催化剂时产物为Re4I4。
     元素在提纯碲的不同阶段的分配率和除杂热力学分析表明,通过硝酸氧化硫酸浸出、预还原除硒、两次氧化浸出-SO2还原、氢气气氛和高温下处理碲粉,可以除去杂质获得高纯碲。当溶液中HCl不低于6mol·L-1时,碲粉中的铜、铅、锑、银等杂质与Cl-形成配合物,并与钙、镁、铝、铁等金属离子保留在滤液中。二次还原碲粉在450℃和氢气氛围下还原,砷以As4O6、硒以H2Se形式与碲分离。
     与传统工艺相比,该提取碲的工艺具有转炉处理能力高,能耗、酸用量和烟气量低等优点。与传统回收碲的方法相比,卤素催化还原法具有回收成本低、碲品位高、物料易处理的特点。化学法制备高纯碲具有生产条件易控制、直收率高、成本低、产品质量稳定、易大规模化等优点。
Tellurium, which is called the vitamin of industry and the bridge of modern advanced technologies, plays more and more important role in material field. Much attention is paid on recovery of tellurium from tellurium-containing materials and preparation of high pure tellurium by a cheap and efficient method because its resource is scarce. Tellurium comes mainly from copper anode slime. It is very valuable to study on recovery and preparation of tellurium. A novel method is invented, which includes extraction and recovery of tellurium from copper anode slime by preleaching copper with H2SO4, deleading with Na2CO3, removing selenium by roasting de-lead anode slime mixed with concentrated sulfur acid, leaching tellurium and bismuth with HCl from roasted anode slime, reducing Te(IV) in leachate with SO2under the action of Cl-and purifying tellurium by chemical method. Reduction catalytic mechanism of halogens ion on Te(IV) in the H2SO4solution and thermodynamic analysis on removal of impurities during the purification are studied in this paper.
     Firstly, copper-containing solution is obtained after preleaching copper anode slime with H2SO4. Leaching rate of copper and tellurium are89.5%and20.4%when reaction temperature is80℃, molar ratio of H2SO4to Cu in the material is1.5:1, ratio of liquid to solid is3:1and reaction time is1.5h.
     Mixed with Na2CO3, de-copper anode slime is grinded for3h, PbSO4is transformed into PbCO3when molar ratio of Na2CO3to Pb in anode slime is2.5:1, ratio of liquid to solid is2:1, quality ratio of steel ball to anode slime is8:1. SO42-is removed by washing. Subsequently, lead is leached with HNO3. Leaching rate of lead is70%when molar ratio of HNO3to Pb in de-copper anode slime is6:1.
     Se is removed by roasting after de-lead anode slime is mixed with concentrated sulfuric acid. Removal rate of Se reaches95%when molar rate of H2SO4to sum of both Se and Te is1.2:1, reaction temperature is680℃and reaction time is3h.
     tellurium-containing leachate is obtained by leaching with HCl after removal of Se by vaporation. Total extracting rate of tellurium in copper anode slime is93.6%when concentration of HCl acid is6mol·L-1, rate of liquid to solid is3:1, reaction temperature is80℃and reaction time is2h. At the same time, some noble metals such as gold and sliver are enriched, contents of gold in anode slime increases from0.152%to0.34%, and sliver increases from7.81%to14.34%.
     Crystallization mother solution is acquired by evaporating and crystallizing pre-leachate under normal temperature. Se in solution is separated beforehand by reduction with SO2. Removal rate of Se in the2L solution is96.50%and precipitation rate of tellurium is less than1.05%when reaction temperature is80℃, concentration of sulfur acid is240g·L-1, flow of SO2is35ml·min-1and reaction time is2h. Recovery rate of tellurium reaches99.60%under the action of Cl-and SO2after removal of selenium.
     Crystallization mother solution, in which concentration of H2SO4is in the range of880g·L-1~1000g·L-1, is acquired after copper has been recovered from solution by deep evaporation. Tellurium in the crystallization mother solution is recovered under the action of Cl-and SO2, and its recovery rate reaches99.25%when reaction temperature is85℃, concentration of H2SO4is880g·L-1, concentration of Cl-is0.5mol·L-1, flow of SO2is40L·h-1and reaction time is2h. Result of5m3volume industrial experiment indicates that recovery rate of tellurium is98.32%, mass percents of Te, Cu and Cl in solid product are51.10%,27.35%and13.68%, respectively. XRD result shows that elemental tellurium and Cu2Cl2have existed in the product.
     Compared with thiourea complexation leaching and oxidation with H2O2-leaching with sulfur acid, leaching with HNO3is chosen as a way to separate copper from tellurium in the Cu-Te residue. Stoichiometric dosage of HNO3can be calculated according to rules that Cu2Cl2is transformed into CuCl2and Cu(NO3)2, Te is transformed TeO2and HNO3playing oxidation role is transformed into NO2. Removal rate of copper reachs97.5%and leaching rate of tellurium is1.05%when dosage of HNO3is0.96time of stoichiometric dosage, and tellurium is tranformed into TeO2.
     Powdered tellurium is obtained after Se has been removed beforehand and Te is treated twice by method of oxidation, leaching and reduction.Finally,4N+tellurium satisfied with standard of YS/T222-1996is acquired after powdered tellurium is treated under450℃and hydrogen ambient.
     Catalytic mechanism of Cl-on reduction of Te (Ⅳ) is studied by means of methods such as ion-exchange, UV-VS spectrophotometry, XRD and determination of solubility. The results show that Te(IV) exists in form of TeOOH+when concentration of H2SO4in solution is less than700g·L-1, TeOOH+is gradually dehydrated and changed Te2O3SO4when concentration of H2SO4is over700g·L-1. Therefore, Te (Ⅳ) becomes more stable and more difficult to be reduced by SO2. Structure of Te2O3SO4in high concentration H2SO4solution is destroyed by Cl-, with the increasing of Cl-concentration,Te(Ⅳ) is transformed step by step into TeOCl2, TeCl4and H2TeCl6, and Te(IV) is getting more and more active. The study on catalytic kinetic of Cl-shows activation energy is44.87kJ·mol-1when Cl-concentration is0.1mol·L-1, and activation energy is36.714kJ·mol-1when Cl-concentration is0.3mol·L-1. XRD results confirm that product is elemental tellurium when Cl-and Br-are used as catalyst, the product is Tel (Te4I4) when I-is used as catalyst.
     Distribute ratio of elements in the tellurium-containing residue during purification and thermodynamic analysis show that impurities can be removed efficiently and high pure tellurium can be obtained by oxidizing with HNO3and leaching with H2SO4, removing selenium beforehand, oxidizing-leaching-reducing and treating under hydrogen ambient and high temperature. Impurities such as Cu, Pb, Sb and Ag in powdered tellurium combine with Cl-to form complexes and are kept in the solution together with Ca, Al, Mg and Fe when concentration of HC1in solution is not less than6mol·L-1. Arsenic is evaporated in forms of As4O6, Se is removed in form of H2Se under450℃and hydrogen ambient.
     Compared with traditional technologies, this technology on extracting tellurium has many advantages such as large treatment capacity of convert, low consumption of energy and acid, little flue gas volume. Contrasted to the traditional method in which precipitating tellurium with copper powder, the catalytic reduction method has its advantages such as low cost, high content of tellurium in the product and easy treatment. High pure tellurium is prepared by chemical method. This method has advantages such as easy control, low cost, high direct recovery rate, stable quality of product and large scale.
引文
[1]张青莲,申泮文.无机化学丛书(第五卷,氧硫硒分族)[M].北京:科学出版社,1984,320-324.
    [2]Д.М.尤赫达诺夫著.硒与碲的生产(冯国魁,徐珍娥译)[M].北京:冶金工业出版社,1957,18--22
    [3]周令治.稀散金属提取冶金[M].北京:冶金工业出版社,2007,131-141.
    [4]常文宝,李克安.简明分析化学手册[M].北京:北京大学出版社,1981,87.
    [5]曹锡章,王杏乔,宋天佑.无机化学(上册)[M].北京:高等教育出版社,1994,499--510.
    [6]袁武华,王峰.国内外易切削钢的研究现状和前景[J].钢铁研究,2008,36(5):55--62.
    [7]GENG Hong-ming, WU Xiao-chun, WANG Hong-bin, MIN Yong-an, ZHANG Hong-kui. Characterization of Free Cutting Phase in Free Cutting Stainless Steel Containing High Copper Journal of Iron and Steel Research, International, 2009,16(1):54-57.
    [8]丘坤元.自由基聚合近20年的发展[J].高分子通报,2008,(7):15--29.
    [9]杨桂春,黄锦霞,陈家威.有机碲氧化物催化合成α,β-不饱和酯基或羰基苯砜化合物[J].化学试剂,1999,21(4):193--195.
    [10]韩汛,叶龙武,孙秀丽.碲、硒叶立德在立体选择性小环化反应中的应用[J].有机化学,2009,29(3):309--320.
    [11]张友楚,吴露玲,黄宪.烯基碲化合物的合成及其在烯烃立体选择合成反应中的应用[J].合成化学,2003,11(2):99-104.
    [12]王成刚,孙浩,李敬国,朱西安.双色碲镉汞红外焦平面探测器发展现状[J].激光与红外,2009,39(4):367-371.
    [13]王忆锋,唐利斌.碲镉汞近年来的研究进展[J].红外技术,2009,31(8):435-440.
    [14]Surendra Babu S., Rajeswari R., Jang Kiwan, Cho Eun Jin, Jang Kyoung Hyuk, Hyo Jin Seo, Jayasankar C.K.. Spectroscopic investigations of 1.06μm emission in Nd3+-doped alkali niobium zinc tellurite glasses[J].Journal of Luminescence, 2010,130(6):1021-1025.
    [15]Mohan Babu A., Jamalaiah B.C., Suhasini T., Srinivasa Rao T., et al. Optical properties of Eu3+ions in lead tungstate tellurite glasses[J]. Solid State Sciences, 2011,13(3):574-578.
    [16]Zhang Q.Y., Feng Z.M., Yang Z.M., Jiang Z.H. Energy transfer and infrared-to-visible upconversion luminescence of Er3+/Yb3+-codoped halide modified tellurite glasses[J] Journal of Quantitative Spectroscopy and Radiative Transfer, 2006,98(2):167-179.
    [17]Lars Engman, Nawaf Almaharik,Michael Mcnaugton,et al. Thioredoxin and cancer cell growth inhibition by organotellurium compounds that could be selectively incorporated into tumor cells[J]. Biorganic & Medcinal Chemistry, 2003,11(23):5091-5100.
    [18]郑景熙,张俊德,龚颜德.有机碲化合物(AS101)抑制白血细胞增殖的效应[J].第一军医大学学报,1993,13(3):267-269.
    [19]Andersom C M, Brattsand R, Hallberg A, etal. Diaryl tellurides as inhibition of peroxidation in biological and chemical system[J]. Free Radic Res, 1994,20(6):401-410.
    [20]Kudelin B.K., Gromova E.A., Gavrilina L.V., Solin L.M.. Purification of recovered tellurium dioxide for re-use in iodine radioisotope production[J]. Applied Radiation and Isotopes,2001,54(3):383-386.
    [21]郑逊良.碲铜合金市场前景与产业化的制约“瓶颈”[J].世界有色金属,2005,(3):12-14.
    [22]侯仁义,陈家钊,侯立玮.一种高导、高强、高灭弧碲铜合金材料[P].中国专利,CN1434141.
    [23]PM trims costs and speeds production of sensor materials[J]. Metal Powder Report,2003,58(7/8):46-48.
    [24]Xu Xiao-chuan, Chen Li-dong, Wang Chun-fen, Yao Qin, Feng Chu-de. Template synthesis of heterostructured polyaniline/Bi2Te3 nanowires [J]. Journal of Solid State Chemistry,2005,178 (6):2163-2166.
    [25]裘武军;电化学沉积法制备薄膜Bi2Te3基热电材料[D];浙江大学;2011年.
    [26]Li Wen-Jin Electrodeposition of bismuth telluride films from a nonaqueous solvent [J]. Electrochimica Acta,2009,54(27):7167-7172
    [27]褚颖,王忠,魏少红,刘娟,蒋利军.溶剂热法制备花簇状纳米Bi2Te3化合物的研究[J].稀有金属,2009,33(5):754-757.
    [28]Xu Yongbin, Ren Zhongming, Cao Guanghui, Ren Weili, Deng Kang, Zhong Yunbo. Fabrication and characterization of Bi2Te3 nanoplates via a simple solvothermal process[J]. Physica B:Condensed Matter,2009,404(21):4029-4033.
    [29]Shen J J, Zhang S N, Yang S H, Yin Z Z, Zhu T J, Zhao X B. Thermoelectric and thermo- mechanical properties of the hot pressed polycrystalline Bio.5Sb1.5Te3 alloys [J].Journal of Alloys and Compounds,2011,509(1):161-164.
    [30]Shin Hyun Soo, Ha Heon Phil, Hyun Dow Bin, Shim Jae Dong, Lee Dong Hi. Thermoelectric properties of 25% Bi2Te3-75%Sb2Te3 solid solution prepared by hot-pressing method [J]. Journal of Physics and Chemistry of Solids,1997,58(4): 671-678.
    [31]Qiu L Q, Zhou J, Cheng X, Ahuja R. Electrochemical deposition of Bi2Te3-based thin films[J]. Journal of Physics and Chemistry of Solids,2010,71(8):131-136.
    [32]Zakeri M, Allahkarami M., Kavei G,et al. Synthesis of nanocrystalline Bi2Te3 via mechanical alloying [J]. Journal of Materials Processing Technology,2009,209(1): 96-101.
    [33]Yang J., Aizawa T., Yamamoto A., Ohta T. Effect of processing parameters on thermoelectric properties of p-type (Bi2Te3)o.25(Sb2Te3)o.75 prepared via BMA-HP method[J].Materials Chemistry and Physics,2001,70(1):90-94.
    [34]Zakeri M.,Allahkarami M.,Kavei Gh.,Khanmohammadian A.,Rahimipour M R. Synthesis of nanocrystalline Bi2Te3 via mechanical alloying[J]. Journal of Materials Processing Technology,2009,209(1):96-101.
    [35]齐雅青,张丽丽,葛晓丽.区熔制备Bi2Te3基温差电材料工艺研究[J].电源技术,2008,32(3):167-169.
    [36]蒋俊,李亚丽,许高杰,崔平,吴汀,陈立东,王刚.制备工艺对p型碲化铋基合金热电性能的影响[J].物理学报,2007,56(5):2858-2861.
    [37]Yi Ma,Elisabet Ahlberg,Ye Sun,Bo Brummerstedt Iversen,et al.Thermoelectric properities of thin films of bismuth telluride electrochemically deposited on stainless steel substrates[M].Electrochimical Acta.2011,56(11):4216-4223.
    [38]Saxena P K. Modeling and simulation of HgCdTe based p+-n-n+ LWIR photodetector[J]. Infrared Physics & Technology,2011,54(1):25-33.
    [39]Rogalski A.. Material considerations for third generation infrared photon detectors[J].Infrared Physics and Technology,2007,50(2-3):240-252.
    [40]Radhakrishnan J K, Sitharaman S, Gupta S C. Liquid phase epitaxial growth of HgCdTe using a modified horizontal slider [J]. Journal of Crystal Growth,2003, 252(1/3):79-86.
    [41]周立庆,刘兴新,巩锋,史文均.Si基复合衬底碲镉汞液相外延技术的研究[J].激光与红外,2006,36(11):1054-1056.
    [42]Chang Y, Fulk C, Zhao J, Grein C H, Sivananthan S. Molecular beam epitaxy growth of HgCdTe for high performance infrared photon detectors[J]. Infrared Physics & Technology,2007,50(2/3):284-290.
    [43]Piotrowski A, Madejczyk P, Gawron W,etal. Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors [J].Infrared Physics & Technology,2007,49(3):173-182.
    [44]Chun S, Han K S, Shin J H, Lee H, Kim D H. Fabrication and characterization of CdTe nano pattern on flexible substrates by nano imprinting and electro-deposition [J]. Microelectronic Engineering,2010,87(11):2097-2102.
    [45]王静宇,刘朝旺,杨玉林,宋炳文.碲镉汞薄膜的MOVPE生长和特性[J].红外技术,2000,22(5):2-4.
    [46]艾宪芸,魏义祥.室温半导体CdZnTe(CdTe)探测器性能综述[J].核电子学与探测技术,2004,24(3):325-328.
    [47]WANG Tao, JIE Wan-qi,XU Ya-dong, ZHA Gang-qiang, FU Li. Characterization of CdZnTe crystal grown by bottom-seeded Bridgman and Bridgman accelerated crucible rotation techniques[J]. Transactions of Nonferrous Metals Society of China,2009,19(3):622-625.
    [48]Zappettini A., Zha M., Pavesi M., Zanotti L..Boron oxide fully encapsulated CdZnTe crystals grown by the vertical Bridgman technique [J]. Journal of Crystal Growth,307(2):283-288.
    [49]陈少纯,顾珩,高远,吴昊.稀散金属产业的观察与思考[J].材料研究与应用,2009,3(4):216-222
    [50]Razykov T.M., Ferekides C.S., Morel D., Stefanakos E., Ullal H.S., Upadhyaya H.M.. Solar photovoltaic electricity:Current status and future prospects[J].Solar Energy,2011,85(8):1580-1608.
    [51]Hadrich M., Kraft C., Loffler C., Metzner H., Reislohner U., etal. Pathways to thin absorbers in CdTe solar cells[J].Thin Solid Films,2009,517(7):2282-2285.
    [52]Okamoto T., Harada Y., Yamada A., Konagai M. Improved performance of CdTe thin film solar cells through controlling the initial stage of the CdTe layer deposition by close-spaced sublimation [J]. Solar Energy Materials & Solar Cells,2001,67(1-4):187-194.
    [53]Major J.D., Durose K.. Early stage growth mechanisms of CdTe thin films deposited by close space sublimation for solar cells[J].Solar Energy Materials & Solar Cells,2011,95(12):3165-3170.
    [54]Duffy N.W., Peter L.M., Wang R.L., et al. Electrodeposition and character of CdTe films for solar cell applications[J]. Electrochimica Acta,2000,45(20): 3355-3365.
    [55]Kim Seong-Hun, Lee Ju-Young, Han Wone-Keun, etal. Electrochemical deposition of CdSe/CdTe multilayer nanorods for hybrid solar cell[J].Thin Solid Films,2010,518(24):7222-7224.
    [56]Li Liang, Qian Hui-feng, Fang Neng-hu, Ren Ji-cun.Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions [J].Journal of Luminescence,2006,116(1-2):59-66.
    [57]Xu Shu-hong, Wang Chunlei, Cui Yiping.Influence of solvent on aqueous CdTe nanocrystals:Theoretical and experimental vestigation[J]. Journal of Molecular Structure,2011,xxx(xx):xxx-xxx.
    [58]Goren D., Amir N., Khanin E., Nemirovsky G. Y. Single crystalline CdTe solar cells grown by MOCVD[J].Solar Energy Materials and Solar Cells,1996,44(4):341-356.
    [59]Razykov T.M., Contreras-Puente G, Chornokur G.C., et al. Structural, photoluminescent and electrical properties of CdTe films with different compositions fabricated by CMBD[J].Solar Energy,2009,83(1):90-93.
    [60]Chun Seung ju, Han Kang-Soo, Shin Ju-Hyeon, Lee Heon, Kim Donghwan. Fabrication and characterization of CdTe nano-pattern on flexible substrates by nano-imprinting and electro-deposition[J].Microelectronic Engineering,2010, 87(1):2097-2102.
    [61]程裕淇.大百科全书(地质学卷)[M].上海:中国大百科全书出版社,1993:150-160.
    [62]李傲仙,李延河,乐国良.深海沉积物中碲异常的成因[J].地球学报,2005,26(增刊):186-189.
    [63]张佩华,赵振华,朱金初,等.东坪式金矿的金银碲化物及其载金性[J].矿物学报,2002,22(4):321-327.
    [64]胡晓强,李云泉,帅德权.四川丹巴地区Cu-Ni-Pt族元素矿床的矿石矿物特征[J].矿物岩石,2001,21(1):14-18.
    [65]吕军,赵志丹,曹亚平,等.黑龙江三道湾子金矿床地质特征及成因探讨[J].中国地质,2009,36(4):853-859.
    [66]骆耀南,曹志敏.四川发现世界首例独立碲矿床[J].中国地质,1994,(2):27-28.
    [67]骆耀南,曹志敏,温春齐,等.大水沟独立碲矿床—世界首例碲化物脉型矿床地质地球化学[M].成都:西南交通大学出版社,1996,160.
    [68]廖梦霞,汪模辉,邓天龙.我国首例独立碲矿床资源的开发战略[J].四川有色金属,2004,(3):55-57
    [69]四川对碲资源进行开发[J].国外金属矿选矿,2006,(4):46-48.
    [70]钱汉东,陈武,谢家东,黄瑾.碲矿物综述[J].中国地质学报,2000,6(2):178-187.
    [71]郑大中,郑若锋.大水沟独立碲矿床形成机理研究[J].地质找矿论丛,2000,15(3):230-237.
    [72]张佩华,赵振华,包志伟,王一先.碲成矿机制研究新进展[J].地质科技情报,2000,19(2):55-57.
    [73]陈少纯,邹家炎.稀散金属产业的现状与展望[J].广东有色金属学报,2002,19(稀散金属专辑):1-6.
    [74]邹家炎,陈少纯.稀散金属产业的现状与展望[J].中国工程科学,2002,4(8):86-92.
    [75]Yurko V, Jappe J, Vermeglio A, Tellurite resistance and reduction by obligately aerobic photo- synthetic bacteria[J].Application & environment micro- biology, 1996,62(11):4195-4198.
    [76]Rajwade J.M., Paknikar K.M. Bioreduction of tellurite to elemental tellurium by Pseudomonas mendocina MCM B-180 and its practical application[J]. Hydrometallurgy,2003,71(1/2):243-248.
    [77]张亮,何晓红,张礼霞,等.一株假单胞菌MBR对亚碲酸钠的好氧还原特征[J].应用与环境生物学报,2011,17(1):126-129.
    [78]陈小敏,杨芳,郑文杰.钝顶螺旋藻对无机碲的吸收转化作用[J].海洋通报,2008,27(2):52-58.
    [79]Sargar B.M., Anuse M.A.. Liquid-liquid extraction study of tellurium (Ⅳ) with N-N'-octylaniline in halide medium and its separation from real samples[J]. Talanta,2001,55(3):469-478.
    [80]Sargar B.M., Mahamuni S.V. Sequential separation of selenium(Ⅳ) from tellurium(Ⅳ) by solvent extraction with N-n-octylaniline:Analysis of real samples[J]. Journal of Saudi Chemical Society,2011,15(2):177-185.
    [81]李永红,刘兴芝,铁梅.三辛胺萃取碲的研究[J].辽宁大学学报,1999,26(4):377-380.
    [82]李永红,刘兴芝.N235萃取碲及其机理研究[J].稀有金属,1999,23(6):409-413.
    [83]Dilip Kumar Mandal, Badal Bhattacharya, Raj Dulal Das. Recovery of tellurium from chloride media using tri-iso-octylamine[J]. Separation and Purification Technology,2004,40(2):177-182.
    [84]卫芝贤,卫秋瑞,郭陶,等.N1923(伯胺)萃碲及萃合物组成研究[J].太原科技,1999,(1):21-22.
    [85]Zhang Lei,Zhang Min,Guo Xing-jia, etal. Sorption characteristics and separation of tellurium ions from aqueous solutions using nano-TiO2[J]. Talanta,2010,83(2): 344-350.
    [86]林猷壁,朱玉伦.M17树脂对岩石痕量硒碲的分离富集研究及应用[J].岩矿测试,1993,12(2):81-84.
    [87]戴建中,周春波.巯基棉分离—氢化物无色散原子荧光法测定岩矿中硒和碲[J].分析实验室,1989,8(2):61-64.
    [88]郑日云.巯基棉富集分离—催化极谱法测定岩石及土壤中痕量硒、碲[J].有色金属分析通信,1994,(2):24-25.
    [89]李玉萍,王献科.液膜分离富集碲[J].中国钼业,2001,25(2):38-41.
    [90]王献科,李玉萍.液膜分离富集微量碲[J].化学推进剂与高分子材料.2003,1(3):11-13.
    [91]Runu Chakraborty, Siddhartha Datta. Transport of Te4+ through liquid surfactant membrane using D2EHPA as the carrier[J].Journal of Membrane Science, 1994,96(3):233-240.
    [92]吴萍,马宠,李华伦.从铋碲精矿分离回收铋碲的新工艺[J].矿产综合利用,2002,(6):22-24.
    [93]蒋新宇.从铋碲矿中分离碲的新技术[J].稀有金属与硬质合金,2000,(141):8-10.
    [94]陈迎武.一种从铜阳极泥中提取碲的方法[P],中国专利,CN 101434385B,2010-12-22.
    [95]刘建华,王瑞祥.从铜阳极泥综合渣中浸出蹄的研究[J].中国有色冶金,2008,(1):48-50.
    [96]康立武,闵昌松,彭樟成.铜阳极泥渣中浸出碲的试验研究[J].有色金属(冶炼部分),2011,(6):3-6
    [97]张博亚,王吉坤,彭金辉.加压酸浸从铜阳极泥中脱除碲的研究[J].有色金属(冶炼部分),2007,(4):27-29.
    [98]张博亚,王吉坤.加压酸浸预处理铜阳极泥的工艺研究[J].矿冶工程,2007,27(5):41-43.
    [99]梁刚,舒万艮,蔡艳荣,郑诗礼.从铜阳极泥中回收硒、碲新技术[J].稀有金 属,1997,21(4):254-256.
    [100]Shibassaki T. Recovery of tellurium from decopperizing leach solution of copper refinery slimes by a fixed bedreactor[J]. Hydrometallurgy,1992,29(1-3): 399-412.
    [101]刘兴芝,宋玉林,武荣成,等.碲化铜法回收碲的物理化学原理[J].广东有色金属学报,2002,12(稀散金属专辑):55-58.
    [102]Rhee Kang-In, Lee Churl Kyoung, Ha Yoon-Cheol,et al.Tellurium recovery from cemented tellurium with minimum waste disposal[J].Hydrometallurgy, 1999,53(2):189-201.
    [103]张博亚,王吉坤.用选冶联合流程处理铜阳极泥的生产实践[J].中国有色金属,2007,(3):59-62.
    [104]李德良,唐鹤,黄念东,夏畅斌,王淀佐.选冶联合流程回收铜银金的工艺[J].中国有色金属学报,1993,9(3):615-618.
    [105]王吉坤,张博亚.铜阳极泥现代综合利用技术[M].北京:冶金工业出版社,2008,22-24.
    [106]陈少纯,顾珩,高远,吴昊.稀散金属产业的观察与思考[J].材料研究与应用,2009,3(4):216-222.
    [107]王晓明,孙竹贤.硒碲的生产现状与发展前景[J].中国有色冶金,2009,(1):38-43.
    [108]Mostafa M.. Purification of neutron-irradiated tellurium targets from cross radio-contamin ants by precipitation with 1,10-phenanthroline[J]. Separation and Purification Technology,2008,62(2):449-457.
    [109]Ali S.T.,Prasad D.S., Munirathnam N.R., Prakash T.L.. Purification of tellurium by single-run multiple vacuum distillation technique[J]. Separation and Purification Technology,2005,43(3):263-267.
    [110]Prasad D.S.,Munirathnam N.R.,RAO J.V.,Prakash T.L.. Purification of tellurium up to 5N by vacuum distillation[J].Materials Letters,2005,59(16):2035-2038.
    [111]Churbanov M F,Gersimenko V V,Shiryaew V S. Behavior of impurity inclusions during vacuum distillation of tellurium[J].Inorganic Materials,2001,37(10): 1017-1020.
    [112]Zaiour A., Zahraman K., Roumieb M., etal. Purification of tellurium to nearly 7N purity [J]. Materials Science and Engineering (B),2006,131(1-3):54-61.
    [113]Munirathnam N R., Prasad D S., Sudheer Ch.,etal. Purification of tellurium to 6N+ by quadruple zone refining[J]. Journal of Crystal Growth,2003,254(1-2): 262-266.
    [114]Anil G, Reddy M R P.,Prasad D S.,et al. Profiling of selenium removal in hydrogen ambient zone-refined tellurium bar using RF-GDOES[J].Materials Characterization,2007,58(1):92-95.
    [115]Roumie Mohamad, Zahramana Khaled, Zaiour Abdallah, et al. Study of segregation process of impurities in molten tellurium after one pass of three conjoint zones in zone refining[J]. Journal of Crystal Growth,2006,289(1): 260-268.
    [116]Prasad D.S., Munirathnam N.R., Rao J.V., Prakash T.L.. Effect of multi -pass, zone length and translation rate on impurity segregation during zone refining of tellurium[J].Materials Letters,2006,60(15):1875-1879.
    [117]李运刚.湿法处理铜阳极泥工艺研究(Ⅰ)[J].湿法冶金,2000,19(1):41~45.
    [118]沙梅.铜阳极泥浮选处理工艺及实践[J].有色冶炼,2003,(5):27-29.
    [119]刘殿文,张文彬.东川汤丹难处理氧化铜矿加工利用技术进步[J].中国工程科学,2005,7(增刊):260-265.
    [120]王吉坤.铜阳极泥现代综合利用技术[M].北京:冶金工业出版社,2008.
    [121]Wang Xue-wen, Chen Qi-yuan,Yin Zhou-lan, et al. Identification of arsenate antimonates in copper anode slimes[J]. Hydrometallurgy,2006,8(3/4):211-217.
    [122]Wang Xue-wen, Chen Qi-yuan, Yin Zhou-lan Homogeneous precipitation of As, Sb and Bi impurities in copper electrolyte during electrorefining[J]. Hydro-metallurgy,2011,105(3/4):355-358.
    [123]XIAO Fa-xin, ZHENG Ya-jie, WANG Yong, et al. Purification mechanism of copper electrolyte by As(III)[J]. Transaction of nonferrous metals society of China,2008,18(5):1275-1279.
    [124]Talip Havuz, Bunyamin Donmez, Cafer Celik. Optimization of removal of lead from bearing-lead anode slime[J]. Journal of Industrial and Engineering Chemistry,2010,16(3):355-358.
    [125]郑雅杰,汪蓓,史建远,孙召明,刘昭成.铜阳极泥预处理富集金银的研究[J].中南大学学报,2010,41(3):865-870.
    [126]曹锡章,宋天佑,王杏乔.无机化学[M].北京:高等教育出版社,1994:499-501
    [127]尹湘华.预脱铜阳极泥回转窑焙烧蒸硒生产实践[J].铜业工程,2000,(1):35-37.
    [128]杨昆山.配位化学[M].成都:四川大学出版社,1987:392-400.
    [129]伊赫桑·巴伦主编,程乃良、牛四通、徐桂英等译.纯物质热化学数据手册(上下卷)[M].北京:科学出版社,2003:795,1636.
    [130]Douglas K. Louie. Handbook of sulphuric acid manufacturing[M], Ontario: DKL Engineering, Inc,2005:2-64.
    [131]Frank Douglas Miles, Joseph Fenton. The solubility of sulfur dioxide in sulfuric acid[J]. Journal of the Chemical Society,1920,117:59-61.
    [132]Hunger T, Lapicque F, Storck A. Thermodynamic Equilibrium of Diluted SO2 Absorptioninto Na2SO4 or H2SO4 Electrolyte Solutions[J]. J. Chem. Eng. Data, 1990,35(4):453-463.
    [133]Zhang Qing-lin, Wang Hui, Dalla Lana Ivo G, Chuang Karl T. Solubility of Sulfur Dioxide in Sulfuric Acid of High Concentration[J]. Ind. Eng. Chem. Res. 1998,37(3):1167-1172.
    [134]Govindarao V. M. H, Gopalakrishna K. V. Solubility of Sulfur Dioxide at Low Partial Pressures in Dilute Sulfuric Acid Solutions[J]. Ind. Eng. Chem. Res. 1993,32(9),2111-2117.
    [135]朱元宝,沈子琛,张传福,黄德培,余振新,龚洪钟.电化学数据手册[M],长沙:湖南科学技术出版社,1984:21-23,64~72.
    [136]顾庆超,楼书聪,戴庆平,黄炳荣,李乔钧,黄剑朎.化学用表[M].南京:江苏科学技术出版社,1979:2.154.
    [137]常文保,李克安.简明分析化学手册[M].北京:北京大学出版社,1981:87.
    [138]Speight James G. LANGE'S HANDBOOK OF CHEMISTRY[M].New York: McGraw-Hill Companies, Inc,1999:3.32,6.96.
    [139]杨显万,何霭平,袁宝洲.高温水溶液热力学数据计算手册[M].北京:冶金工业出版社,1983:145,326-338,584-589,691.
    [140]林传仙,白正华,张哲儒.矿物及有关化合物热力学数据手册[M],北京:科学出版社,1985.
    [141]董静,储溱,李策,王跃明.碲的分离富集与分析研究进展[J].资源环境与工程,2010,24(1):84~88.
    [142]Maria Betti, Stefannarelli, Massimo Onor. Investigation of the behavior of tellurium(IV) and selenium(IV) in ion-exchange chromatograpy[J].Journal of chromatograpy(A),1997,779(1-2):147-154.
    [143]Wang Wen-ming, Fthenakis Vasilis. Kinetics study on of cadium from tellurium in acidic media using ion-exchange resins[J], Journal of Hazardous Material, 2005,125(B):80-88.
    [144]Bandyopadhyay M., Datta S., Sanyal S.K.. a mass transfer model for the hydrometallurgical extraction of Te(Ⅳ) by tri-n-butyl phosphate [J]. hydrometallurgy,1996,43(1-3):175-185.
    [145]Roy Chowdhury, Sanyal S.K, extraction of Te(Ⅳ) by tri-n-butyl phosphate[J], hydrometallurgy,1993,34(3):319-330.
    [146]Dilip Kumar Mandal, Badal Bhattacharya,Raj Dulal Das. Recovery of from chloride media using tri-iso-octylamine[J]. separation and purification technology,2004,40(2):177-182.
    [147]Balogha Ioseph S., Andruch Vasil. Comparative spectrophotometric study of the complexation and extraction of tellurium with various halide ions and N,N'-di(acetoxyethyl)indocarbocyanine[J]. Analytica Chimica Acta,1999,386 (1/2): 161-167.
    [148]张青莲.无机化学丛书(第五卷)[J].北京:科学出版社,1984:307-309,377.
    [149]郑雅杰,孙召明.催化还原法从含碲硫酸铜母液中回收碲的工艺研究[J].中南大学学报,2010,41(6):2109-2114.
    [150]李洪桂.冶金原理[M].北京:科学出版社,2005:318-320.
    [151]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社,1995:711-726.
    [152]付崇说.有色冶金应用基础研究[M].北京:科学出版社,1993,119-154..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700