用户名: 密码: 验证码:
易腐物品物流网络服务设施选址问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
易腐物品物流系统服务设施选址问题研究如何选择设施的数目和最优位置来为用户提供相应的服务,选址决策正确与否主要取决于选址决策后能否带来经济利益、效用、个人或社会的满足以及社会价值等。本论文以物品的易腐特性为切入点对网络选址中的诸多问题进行了创新性的和基础性的研究。
     论文首先介绍了选题的背景、意义和创新之处。文中给出易腐物品的定义及分类,介绍了易腐物品选址问题广泛的应用背景;并结合当代世界的经济、技术竞争环境及消费观念的变化,论述了选题的重要意义,提出了本研究的主要目标和内容。其次,论文总结了选址理论的产生、发展及国内外研究现状,总结了国内选址理论研究的特点和不足之处,介绍了应急系统基本选址模型、分销系统基本选址模型以及危险品集成物流系统基本选址模型,并介绍了选址问题中经常应用到的几种启发式算法。
     第三,论文从易腐物品的定义和分类出发,给出易腐物品生命周期函数的定义,分析了易腐物品生命周期函数的选用及拟合原则,详细说明了生命周期函数在选址问题中应用技巧和选址模型构建技巧。
     第四,论文分析了易腐物品应急系统优化的特点,将应急系统划分为公共应急服务系统以及私营应急服务系统这两个部分展开研究。在公共应急服务系统中研究了给定限期条件下易腐物品应急服务设施选址问题;在盈利性质的应急服务系统中研究了带双重机率约束的应急服务设施选址问题。
     第五,论文分析了易腐物品分销网络系统优化的内容和特点。以零售商满意度最大化为目标研究了面向零售商的供应链联盟伙伴选择模型,并研究了基于预算限制的易腐物品配送系统服务设施选址-分配问题以及基于AHP/DEA分析的选址问题这两类选址问题。
     第六,论文分析了易腐危险物品集成物流系统优化的内容和特点。研究了路网危险度瓶颈限制下危险品物流系统设施选址—运输路线选择问题。定义路网危险度瓶颈限制的概念,对应路网危险度瓶颈限制引入安全费用非递减函数,并以成本、风险、风险公平性为优化目标建立问题模型。
     最后对全文内容及研究结论和创新之处进行了总结,并对文中有待进一步深入研究的地方提出日后继续研究的方向和展望。
Facility location problem of perishable products logistics network is to decide how to choose the optimal location strategy to serve the customers in the network. The location strategy lies on its economic profit, personal or social satisfaction and social value. This dissertation focuses on products’perish ability and studies some kinds of location problems on network fundamentally with some innovative perspectives.
     Firstly, the thesis introduces the backgrounds, the significance, the innovative achievements and the motivations of choosing this topic. In this part, the definition and classification of perishable products is given in detail. After that, the broad usage of location research in perishable products logistics system is summarized. The magnificent significance is addressed and the main goal and contents of this thesis is presented by appraising contemporary world economy, international technology competitive environment and the evolution of consumption notions.
     Secondly, the thesis reviews the origination, evolution and the literatures of location theories, classifies the researches on location theory and analyzes the characteristics and insufficiencies of theoretic research of location in China. The thesis also appraises the basic location models of emergency system, distribution system and integrated hazardous materials logistics systems. Some heuristic algorithms that employed in network location problems are also introduced.
     Thirdly, according to the definition and classification of perishable products,the thesis defines lifecycle function of perishable products and analyzes the application skills of lifecycle function in location problems and modeling skills of location problems in perishable products logistics system based on the attentive scrutiny on the relationships of time satisfaction versus customer satisfaction, customer satisfaction versus customer retention.
     Fourthly, the thesis analyzes the characteristics of perishable emergency system and divides it into two parts, including public emergency system and private emergency system. In public emergency system, a location model of perishable emergency system considering a given deadline and logistics cost minimization is studied. In private emergency system, an emergency service location problem with bi-probability constrains is studied.
     Fifthly, the thesis analyzes the characteristics of perishable distribution network. A retailer-oriented decision model for selecting cooperation partners in supply chain is studied which considering retailer satisfaction maximization as object. Two kinds of location problems are studied. One is location-allocation model of perishable products distribution system based on budget limitation. The other is AHP based DEA analysis on logistics distribution centre location problem.
     Sixthly, the thesis analyzes the characteristics of integrated perishable hazardous logistics systems. A class of combined location-routing problems based on network risk bottleneck is studied. Network risk bottleneck limitation is defined. Security cost function is also defined. Cost, risk and risk equity are three objects.
     Finally, the thesis gives conclusion to the contents and the innovative achievements of the research, and presents the future scope, the purpose and the prospect of this topic in further studies.
引文
[1] 姜大立, 杜文, 陈效思. 二阶段易腐物品生产研究. 西南交通大学学报, 1998, 33(4): 430~435
    [2] 王清蓉, 杜文, 梁志杰. 多周期易腐库存模型及一种启发式算法. 昆明理工大学学报(理工版), 2005, 30(5): 106~110
    [3] 励凌峰, 黄培清, 骆建文. 易腐物品的库存管理研究. 系统工程, 2004, 22(3): 25~30
    [4] 余玉刚, 梁木梁, 王晨等. 一种考虑最终产品变质的供应商管理库存集成模型. 中国管理科学, 2004, 12(2): 32~37
    [5] Mittal V., Kamakura W. A. Satisfactions, repurchase intent, and repurchase behavior: investigation the moderating effect of customer characteristics. Journal of Marketing Research, 2001, 38: 131~142
    [6] Ernst R., Kamrad B. Evaluation of supply chain structures through modularization and postponement. European Journal of Operational Research, 2000, 124: 495~510
    [7] 欧忠文, 王会云, 姜大立. 应急物流. 重庆大学学报, 2004, 27(3): 164~167
    [8] 于梅. 急救中心经济运营中存在的问题与对策. 沿海企业与科技, 2005, 65(7): 74~75
    [9] 国家建设部: 关于加快市政公用行业市场化进程的意见, 2002
    [10] Akella M. R., Batta R., Delmelle E. M. et al. Base station location and channel allocation in a cellular network with emergency coverage requirements. European Journal of Operation Research, 2005, 164(2): 301~323
    [11] Goemans M. X., Skutella M. Cooperative facility location games. Journal of Algorithms, 2004, 50(2): 194~214
    [12] 周书葵, 许仕荣. 城市供水管网水质监测点优化选址的研究. 南华大学学报 (自然科学版), 2004, 18(3): 62~65
    [13] 常玉林, 王炜. 城市紧急服务系统优化选址模型. 系统工程理论与实践, 2000, 2: 104~107
    [14] 方磊, 何建敏. 应急系统优化选址的模型及其算法. 系统工程学报, 2003,18(2): 49~54
    [15] 韩娜. 外资快递企业的中国战略分析. 特区经济, 2005, 10: 328~329
    [16] 易加斌. 21 世纪中国零售业的发展趋势及对策. 哈尔滨商业大学学报(社会科学版), 2004, 3: 29~31
    [17] 顾亚竹, 邵晓娴. 我国零售业发展之对策. 商业研究, 2005, 4: 56~58
    [18] 方勇. 我国零售业发展的 SWOT 分析. 商业时代, 2005, 6: 18~19
    [19] 戢守峰. 我国零售业竞争取胜的法宝 — 核心竞争力分析. 商业研究, 2002, 5: 1~3
    [20] 张延祥, 巩振磊, 刘福存. 化学危险物品运输的防火技术措施. 物流科技, 2003, 26(6): 40~42
    [21] 孟广诰. 化学危险物品发生事故的原因与对策. 商品储运与养护, 1998, 3: 39~41
    [22] Chen M. C., Chiu A. L., Chang H. H. Mining changes in customer behavior in retail marking. Expert Systems with Applications, 2005, 28(4): 773~781
    [23] Spekman R., Salmond D., Kamauff J. At last procurement becomes strategic. Long-Range Planning. 1994, 27(2): 76~84
    [24] 蔡进. 从统计数据看我国物流发展现状. 中国储运, 2004, 1: 24~27
    [25] 廖海. 我国物流产业发展对策研究. 中国流通经济, 2004, 9: 16~18
    [26] 齐二石, 田青, 宋宁华. 物流系统规划设计方法综述. 天津大学学报(社会科学版), 2003, 5(3): 225~228
    [27] Daskin M. S. Network and discrete location: models algorithms and applications. New York: Wiley, 1995
    [28] Hakimi S. L. Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 1964, 12: 450~459
    [29] Cooper L. Location-allocation problems. Operations Research, 1963, 11: 331~343
    [30] Cooper L. Heuristic methods for location-allocation problems. Operations Research, 1964, 6: 37~53
    [31] Hakimi S. L. p-median theorems for competitive location. Annals of Operations Research, 1986, 5(1): 79~88
    [32] Goldman A. J. Optimal center location in simple networks. Transportation Science, 1971, 5: 212~221
    [33] Rosing K. E. An optimal method for solving the (generalized) multi-weber problem. European Journal of Operational Research, 1992, 58: 414~426
    [34] Garey M. R., Johnson D. S. Computers and intractability: a guide to the theory of NP-completeness. New York: Freeman, 1979
    [35] Francis R. L. On the location of multiple new facilities with respect to existing facilities. The Journal of Industrial Engineering, 1964, 15: 106~107
    [36] Francis R. L, Cabot A. V. Properties of a multifacility location problem involving Euclidean distance. Naval Research Logistics Quarterly, 1972, 19: 335~353
    [37] Chen R. Solution of minisum and minimax location-allocation problem with Euclidean distances. Naval Research Logistics Quarterly, 1983, 30: 449~459
    [38] Chen R., Handler G. Y. A relaxation method for the solution of the minimax location-allocation problem in Euclidean space. Naval Research Logistics Quarterly, 1987, 34: 775~788
    [39] Wesolowsky G. O. Dynamic facility location. Management Science, 1973, 19(11): 1241~1248
    [40] Wesolowsky G. O., Truscott W. G. The multiperiod location-allocation problem with relocation of facilities. Management Science, 1976, 22(1): 57~65
    [41] Drezner Z. On the conditional p-median problem. Computer and Operation Research, 1995, 22: 525~530
    [42] ReVelle C. The maximum capture or sphere of influence location problem: hotelling revisited on a network. Journal of Regional Science, 1986, 26 (2): 343~358
    [43] Lorena L. A. N., Senne E. L. F. A column generation approach to capacitated p-median problem. Computers and Operations Research, 2004, 31(6): 863~876
    [44] Fathali J., Taghizadeh K. H. Solving the p-median problem with Pos/Neg weights by variable neighborhood search an some results for special cases. European Journal of Operational Research, 2006, 170(2): 440~462
    [45] Berman O., Drezner Z., Wesolowsky G. O. Locating service facilities whose reliability is distance. Computers and Operations Research, 2003, 30(11): 1683~1695
    [46] Church R. L. COBRA: A new formulation of the class p-median location problem. Annals of Operations Research, 2003, 122(1): 103~120
    [47] Drezner Z. Dynamic facility location: the progressive p-median problem. Location Science, 1995, 3(1): 1~7
    [48] Chen R. Conditional minisum and minimax location-allocation problems in Euclidean space. Transportation Science, 1988, 22: 158~160
    [49] Chen R., Handler G. Y. The Conditional p-center problem in the plane. Naval Research Logistics, 1993, 40: 117~127
    [50] Kariv O., Hakimi S. An algorithmic approach to network location problems. II: The p-Medians, SIAM Journal on Applied Mathematics, 1979, 37: 539~560
    [51] Drezner Z., Wesolowsky G. O. A new method for the multifacility minimax location problem. Journal of the Operational Research Society, 1978, 24: 1507~1514
    [52] Francis R. L. On some problems of rectangular warehouse design and layout. The Journal of Industrial Engineering, 1967, 18: 595~604
    [53] Ward J. E., Wendell R. E. Using block norms for location modeling. Operations Research, 1985, 33: 1074~1090
    [54] Masuyama S., Ibaraki T., Hasegawa T. The computational complexity of the m-center problems on the plane. The Transactions of the institute of Electronics and Communication Engineers of Japan, 1981, 64E: 57~64
    [55] Megiddo N., Supowit K. On the complexity of some common geometric location problems. SIAM Journal on Computing, 1984, 13: 182~196
    [56] Caruso C., Colorni A., Aloi L. Dominant, an algorithm for the p-center problem. European Journal of Operation Research, 2003, 149: 53~64
    [57] Hassin R., Levin A., Morad D. Lexicographic local search and the p-center problem. European Journal of Operational Research, 2003, 151(1): 265~279
    [58] Levin Y., Israel A. B. A heuristic method for large-scale multi-facility location problems. Computers & Operations Research, 2004, 31: 257~272
    [59] Roth R. Computer solutions to minimum cover problems. Operation Research, 1969, 17: 455~465
    [60] Toregas C. S., ReVelle R. C., Bergman L. The location of emergency service facilities. Operation Research, 1971, 19: 1363~1373
    [61] Minieka E. The m-center problem. SIAM Review, 1970, 12: 138~139
    [62] Moore G., ReVelle C. The hierarchical service location problem. Management Science, 1982, 28: 775~780
    [63] Plane D. R., Hendrick T. E. Mathematical programming and the location of fire companies for the Denver fire department. Operations Research, 1977, 25: 563~578
    [64] Daskin M. S., Stern E. H. A hierarchical objective set covering model for emergency medical service vehicle deployment. Transportation Science, 1981, 15(2): 137~152
    [65] Garey M. R, Johnson D. S. Computers and intractability: a guide to the theory of NP-completeness. New York: Freeman, 1979
    [66] Fisher M. L., Kedia P. Optimal soluteion of set covering/partitioning problems using dual heuristics. Management Sience, 1990, 36: 674~688
    [67] Beasley J. E., Jornsten. K. Enhancing an algorithm for set covering problems. European Journal of Operational Research, 1992, 58: 293~300
    [68] Marcos A., Jesus T. P. An adaptation of SH heuristic to the location set covering problem. European Journal of Operational Research, 1997, 100: 586~593
    [69] Beasley J. E., Chu P. C. A genetic algorithm for the set covering problem. European Journal of Operational Research, 1996, 94: 392~404
    [70] Grossman T., Wool A. Computational experience with approximation algorithms for the set covering problem. European Journal of Operational Research, 1997, 101: 81~92
    [71] Karp R. M. Reducibility among combinatorial problems, in: R. E. Miller and J. W. Thatcher (eds.), Complexity of Computer Computations. New York: Plenium Press, 1972
    [72] Daskin M. S. Network and disctete location: models, algorithms, and applications. New York: Wiley Interscience, 1995
    [73] Church R. L., ReVelle C. The maximal covering location problem. Papers of Regional Science Association, 1974, 32: 101~118
    [74] Church R. L., Meadows M. E. Location modeling utilizing maximum service distance criteria. Geographical Analysis, 1979, 11: 358~373
    [75] Chiang C. I., Hwang M. J., Liu Y. H. An alternative formulation for certain fuzzyset-covering problems. Mathematical and Computer Modelling, 2005, 42: 363~365
    [76] Benedict J. Three hierarchical objective models which incorporate the concept of excess coverage for locating EMS vehicles or hospital. M. Sc. Thesis, Northwestern University, Evanston Ⅱ, 1983
    [77] Hogan K., ReVelle C. S. Conception and applications of backup coverage. Management Science, 1986, 32: 1432~1444
    [78] Daskin M. S. A maximum expected covering location problem: formulation, properties, and heuristic solution. Transportation Science, 1983, 17: 48~70
    [79] Aytug H., Saydam C. Solving large-scale maximum expected covering location problems by genetic algorithms: a comparative study. European Journal of Operation Research, 2002, 141: 480~494
    [80] Fernando Y. C., Roberto D. G., Reinaldo M. A note on solutions to the maximal expected covering location problem. Computers & Operation Research, 2002, 30: 87~96
    [81] Berman O. The p maximal cover: p partial center problem on networks. European Journal of Operation Research, 1994, 72: 432~442
    [82] Berman O., Krass D. The generalized maximal covering location problem. Computers & Operations Research, 2002, 29: 563~581
    [83] Berman O., Krass D., Drezner Z. The gradual covering decay location problem on a network. European Journal of Operational Reseach, 2003, 151: 474~480
    [84] Karasakal O., Karasakal E. K. A maximal covering location model in the presence of partial coverage. Computers & Operations Research, 2004, 31: 1515~1526
    [85] Jaramillo J. H., Bhadury J., Batta R. On the use of genetic algorithms to solve location problems. Computers & Operations Research, 2002, 29: 761~779
    [86] Cornuejols G., Fisher M., Nemhauser G. L. On the uncapacitated location problem. Annals of Discrete Mathmatics, 1977, 1: 163~177
    [87] Swain R. A parametric decomposition approach for the solution of uncapacitated location problems. Management Science, 1974, 21: 189~198
    [88] Barros A., Labbe M. A general model for the uncapacitated facility and depot location problem. Location Science 1994, 2: 173~191
    [89] Holmberg K. Exact solution methods for uncapacitated location with convex transportation costs. European Journal of Operational Research, 1998, 114: 127~140
    [90] Geoffrion A. M., McBride R. Lagrangean relaxation applied to capacitated facility location problems. American Institute of Industrial Engineers Transactions, 1978, 10: 40~47
    [91] Mukundan S., Daskin M. S. Joint location/sizing maximum profit covering models. INFOR, 1991, 29(2): 139~152
    [92] Hinojosa Y., Puerto J., Fernandez F. R. A multiperiod two-echelon multicommodity capacitated plant location problem. European Journal of Operation Research, 2000, 123: 45~65
    [93] Melkote S., Daskin M. S. Capacitated facility location/network design problems. European Journal of Operational Research, 2001, 129: 481~495
    [94] Baldacci R., Hadjiconstantinou E., Maniezzo B. et al. A new method for solving capacitated location problems based on a set partitioning approach. Computers & Operation Research, 2002, 29: 365~386
    [95] Hodgson J. A flow-capturing location allocation model. Geographical Analysis, 1990, 22(3): 270~279
    [96] Berman O., Fouska N., Larson R. C. Optimal location of discretionary service facilities. Transportation Science, 1992, 26(3): 201~211
    [97] Mirchandani P. B., Rebello R., Agnetis A. The inspection station location problem in hazardous materials transportation: some heuristics and bound. INFOR, 1995, 33: 100~113
    [98] Hodson M. J., Rosing K. E., Schmulevitz F. A review of locaton-allocation applications literature. Studies in Locational Analysis, 1993, 5: 3~29
    [99] Averbakh I., Berman O. Minimax regret robust median location on a network under uncertainty. Working Paper, 1997
    [100] Berman O., Krass D. Flow intercepting spatial interaction model: a new approach to optimal location of competitive facilities. Location Science, 1998, 6(1): 41~65
    [101] Gurnani H., Drezner Z., Akella R. Capacity planning under different inspection strategies. European Journal of Operational Research, 1996, 89: 302~312
    [102] Yang. H., Yang. C. An algorithm for optimal selection of cordon-screen in road networks, 2001, to appear in Computer & OR
    [103] O’Kelly M. E. The location of interacting hub facilities. Transportation Science, 1986, 20: 92~106
    [104] O’Kelly M. E. Activity levels at hub facilities in interacting networks. Geographical Analysis, 1986, 18: 343~356
    [105] Marianov V. Location of hubs in a competitive environment. European Journal of Operational Research, 1998, 114: 363~371
    [106] Kara B. Y., Tansel B. C. On the single-assignment p-hub center problem. European Journal of Operation Research, 2000, 125: 648~655
    [107] Ebery J., Krishnamoorthy M. The capaciated multiple allocation hub location problems: formulation and algorithms. European Journal Operational Research, 1999, 120: 614~631
    [108] Curry G. L., Skeith R. W. A dynamic programming algorithm for facility location and allocation. American Institute of Industrial Engineers Transactions, 1969, 1: 133~138
    [109] Geoffrion A. M., Graves G. W. Multicommodity distribution system design by benders decomposition. Management Science, 1974, 20: 822~844
    [110] Wesolowsky G. O., Truscott W. G. The multiperiod location-allocation problem with relocation of facilities. Management Science, 1975, 22 (1): 57~65
    [111] Goodchild M. F. Spatial choice in location-allocation problems: The role of endogenous attraction. Geographical Analysis, 1978, 10: 65~72
    [112] Goodchild M. F. The aggregation problem in location-allocation. Geographical Analysis, 1979, 11: 240~255
    [113] Hodson M. J. Toward more realistic allocation in locaton-allocation models: an interaction approach. Invironment and Planning, 1993, A(10): 1273~1285
    [114] Marianov V., Serra D. Location-allocation of multiple-server service centers with constrained queues or waiting times. Annals of Operations Research, 2002, 111: 35~50
    [115] Brotcorne L., Laporte G., Semet F. Ambulance location and relocation models: invited review. European Journal of Operational Research, 2003, 147: 451~463
    [116] Carbone R. Public facilities under stochastic demand. INFOR, 1974, 12 (3): 261~270
    [117] Weaver J. R., Church R. L. Computational procedure for location problems on stochastic networks. Transportation Science, 1983, 17(2): 168~180
    [118] Berman. O., Odoni A. R. Locating mobile facilities on a network with markovian properties. Networks, 1982, 12: 73~86
    [119] Berman O., LeBlanc. Location-relocation of mobile facilities on a stochastic network. Transportation Science, 1984, 18(4): 315~330
    [120] Mirchandani P. B. Locational decisions on stochastic networks. Geographical Analysis, 1980, 12(2): 172~183
    [121] Daskin M. S. Application of an expected covering model to emergency medical service system design. Decision Sciences, 1982, 13(3): 416~439
    [122] Daskin M. S. A maximum expected covering location model: formulation properties and heuristic solution. Transportation Science, 1983, 17(1): 48~70
    [123] ReVelle C., Hogan K. The maximum reliability location problem and a-reliable p-center problem: derivatives of the probabilistic location set covering problem. Annals of Operations Research, 1989, 18: 155~174
    [124] Ghosh A., Craig C. S. Formulating retail location strategy in a changing environment. Journal of Marketing, 1983, 47: 56~58
    [125] Vanston J. H., Frisbie W. P., Lopreato S. C. et al. Alternate scenario planning. Technological Forecasting and Social Change, 1977, 10: 159~180
    [126] Amara R., Lipinski A. J. Business planning for an uncertain future. Oxford: Pergamon Press, 1983
    [127] Georgantzas N. C., Acar W. Scenario-driven planning: leaning to manage strategic uncertainty. Quorum Books, 1995
    [128] Heijden K. V. Probabilistic planning and scenario planning. in: G. Wright, P. Ayton(Eds. ), Subjective Probability. New York: Wiley, 1994
    [129] Averbakh I., Berman O. Minimax regret p-center location on a network with demand uncertainty. Location Science, 1997, 5(4): 247~254
    [130] Serra D., Ratick S., Revelle C. The maximum capture problem with uncertainty. Environment and Planning, 1996, 23: 49~59
    [131] Serra D., Marianov V. The p-median problem in a changing network: the case of barcelona. Location Science, 1998, 6: 383~394
    [132] Ghosh A., McLafferty S. L. Locating stores in uncertain environments: a scenario planning approach. Journal of Retailing, 1982, 58(4): 5~22
    [133] Ballou R. H. Dynamic warehouse location analysis. Journal of Marketing Research, 1968, 5: 271~276
    [134] Sweeney D. J., Tatham R. L. An improved long-run model for multiple warehouse location. Management Science, 1976, 22(7): 748~758
    [135] Scott A. J. Dynamic location-allocation systems: some basic planning strategies. Environment and Planning, 1971, 3: 73~82
    [136] Tapiero C. S. Transportation-location-allocation problems over time. Journal of Regional Science, 1971, 11(3): 377~384
    [137] VanRoy T. J., Erlenkotter D. A dual-based procedure for dynamic facility location. Management Science, 1982, 28(10): 1091~1105
    [138] Gunawardane G. Dynamic versions of set covering type public facility location problems. European Journal of Operational Research, 1982, 10: 190~195
    [139] Huff D. L. Defining and estimating a trading area. Journal of Marketing, 1964, 28: 34~38
    [140] Nakanishi M., Cooper L. G. Parameter estimates for multiplicative competitive interaction models least square approach. Journal of Marketing Research, 1974, 11: 201~311
    [141] Drezner T. Locating a single new facility among existing unequally attractive facilities. Journal of Regional Science, 1994, 34(2): 237~252
    [142] Drezner T., Drezner Z., Eiselt H. A. Consistent and inconsistent rules in competitive facility choice. Journal of the Operational Research Society 1996, 47: 1494~1503
    [143] Marianov V., Serra D., ReVelle C. Location of hubs in a competitive environment. European Journal of Operational Research, 1999, 114(2): 363~371
    [144] Drezner T., Drezner Z., Salhi S. Solving the multiple competitive facilities location problem. European Journal of Operational research, 2002, 142: 138~151
    [145] 后德君, 肖秋霞, 张坤. 基于模糊聚类的 RDC 选址的研究. 微机发展, 2004,14(2): 43~45
    [146] 何刚, 魏连雨. 基于人工神经网络第三方物流企业的物流中心选址研究. 物流科技, 2004, 27(3): 4~7
    [147] 何亚群, 胡寿松. 基于粗糙集的空军航材供应点的偏好选址. 系统工程理论与实践, 2003, 7: 95~99
    [148] 孙会君, 高自友. 一类有竞争的物流配送中心选址模型. 交通运输工程学报, 2002, 2(4): 54~57
    [149] 孙会君, 高自友. 考虑路线安排的物流配送中心选址双层规划模型及求解算法. 中国公路学报, 2003, 16(2): 115~119
    [150] 杨波. 多品种随机数学模型的物流配送中心选址问题. 中国管理科学, 2003, 11(2): 45~49
    [151] 袁庆达, 陈旭梅, 黎青松. 基于“服务型”物流战略的 p-Center 选址问题研究. 西南交通大学学报, 2001, 36(3): 250~253
    [152] 陈子侠. 考虑售后服务和配送成本的选址问题系统的建模仿真. 计算机工程, 2003, 29(7): 23~23
    [153] 谭凌, 高峻峻, 王迎军. 基于库存成本优化的配送中心选址问题研究. 系统工程学报, 2004, 19(1): 59~65
    [154] 姜大立, 杨西龙. 易腐物品配送中心连续选址模型及其遗传算法. 系统工程理论与实践, 2003, 2: 62~67
    [155] 李尔涛, 唐孝飞, 胡思继. 一个物流网络的双层规划模型. 系统工程学报, 2004, 19(1): 8~13
    [156] 张培林, 魏巧云. 物流配送中心选址模型及其启发式算法. 交通运输工程学报, 2003, 3(2): 65~68
    [157] 张显东, 梅广清, 张学兵等. 市场竞争条件下的供应商选址模型研究. 运筹与管理, 1998, 7(2): 1~6
    [158] 陈曦, 傅明. GIS 环境下的物流配送中心选址模型与算法研究. 计算技术与自动化, 2001, 20(4): 6~9
    [159] 马正元, 黄斌. Hopfield 人工神经网络在物流配送中心选址优化中的应用. 组合机床与自动化加工技术, 2003, 3: 24~26
    [160] 姜大立, 杜文, 张拥军. 易腐物品物流配送中心选址的遗传算法. 西南交通大学学报, 1998, 33(4): 425~42916(5): 35~37
    [162] 谢友才. 快速反应中心的选址问题及动态解法. 宁波大学学报(理工版) , 2003, 16(3): 302~304
    [163] 刘春林, 盛昭瀚, 何建敏. 基于连续消耗应急系统的多出救点选择问题. 管理工程学报, 1999, 13(3): 13~16
    [164] 方磊, 何建敏. 城市应急系统优化选址决策模型和算法. 管理科学学报, 2005, 8(1): 12~16
    [165] 孙会君, 高自友. 供应链分销系统双层优化模型. 管理科学学报, 2003, 6(3): 66~70
    [166] 孙会君, 高自友. 基于空间价格均衡的物流中心选址双层规划模型研究. 土木工程学报, 2003, 36(7): 39~42
    [167] 王刊良, 许寅峰, 汪应洛. 一个有害物品填埋场选址的决策支持系统. 系统工程理论与实践, 1997, 11: 60~65
    [168] 王刊良, 许寅峰. 有害危险品运输网络中的检查站选址问题. 管理工程学报, 1999, 13(增刊): 17~20
    [169] 王刊良, 有害危险物品后勤学的研究动态. 系统工程理论与实践, 2000, 7: 112~117
    [170] 孙会君, 高自友. 有害物质安全存储地点的选址模型研究. 中国安全科学学报, 2002, 12(4): 36~39
    [171] 吕关锋. 利用城市 GIS 中数据信息进行消防站的选址. 消防科学与技术, 2001, 3: 28~28
    [172] Brotcorne L., Laporte G., Semet F. Ambulance location and relocation models. European journal of operational research, 2003, 147(3): 451~463
    [173] Sviridenko M. I. Worse-case analysis of the greedy algorithm for a generalization of maximum p-facility location problem. Operation Research Letters, 2000, 26(4): 193~197
    [174] Bollapragada R., Camm J., Rao U. S. et al. A two-phase greedy algorithm to locate and allocation hubs for fixed-wireless broadband access. Operation Research Letters, 2005, 33(2): 134~142
    [175] Maranzana F. E. On the location of supply points to minimize transport costs.Operational Research Quarterly, 1964, 15: 261~270
    [176] Ahuja R. K, Ergun O., Orlin J. et al. A survey of very large-scale neighborhood search techniques. Discrete Applied Mathematics, 2002, 123: 75~102
    [177] Ghosh D. Neighborhood search heuristic for the uncapacitated facility location problem. European Journal of Operational Research, 2003, 150(1): 150~162
    [178] Teitz M. B., Bart P. Heuristic methods for estimating the generalized vertex median of a weighted graph. Operations Research, 1968, 16: 955~961
    [179] Van L. P., Aarts E., Lenstra J. Job shop scheduling by simulated annealing. Operations Research, 1992, 40: 113~125
    [180] Holland J. H. Adaptation in natural and artificial systems. MI: University of Michigan Press, 1975
    [181] Dorigo M., Maniezzo V., Colomi A. The ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, 1996, 26(1): 29~41
    [182] Gambardella L. M., Taillard E. D., Dorigo M. Ant colonies for the QAP. Journal of the Operational Research Society, 1999, 50(2): 167~176
    [183] Costa D., Hertz A. Ants can color graphs. Journal of the Operational Research Society, 1997, 48(3): 295~305
    [184] 胡小兵, 黄席樾. 蚁群优化算法及其应用. 计算机仿真, 2004, 21(5): 81~85
    [185] 林国辉, 马正新等. 基于蚂蚁算法的拥塞规避路由算法. 清华大学学报(自然科学版), 2003, 43(1): 37~43
    [186] 马良, 项培军. 蚂蚁算法在组合优化中的应用. 管理科学学报, 2001, 4(2): 32~37
    [187] Glover F. Future paths for integer programming and links to artificial intelligence. Computers and Operations Research, 1986, 13: 533~540
    [188] Metropolis N., Rosenbluth A., Rosenbluth M. et al. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 1953, 21: 1087~1092
    [189] Kirkpatrick S., Gelatt C. D., Vecchi M. P. Optimization by simulated annealing. Science, 1983, 220: 671~680
    [190] Hopfield J., Tank D. Neural computation of decisions in optimization problems. Biological Cybernetics, 1985, 52: 141~152
    [191] Hopfield J., Tank D. Computing with neural circuits: a model. Science, 1986, 233: 625~633
    [192] 杨维, 李歧强. 粒子群优化算法综述. 中国工程科学, 2004, 6(5): 87~94
    [193] 殷志祥, 董亚非, 许进. 组合优化中的 DNA 计算. 计算机工程与应用, 2002, 19: 25~27
    [194] 罗子明. 顾客时间满意度. 商业研究, 2002, 11: 27~29
    [195] Whitin T. M. Theory of inventory management. Princeton: Princeton University Press, 1957
    [196] Ghare P. N., Schrader G. F. A model for exponentially decaying inventories. Journal of Industrial Engineering, 1963, 15: 238
    [197] Nahmlas S., Wang S. A heuristic lot-size reorder point model for decaying inventories. Management Science, 1979, 25: 90
    [198] Kalpakam S., Shanthi S. A perishable inventory system with modified (S-1, S)policy and arbitrary processing times. Computers & Operations Research, 2001, 28: 453~471
    [199] Chiu H. N. An approximation to the continuous review inventory model with perishable items and lead times. European Journal of Operational Research, 1995, 87: 93~108
    [200] Nahmias S. Perishable inventory theory: a review. Operations Research, 1982, 30(4): 680~708
    [201] Van Z. G. Inventory control for perishable commodities. Ph. D. Dissertation, University of North Carolina, Chaple Hill, NC, 1964
    [202] Nahmias S. Optimal ordering policies for perishable inventory-Ⅱ.Operations Research, 1975, 23(4): 735~749
    [203] Fries B. E. Optimal ordering policy for a perishable commodity with fixed lifetime. Operations Research, 1975, 23(1): 46~61
    [204] Nahmias S., Wang S. S. A heuristic lot size reorder point model for decaying inventories. Management Science, 1979, 25(1): 90~97
    [205] Dave U., Pandya B. Inventory returns and special sales in a lot-size system with constant rate of deterioration. European Journal of Operational Research, 1985, 19: 305~312
    [206] Shiue Y. C. An inventory model for perishable items in a lot-size system with quantity discounts. European Journal of Operational Research, 1990, 45: 260~264
    [207] Saaty T. L. Fundamentals of decision making and priority theory with the analytic hierarchy process. RWS Publications, 1994
    [208] Hwang H. S. A stochastic set-covering location model for both ameliorating and deteriorating items. Computers & Industrial Engineering, 2004, 46: 313~319
    [209] 蒋长兵, 王姗姗. 精确重心算法在物流节点选址中的应用. 物流技术, 2005, 9: 65~67
    [210] Berman O., Drezner Z., Wesolowsky G. O. Locating service facilities whose reliability is distance dependent. Computers and Operations Research, 2003, 30: 1683-1695
    [211] Arie T., Dionision P. B., José A et al. Polynomial algorithm for the p- centdian problem on a tree. Networks, 1998, 32 (14): 255~262
    [212] Tamir A., Puerto J., Brito P. et al. The centdian subtree on tree networks. Discrete Applied Mathematics, 2002,118(3): 263~278
    [213] 陈伯成. 利用距离矩阵求绝对中心及绝对重心的讨论(p=1). 系统工程理论与实践, 1997, 1: 1~7
    [214] 杨晓光, 张建中, 蔡茂诚. 两个逆网络选址问题的计算复杂性. 系统科学与数学, 2002, 22(3): 321~327
    [215] 姜忠义, 唐恒永. 网络选址的赋权中心和赋权重心问题. 沈阳师范大学学报(自然科学版), 2005, 23(2): 120~122
    [216] 方磊, 何建敏. 应急系统优化选址的模型及其算法. 系统工程学报, 2003, 18(1): 49~53
    [217] 方磊, 何建敏. 给定限期条件下的应急系统优化选址模型及算法. 管理工程学报, 2004, 18(1): 48~51
    [218] 殷梅英,王梦光,刘士新。供应链分销阶段运作绩效评价。系统工程理论方法与应用,2004, 13(5): 400~403
    [219] Fare R., Grosskopf S. Network DEA. Socio-Economic Planning Sciences, 2000(34): 35~49
    [220] Lewis H. F., Sexton T. R. Network DEA: efficiency analysis of organizations withcomplex internal structure. Computers & Operations Research, 2004, 31: 1365~1410
    [221] 马祖军. 基于遗传算法的供应链联盟伙伴选择. 系统工程理论与实践,2003, 9: 81~84
    [222] 陈静杰,王扶东,朱云龙等. 基于群决策的供应链伙伴选择与评价过程. 控制与决策, 2002, 11: 690~698
    [223] Person G. Logistics service providers and supply chain alliances. The 10th International Annual IPSERA Conference, 2001:707~724
    [224] Rosing K.E., Revelle C. S., Schiling D. A. A gamma heuristic for the p-median problem. European Journal of Operational Research,1999,117:52
    [225] Charnes A., Cooper M. M. Measuring the efficiency of decision making units. European Journal of Operational Research, 1978(2):429~444
    [226] Cooper W. W., Seiford L. M., Thanassoulis E. et al. DEA and its uses in different countries. European Journal of Operational Research, 2004, 154: 337~344
    [227] Kleine A. A general model framework for DEA. Omega, 2004,32(1): 17~23
    [228] 汪寿阳,赵秋红,夏国平. 集成物流管理系统中定位 — 运输路线安排问题的研究. 管理科学学报, 2000, 3(2): 69~75
    [229] Hansen P., Mladenovic N. Variable neighborhood search for the p-median. Location Science, 1997, 5(4): 207~226
    [230] Ghosh D. Neighborhood search heuristics for the uncapacitated facility location problem. European Journal of Operational Research, 2003, 150: 150~162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700