用户名: 密码: 验证码:
汶川地震重灾区地质灾害危险性评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震触发区域地质灾害危险性评估是地质灾害风险评估中的重点问题之一,论文依托973项目课题专题“汶川地震重大次生山地灾害风险管理系统研究”和十一五科技支撑课题“重大地质灾害监测预警及应急救灾关键技术研究”,以汶川Ms8.0级强烈地震重灾区的11县市作为研究区,针对强烈地震触发地质灾害的应急快速评估和震后降雨及潜在地震诱发地质灾害危险性进行了评估研究,并主要取得了下列进展和成果:
     1.建立并初步改进了基于简化Newmark累积位移模型的地震滑坡危险性评估模块,探索提出地震地质灾害损失快速评估的技术方法。利用汶川地震即时地震动参数、工程地质岩性经验分组及地形坡度数据,进行了汶川地震重灾区地质灾害危险性及其损失快速评估,为应急救灾决策提供了实用的科技支持。
     2.初步揭示了汶川地震重灾区地质灾害分布规律:汶川地震地质灾害的区域空间分布明显受龙门山断裂带、地形地貌及水系沟谷等要素控制。地质灾害类型以崩塌、滑坡、泥石流、碎屑流(群)及崩滑-碎屑流为主,其次包括砂土液化和地面塌陷等;其中前3种以及崩滑-碎屑流危害相对严重,而碎屑流(群)分布面积最广;在震后恢复重建过程中,大量结构松动的岩土体及堆积于坡体表层或河谷两岸的松散崩滑流碎屑物,极易被强降雨或河流搬运形成泥石流灾害,成为最具威胁性的地质灾害隐患形式,也明确指示了地震地质灾害滞后性及链生性的时间序列分布特征。
     3.以文家沟地震滑坡-碎屑流研究为例,初步揭示典型地震高速远程滑坡-碎屑流的基本特征、成因机理和演化过程;指出汶川地震广泛诱发的高速远程滑坡-碎屑流不仅造成了重大的损失,而且易于在暴雨期间再次产生泥石流灾害,需要在重建过程中引起高度注意;该灾难性滑坡事件分析为潜在强震地区重大隐患地质灾害调查及危险性评估提供了参考。
     4.以平武县水观乡石坎河流域作为示范区,利用震后2.5m分辨率的SPOT5即时遥感影像,进行了基于影像分类技术的地震滑坡快速制图技术的比选分析;提出面向对象特征提取与人工判识结合的方法,对北川县湔江等4条灾害多发流域进行了地震滑坡精准解译;进一步修改完善了地震地质灾害强度评估的技术方法,分别利用地质灾害面密度和快速解译灾点密度,对重点流域和重灾区地质灾害强度进行了评估和等级划分,为地质灾害强度快速评估奠定了基础。
     5.利用简化Newmark模型,对汶川地震诱发滑坡易发性、危险性和损失进行快速反演评估,结果显示在高损失区域内包括了映秀镇、北川县、南坝镇等地,青川县处于高中损失水平过渡区,而平武县和叠溪镇处于中低损失水平地区,这些结论在现场调查过程中均得到了较好的验证。
     6.利用信息量模型进行了震后地质灾害易发性评估,指出了震后潜在滑坡及泥石流物源的区域分布特征。利用Weibull概率模型预测了2年内累积概率密度为90%(即超越概率为10%)的日最大降雨量分布,进而利用安全系数Fs的计算方法对降雨诱发地质灾害的危险性进行了评估;利用改良的Newmark位移模型对50年超越概率10%的潜在地震诱发地质灾害危险性进行了评估,结果表明地质灾害高危险区主要沿发震断裂带所控制的地质灾害密集发育区分布,评估结果对汶川地震灾区灾后重建和减灾防灾具有重要的指导意义。
Seismic landslides hazard assessment is one of the key issues in landslide risk assessment framework. This thesis takes Wenchuan Ms 8.0 earthquake severely afflicted 11 counties as study area. Emergency response rapid assessment of landslides triggered by intensive earthquake and post-earthquake hazard assessment of due to future rainfall and potential earthquake is researched; main progresses and resulrts is achieved as following:
     1. Seismic landslide hazard assessment model based on simplified Newmark cumulative displacement is preliminarily developed and improved using Arcgis spatial analysis modeling function, the method of seismic landslide loss rapid assessment is provided. With the real-time earthquake ground motion parameters of Wenchuan earthquake, empirical engineering geology lithology formations, topographic slope data, rapid back analysis assessment of landslide hazard and the loss due to Wenchuan earthquake is carried out; the results provide scientific and technological support for emergency response dicision-making.
     2. Spatial distribution of seismic landslides triggered by Wenchuan earthquake is significantly affected by Longmenshan fracture zone, topography and stream valleys. The seismic geohazards mainly consist of collapses, landslides, debris flows, debris slide (s) and debris-avalanches, followed by sandy soil liquefaction and ground subsidence. The former 3 geohazard types and debris-avalanches usually cause more damage, and debris flow (s) distribute most widely. In the post-earthquake reconstruction, lots of loose structural rock & soil mass and landslide debris deposits located in slope surface and valley banks can be easily carried by heavy rainfall or river flow to transform into debris flows, to become the most threatening geohazard type. This evolutionary process indicates the post-earthquake lag and chain characters of seismic landslides.
     3. Taking Wenjiagou seismic debris-avalanche for case study, the inducing context, ground motion triggering mechanism, spatial characteristics and evolution process of high-speed and long runout of debris-avalanche are analyzed. It is indicated that widely spread debris-avalanches triggered by Wenchuan earthquake do not only cause lots of damage, but also be easy to transform into new debris flows due to rainfall, which should be paid more attention to in reconstruction after the earthquake. At the same time, this case study provides reference for investigation and hazard assessment of major hidden landslides in potential intensive earthquake zone similar to Longmenshan structural zone.
     4. With 2.5m-resolution SPOT5 remote sensing image of Shikanhe river basin shot immediately after the earthquake, rapid identification and extraction methods of seismic landslide based on image classification techniques are comparatively analyzed. With the method of composing object-oriented feature extraction and artificial interpretation, seismic landslides in Shikanhe river, Jianjiang river, Mianyuanhe river and Minjiang river basins is accurately interpreted. The seismic landslide intensity levels of typical river basins and whole study area is assessed using area and point density respectively.
     5. Results of seismic landslides susceptibility, hazard and loss rapid invesion assessment in Wenchuan earthquake with simplified Newmark model show that Yingxiu township, Beichuan county, and Nanba township etc. locate in heavy loss zone, Qingchuan county lies in transition zone from heavy to moderate loss zone, Pingwu county and Diexi township lie in light loss zone; these results are well validated in field investigation.
     6. Post-earthquake landslide susceptibility is assessed using information model; the result indicates regional distribution of potential landslides and substance source for debris-flows. The daily maximum rainfall value with 90%'s cumulative probability density (10% probability of exceedance) in 2 years is predicted using Weibull probability density function model; then the landslide hazard assessment due to future rainfall is carried out with the safety factor Fs calculation. Consequently, the landslide hazard assessment due to potential earthquake with 10% probability of exceedance in 50 years is assessed with the improved Newmark displacement model; the result shows that highly landslide hazard zone mainly locate in landslide clustering area controlled by the seismic faults, and provides valuable guidance for reconstruction in Wenchuan earthquake severly afflicted area and hazard mitigation and prevention.
     This thesis is supported by 973 Project subject "Study on risk management system of major secondary landslides triggered by Wenchuan earthquake" and 11th 5-year Science and Technology Support program "Study on monitoring & warning of major landslides and key technology of emergency response".
引文
1. 第394号国务院令,地质灾害防治条例.2004.
    2. Harris, G.M., A.P. Beardow, The destruction of Sodom and Gomorrah:a geotechnical perspective. Quarterly Journal of Engineering Geology,1995.28(4):p.349-362.
    3. Schuster, R.L. The 25 most catastrophic landslides of the 20th century.in the 8th International Conf.& Field Trip on Landslides.1996. Granada, Spain:Rotterdam:Balkema.
    4. Interior, U.S.D.o.t., USGS. Catastrophic Landslids of the 20th Century-Worldwide.2007 [from:http://landslides.usgs.gov/learning/majorls.php
    5. Wilson, R.C., D.K. Keefer, Predicting areal limits of earthquake induced landsliding. Geological Survey Professional Paper,1985.1360:p.317-345.
    6. Keefer, D.K., Statistical analysis of an earthquake-induced landslide distribution--the 1989 Loma Prieta, California event. Engineering Geology,2000.58(3-4):p.231-249.
    7. Dunning, S.A., W.A. Mitchell, N.J. Rosser, et al., The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005[J]. Engineering Geology,2007.93(2007):p.103-144.
    8. Bommer, J.J., C.E. Rodr(?)guez, Earthquake-induced landslides in Central America. Engineering Geology,2002.63(3-4):p.189-220.
    9. 顾功叙,中国地震目录:公元前1831年-公元1969年.北京:科学出版社,1983.
    10. Chen, T.-C., M.-L. Lin, J.-J. Hung, Pseudostatic analysis of Tsao-Ling rockslide caused by Chi-Chi earthquake. Engineering Geology,2004.71(1-2):p.31-47.
    11. 李树德,任秀生,岳升阳,等.,地震滑坡研究.水土保持研究,2001.8(2):p.24-25.
    12. 国家地震局,兰州地震研究所,宁夏自治区地震队,1920年海原大地震.1980.
    13. 中国水利水电科学研究院水利史研究室,1933年岷江叠溪地震堰塞湖的形成及次生灾害.中国水利,2008.抗震救灾特别策划:p.88-89.
    14. 四川省地震局,一九三三年叠溪地震.四川科学技术出版社,1983.
    15. 国务院,国务院关于印发汶川地震灾后恢复重建总体规划的通知.2008.
    16. 陈运泰,汶川特大地震的震级和断层长度.科技导报,2008.26(10):p.26-27.
    17. 朱介寿,汶川地震的岩石圈深部结构与动力学背景.成都理工大学学报(自然科学版),2008.35(4):p.348-356.
    18. 王涛,马寅生,龙长兴,等.,汶川地震断裂活动和次生地质灾害浅析.地质通报,2008.27(11):p.1913-1922.
    19. 马东涛,石玉成,试论地震在泥石流形成中的作用.西北地震学报,1996.18(4):p.38-42.
    20. 李忠生,国内外地震滑坡灾害研究综述.灾害学,2003.18(4):p.64-70.
    21. 韩金良,吴树仁,汪华斌,地质灾害链.地学前缘(中国地质大学(北京);北京大学),2007.14(6):p.11-23.
    22. Dai, F.C., C.F. Lee, J.H. Deng, et al., The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China[J]. Geomorphology,2004. 65(2005):p.205-221.
    23. 李树德,武都白龙江流域滑坡活动性探讨.水土保持通报,1997.17(6):p.28-32.
    24. Lina, C.-W., C.-L. Shieh, B.-D. Yuan, et al., Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows:example from the Chenyulan River watershed, Nantou, Taiwan[J]. Engineering Geology,2003.71(2003):p.49-61.
    25. The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005.
    26. Barredo, J.J., A. Benavides, J. Hervas, et al., Comparing heuristic landslide hazard assessment techniques using GIS in the Trijana basin, Gran Canaria Island, Spain[J]. International Journal of Applied Earth Observation and Geoinformation,2000.2(1):p.9-23.
    27. Van Westen, C.J., R. Soeters, K. Sijmons, Digital geomorphological landslide hazard mapping of the Alpago area, Italy[J]. International Journal of Applied Earth Observation and Geoinformation,2000.2(1):p.51-59.
    28. Van Westen, C.J., G.F. Lulie, Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models[J]. Geomorphology,2003.54(1-2):p.77-89.
    29. Gokceoglu, C., H. Aksoy, Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing technique[J]. Engineering Geology,1996.44:p.147-161.
    30. Rengers, N., C.J. Van Westen, J. Chacon, et al., Draft for the chapter on the application of digital techniques for natural hazard zonation[R]. Report on Mapping of Natural Hazards, International Association of Engineering Geology,1998.
    31. Dai, F.C., C.F. Lee, X.H. Zhang, GIS-based geo-environmental evaluation for urban land-use planning:a case study[J]. Engineering Geology,2001.61:p.257-271.
    32. Lee, S., K. Min, Statistical analyses of landslide susceptibility at Yongin, Korea[J]. Environmental Geology,2001.40:p.1095-1113.
    33. Carrara, A., G. Crosta, P. Frattini, Geomorphological and historical data in assessing landslide hazard[J]. Earth Surface Processes and Landforms,2003.28:p.1125-1142.
    34. Duman, T.Y., T. Can, C. Gokceoglu, et al., Application of logistic regression for landslide susceptibility zoning of Cekmece Area, Istanbul, Turkey [J]. Environmental Geology,2006.51: p.241-256.
    35. Van Westen, C.J., E. Castellanos, S.L. Kuriakose, Spatial data for landslide susceptibility, hazard, and vulnerability assessment:An overview[J]. Engineering Geology,2008.102(3-4):p. 112-131.
    36. Turner, A.K., R.L.E. Schuster, Landslides:Investigation and mitigation[R]. Special Report 247 Transportation Research Board and National Research Council,1996:p.673.
    37. Ward, T.J., L. Ruh-Ming, D.B. Simons, Mapping landslide hazard in forest watershed[J]. Journal of Geotechnical Engineering Division,1982.108(GT-2):p.319-324.
    38. Gomez, H., T. Kavzoglu, Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela[J]. Engineering Geology,2005.78(1-2):p. 11-27.
    39. Pistocchi, A., L. Luzi, P. Napolitano, The use of predictive modeling techniques for optimal exploitation of spatial databases:a case study in landslide hazard mapping with expert system-like methods[J]. Environmental Geology,2002.41:p.765-775.
    40. Lee, S., J.H. Ryu, K. Min, et al., Landslide susceptibility analysis using GIS and artificial neural network[J]. Earth Surface Processes and Landforms,2003a.44:p.820-833.
    41. Lee, S., J.H. Ryu, M.J. Lee, et al., Landslide susceptibility analysis using artificial neural network at Boun, Korea[J]. Environmental Geology,2003b.44:p.820-833.
    42. Ercanoglu, M., C. Gokceoglu, Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey)[J]. Engineering Geology 2004.75: p.229-250.
    43. Lee, S., J.H. Ryu, J.S. Won,et al.,Determination and application of the weights for landslide susceptibility mapping:using an artificial neural network[J]. Engineering Geology,2004.71: p.289-302.
    44. Yesilnacar, E., T. Topal, Landslide susceptibility mapping:a comparison of logistic regression and neural networks mehods in a medium scale study, Hendek region (Turkey)[J]. Engineering Geology,2005.79:p.251-266.
    45. Yilmaz, I., Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and; their comparison:A case study from Kat landslides (Tokat-Turkey)[J]. Computers & Geosciences,2008. doi:10.1016/j.cageo.
    46. 王涛,吴树仁,石菊松,国际滑坡风险评估与管理指南研究综述.地质通报,2009.28(8):p.12-25.
    47. Parise, M., R.W. Jibson, A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January,1994 Northridge, California earthquake[J]. Engineering Geology,2000.58(3-4):p.251-270.
    48. Marzorati, S., L. Luzi, M. De Amicis, Rock falls induced by earthquakes:a statistical approach[J]. Soil Dynamics and Earthquake Engineering,2002.22(7):p.565-577.
    49. Kamp, U., B.J. Growley, G.A. Khattak, et al., GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology,2008.101(4):p.631-642.
    50. Miles, S.B., D.K. Keefer, Towards a comprehensive areal model earthquakeinduced landslides (CAMEL). Natural Hazards Review, in press.
    51. Newmark, N.M., Effects of earthquakes on dams and embankments. Geotechnique,1965. 15(2):p.139-160.
    52. Jibson, R.W., E.L. Harp, J.A. Michael, A method for producing digital probabilistic seismic landslide hazard maps. Engineering Geology,2000.58(3-4):p.271-289.
    53. J.Wasowski, V.D. Gaudio, Evaluating seismically induced mass movement hazard in Caramanico Terme (Italy). Engineering Geology,2000.58(3-4):p.291-311.
    54. Roberto, R., Seismically induced landslide displacements:a predictive model. Engineering Geology,2000.58(3-4):p.337-351.
    55. Refice, A., D. Capolongo, Probabilistic modeling of uncertainties in earthquake-induced landslide hazard assessment. Computers & Geosciences,2002.28(6):p.735-749.
    56. Guzzetti, F., P. Reichenbach, M. Cardinali, et al., Probabilistic landslide hazard assessment at the basin scale. Geomorphology,2005.72(1-4):p.272-299.
    57. Lin, H.-M., S.-K. Chang, J.-H. Wu, et al., Neural Network-Based Model for Assessing Failure Potential of Highway Slopes in the Alishan, Taiwan Area:Pre-and Post-Earthquake Investigation. Engineering Geology. In Press, Accepted Manuscript.
    58. Miles, S.B., D.K. Keefer, Evaluation of CAMEL--comprehensive areal model of earthquake-induced landslides. Engineering Geology. In Press, Corrected Proof.
    59. Korup, O., Geomorphic hazard assessment of landslide dams in South Westland, New Zealand: fundamental problems and approaches. Geomorphology,2005.66(1-4):p.167-188.
    60. Fell, R., K.K.S. Ho, S. Lacasse, et al., A framework for landslide risk assessment and management, in Landslide Risk Management, O. Hungr, et al., Editors.2005a, Taylor and Francis:London.p.3-26.
    61. Fukuoka, H., K. Sassa, G. Wang, et al., Landslide Risk Assessment and Disaster Management in the Imperial Resort Palace of Lishan, Xian, China (C101-4). Landslides,2005. Part Ⅱ:p. 81-89.
    62. Sassa, K., G. Wang, H. Fukuoka, et al., Landslide risk evaluation and hazard zoning for rapid and long-travel landslides in urban development areas. Landslides 2004.1(3):p.221-235.
    63. MICHAEL-LEIBA, M., F. BAYNES, G. SCOTT, et al., Regional Landslide Risk to the Cairns Community. Natural Hazards,2003.30:p.233-249.
    64. Guzzetti, F., C.P. Stark, P. Salvati, Evaluation of Flood and Landslide Risk to the Population of Italy. Environmental Management,2005.36(1):p.15-36.
    65. Remondo, J., J. Bonachea, A. Cendrero, Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology,2008.94:p.496-507.
    66. Wong, H.N., F.W.Y. Ko, T.H.H. Hui, Assessment of landslide risk of natural hillsides in Hong Kong.2004. p.116.
    67. Remondo, J., J. Bonachea, A. Cendrero, A statistical approach to landslide risk modelling at basin scale:from landslide susceptibility to quantitative risk assessment. Landslides,2005.2: p.321-328.
    68. Abella, E.A.C., C.J.V. Westen, Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides,2007.4(4):p.311-325.
    69. Romeo, R.W., R.W. Jibson, A. Pugliese, A Methodology For Assessing Earthquake-Induced Landslide.2009.
    70. 殷跃平,潘桂堂,刘宇平,等.,汶川地震地质与滑坡灾害概论.2009,北京:地质出版社.142.
    71. 张春山,等,汶川地震灾区次生灾害隐患排查与工程设计示范.2009,北京:中国大地出版社.
    72. 张波,鲁振宇,张葵,等.,龙门山成都段旅游气候资源评价.资源开发与市场,2009.25(12):p.1150-1152.
    73.baidu百科.涪江.2010[from:http://baike.baidu.com/view/271602.htm.
    74. 四川省地质矿产局,四川省区域地质志.1991:地质出版社.
    75. 耿树方,中国地质图(1/500).2000,中国地质调查局发展研究中心:北京.
    76. 黄润秋,等,汶川地震地质灾害研究.2009,北京:科学出版社.944.
    77. 李勇,P.A. ALLEN,周荣军,等.,青藏高原东缘中新生代龙门山前陆盆地动力学及其与大陆碰撞作用的耦合关系.地质学报,2006.80(8):p.1101-1109.
    78. 周荣军,李勇,A.L. Densmore, et al.,青藏高原东缘活动构造.矿物岩石,2006.26(2):p.40-51.
    79. 李勇,曾允孚,伊海生,龙门山前陆盆地沉积及构造演化.1995,成都:成都科技大学出版社.
    80. 王凤林,李勇,李永昭,等.,成都盆地新生代大邑砾岩的沉积特征.成都理工大学学报(自然科学版),2003.30(2):p.139-146.
    81. 刘树根,龙门山冲断带与川西前陆盆地形成演化.1993,成都:成都科技大学出版社.
    82. 马保起,苏刚,侯治华,等.,利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率.地震地质,2005.27(2):p.234-242.
    83. 邓起东,陈社发,赵小麟,龙门山及其邻区的构造和地震活动及动力学.地震地质,1994.16(4):p.389-403.
    84. 赵小麟,邓起东,陈社发,龙门山逆断裂带中段的构造地貌学研究.地震地质,1994.16(4):p.422-428.
    85. 唐荣昌,韩渭宾,四川活动断裂与地震.1993,北京:地震出版社.368.
    86. Yinsheng, M., P. Feng, L. Changxing, et al.,Co-seismic Faults and Geological Hazards and Incidence of Active Fault of Wenchuan Ms 8.0 Earthquake, Sichuan, China. Acta Geologica Sinica,2009.83(4):p.713-723.
    87. 李勇,周荣军,董顺利,等.,汶川地震的地表破裂与逆冲-走滑作用.成都理工大学学报(自然科学版),2008.35(4):p.404-413.
    88. 张永双,孙萍,石菊松,等.,汶川地震地表破裂影响带调查与建筑场地避让宽度探讨.地质学报,2010:p.待刊.
    89. 徐锡伟,闻学泽,叶建青,等.,汶川M_s8.0地震地表破裂带及其发震构造.地震地质,2008.30(3):p.597-629.
    90. 李海兵,王宗秀,付小方,等.,2008年5月12日汶川地震(Ms8.0)地表破裂带的分布特征.中国地质,2008.35(5):p.803-813.
    91. USGS. Magnitude 7.9-EASTERN SICHUAN, CHINA.2008 May 12 06:28:01 UTC 2008 [from:http://earthquake.usgs.gov/eqcenter/eqinthenews/2008/us2008ryan/us2008ryan.php.
    92. Survey, U.S.G. Shakemap us2008ryan. USGS ShakeMap:EASTERN, CHINA 2008 [from: http://earthquake.usgs.gov/earthquakes/shakemap/global/shake/2008iyan/.
    93. 中国地震台网中心.汶川地震1周年地震科技工作专访之一—地震烈度快速判断的新方法.2009 [from:http://www.csi.ac.cn/manage/html/4028861611c5c2ba0111c5c558b 00001/content/09 05/12/1242096383643.html.
    94. 中国地震局.四川汶川县Ms8.0级地震地震参数.2008 [from:http://www.csi.ac.cn/ sichuan/sichuan080512 csl.htm.
    95. 国家质量技术监督局,GB 18306-2001中国地震动参数区划图.2001.
    96. 全国地震区划图编制委员会,GB 18306—2001《中国地震动参数区划图》国家标准第1号修改单.2008.
    97. 民政部,国家发展改革委,财政部,等.关于印发汶川地震灾害范围评估结果的通知.2008 [from:http://jzs.mca.gov.cn/article/zcwj/200808/20080800019056.shtml.
    98. Jibson, R.W., Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis. Transportation Research Record,1993.1411:p.9-17.
    99. 谢尚佑,利用近年来大规模地震的强震资料修正Newmark经验式,in应用地质研究所.民国95年,国立中央大学:台湾.p.117.
    100. Sarma, S.K., Seismic stability of earth dams and embankments. Geotechnique,1975.25(4):p. 743-761.
    101. Wilson, R.C., D.K. Keefer, Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake, California, earthquake Bulletin of the Seismological Society of America,1983 73(3):p.863-877.
    102. Wieczorek, G.F., R.C. Wilson, E.L. Harp, Map showing slope stability during earthquakes in San Mateo County, California. U.S.Geological Survey Miscellaneous Investigations Series Map I 1257E,1985.
    103. Lin, J.-S., R.V. Whitman, Earthquake Induced Displacements of Sliding Blocks. Journal of Geotechnical Engineering,1986.112(1):p.44-59
    104. Yegian, M.K., E.A. Marciano, V.G. Ghahraman, Earthquake-Induced Permanent Deformations: Probabilistic Approach. Journal of Geotechnical Engineering,1991.117(1):p.35-50.
    105. LING, H.I., D. LESHCHINSKY, Y. MOHRI, Soil Slopes Under Combined Horizontal And Vertical Seismic Accelerations. EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS,1997.26:p.1231-1241.
    106. Godt, J., B. ner, K. Verdin, et al., Rapid Assessment of Earthquake-induced Landsliding. 2008. p.392-395.
    107. 潘桂棠,汶川八级地震的区域地质构造背景.决策咨询通讯,2008(3):p.1-8.
    108. 林茂炳,汶川大地震与龙门山构造带.成都理工大学学报(自然科学版),2008.35(4):p.366-370.
    109. 张培震,青藏高原东缘川西地区的现今构造变形、应变分配与深部动力过程.中国科学D辑:地球科学,2008.38(9):p.1041-1056.
    110. 邓起东,张培震,冉勇康,等.,中国活动构造基本特征.中国科学D辑:地球科学,2002.32(12):p.1020-1030.
    111. 中华人民共和国水利部,工程岩体分级标准(GB 50218-94).1994.
    112. 中华人民共和国建设部,建筑地基基础设计规范GB 50007-2002.2002,北京:中国建筑工业出版社.
    113. 中华人民共和国建设部,岩土工程勘察规范GB 50021-2001.2001,北京:中国建筑工业出版社.
    114. 林宗元,岩土工程勘察设计手册.1996,沈阳:辽宁科学技术出版社.1930.
    115. AGS, Guideline for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Management. Australian Geomechanics,2007a.42 (1):p.13-36.
    116. Harp, E.L., R.C. Wilson, Shaking intensity thresholds for rock falls and slides:Evidence from 1987 Whittier Narrows and superstition hills earthquake strong-motion records Bulletin of the Seismological Society of America,1995.85(6):p.1739-1757.
    117. Arias, A., A measure of earthquake intensity. Seismic Design for Nuclear Power Plants. Massachusetts Institute of Technology Press, Cambridge, MA,1970:p.438-483.
    118. 蒋溥,戴丽思,工程地震学概论.1993,北京:地震出版社.454.
    119. Keefer, D.K., R.C. Wilson, Predicting earthquake-induced landslides, with emphasis on arid and semi-add environments. Landslides in a Semi-Arid Environment,1989.2:p.118-149.
    120. 地质力学学报编辑部,汶川地震基本参数和受灾情况.地质力学学报,2009.15(2):p.扉页.
    121. 赵阿兴,马宗晋,自然灾害损失评估指标体系的研究.自然灾害学报,1993.2(3):p.1-7.
    122. 李发斌,崔鹏,周爱霞,RS和GIS在滑坡泥石流防灾减灾中的应用.灾害学,2004.19(4):p.18-24.
    123. 叶润青,邓清禄,王海庆,基于图像分类方法滑坡识别与特征提取—以归州老城滑坡为例.工程地球物理学报,2007.4(6):p.574-577.
    124. 徐刚,郑达兴,乔子江,等.,基于高精度DEM和RS技术的滑坡环境指标参数快速提取方法—以陕西省宝鸡市金台区长乐塬特大型滑坡为例.地质通报,2009.28(8):p.1047-1052.
    125. 姚鑫,张永双,王献礼,等.,基于地貌特征的浅层崩滑体遥感自动识别.地质通报,2008.27(11):p.1870-1874.
    126. 王治华,中国滑坡遥感及新进展.国土资源遥感,2007(4):p.7-12.
    127. 花利忠,崔胜辉,李新虎,等.,汶川大地震滑坡体遥感识别及生态服务价值损失评估.生态学报,2008.28(12):p.5909-5916.
    128. Barlow, J., S.E. Franklin, Mapping Hazardous Slope Processes Using Digital Data in Geomatics Solutions for Disaster Management, J. Li, S. Zlatanova, and A.G. Fabbri, Editors. 2007, Springer Berlin Heidelberg.p.75-89.
    129. 邓书斌.面向对象的影像分类技术.2010 [from:http://bbs.esrichina-bj.cn/ESRI/ thread-42421-1-1.html.
    130. 范建容,张建强,田兵伟,等.,汶川地震次生灾害毁坏耕地的遥感快速评估方法—以北川县唐家山地区为例.遥感学报,2008.12(6):p.917-924.
    131. 万保峰,袁水华,苏建平,基于纹理分析的滑坡遥感图像识别.地矿测绘,2009.25(2):p.11-14.
    132. 赵春霞,钱乐祥,遥感影像监督分类与非监督分类的比较.河南大学学报(自然科学版),2004.34(3):p.90-93.
    133. 李石华,王金亮,毕艳,等.,遥感图像分类方法研究综述.国土资源遥感,2005(64):p.1-6.
    134. 潘建刚,赵文吉,宫辉力,遥感图像分类方法的研究.首都师范大学学报(自然科学版),2004.25(3):p.87-93.
    135. J.A.Richards, Remote Sensing Digital Image Analysis.1999, Berlin:Springer-Verlag.240.
    136. Hungr, O., Some methods of landslide hazard intensity mapping, in Landslide Risk Assessment, D. Cruden, R. Fell, Editors.1997, Balkema:Rotterdam.p.215-226.
    137. Cardinali, M., P. Reichenbach, F. Guzzetti, et al., A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Natural Hazards and Earth System Sciences,2002(2):p.57-72.
    138. Reichenbach, P., M. Galli, M. Cardinali, et al., Geomorphologic mapping to assess landslide risk:concepts, methods and applications in the Umbria Region of central Italy, in Landslide Risk Assessment, P. Glade, et al., Editor.2005, John Wiley.p.429-468.
    139. 吴树仁,石菊松,姚.鑫,等.,四川汶川地震地质灾害活动强度分析评价.地质通报,2008.27(11):p.1900-1906.
    140. Jibson, R.W., E.L. Harp, D.K. Keefer, et al., Landslides triggered by the Northridge earthquake, in Earthquakes and Volcanoes.1994b, US Geol. Surv. p.31-41.
    141. 许冲,戴福初,姚鑫,等.,基于GIS与确定性系数分析方法的汶川地震滑坡易发性评价.工程地质学报,2010.18(1):p.15-26.
    142. Gorum, T., C.J.v. Westen, X. Fan, et al., Analyzing the Control of the Dynamic Rupture Processes on Landslide Distribution for the Wenchuan Earthquake.2010, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands, Enschede, Netherlands:Chengdu.p.27.
    143. 殷跃平,汶川八级地震地质灾害研究.工程地质学报,2008.16(4):p.433-444.
    144. 于海英,王栋,杨永强,等.,汶川8.0级地震强震动加速度记录的初步分析.地震工程与工程振动,2009.29(1):p.1-13.
    145. 殷跃平,汶川八级地震滑坡特征分析.工程地质学报,2009.17(1):p.29-38.
    146. 黄润秋,李为乐,“5.12”汶川大地震触发地质灾害的发育分布规律研究.岩石力学与工程学报,2008.27(12):p.2586-2593.
    147. 许冲,戴福初,陈剑,等.,汶川Ms8.0地震重灾区次生地质灾害遥感精细解译.遥感学报,2009.13(4):p.754-762.
    148. 黄润秋,李为乐,汶川大地震触发地质灾害的断层效应分析.工程地质学报,2009.17(1):p.19-28.
    149. 王运生,罗永红,吉峰,等.,汶川大地震山地灾害发育的控制因素分析.工程地质学报,2008.16(6):p.759-763.
    150. 祁生文,许强,刘春玲,等.,汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律. 工程地质学报,2009.17(1):p.39-49.
    151. 王秀英,聂高众,汶川MS 8.0级地震诱发崩滑特点及其与地震动参数对应关系初析.岩土工程学报2009.31(9):p.1378-1383.
    152. 谢洪,王士革,孔纪名,“5.12”汶川地震次生山地灾害的分布与特点.山地学报,2008.26(4):p.396-401.
    153. Sato, H.P., E.L. Harp, Interpretation of earthquake-induced landslides triggered by the 12 May 2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite imagery and Google Earth. Landslides,2009(Recent Landslides):p.1-7.
    154. 唐川,丁军,梁京涛,汶川震区北川县城泥石流源地特征的遥感动态分析.工程地质学报,2010.18(1):p.1-7.
    155. 李秀珍,孔纪名,崔云,等.,汶川地震滑坡与地震参数及地质地貌因素之间的相关关系.工程地质学报,2010.18(1):p.8-14.
    156. 吴树仁,王涛,石玲,等.,2008汶川大地震极端滑坡事件初步研究.工程地质学报,2010.18(2):p.145-159.
    157. 陈树群,台湾921集集地震次生灾害及其减灾.2009,中兴大学水土保持学系:台湾.
    158. Sassa, K., H. Fukuoka, G. Scarascia-Mugnozza, et al., Landslides Triggered by the Hyogoken-Nanbu Earthquake and the Distribution of Triggered Landslides. Landslide News, 1995a(9):p.2-5.
    159. 中国地震局工程力学研究所,中国地震局地球物理研究所,中国地震局地壳应力研究所,中国地震烈度表.GB/T 17742-1999, ed.陈达生,等.1999,北京:国家质量技术监督局.5.
    160. 中国地震局工程力学研究所,中国地震局地球物理研究所,中国地震烈度表.GB/T 17742-2008, ed.孙景江,等.2008,北京:中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.7.
    161. 刘恢先,关于地震烈度及其工程应用问题.地球物理学报,1978.21(4):p.340-350.
    162. 邹明城,孙志鸿,资料探勘技术在集集大地震引致山崩之研究.地理学报,2004(36):p.117-131.
    163. Brabb, E.E. Innovative approach to landslide hazard and risk mapping. in 4th International Symposium on Landslides.1984. Toronto.
    164. Lee, S., J. Choi, K. Min, Landslide susceptibility analysis and verification using the Bayesian probability model Environmental Geology,2002.43(1-2):p.120-131.
    165. Dahal, R.K., S. Hasegawa, A. Nonomura, et al., GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environmental Geology,2008.54(2):p.311-324.
    166. 吴树仁,张永双,石菊松,等.,三峡库区重庆市丰都县滑坡灾害危险性评价.地质通报,2007.26(5):p.574-582.
    167. 高克昌,崔.鹏,赵纯勇,等.,基于地理信息系统和信息量模型的滑坡危险性评价——以重庆万州为例.岩石力学与工程学报,2006.25(5):p.991-996.
    168. 国家气象信息中心气象资料室,中国逐日网格降水量实时分析系统(1.0版)数据集,ed.沈艳,冯明农.2010,北京:中国气象科学数据共享服务网.
    169. 郁淑华,高文良,“5.12”汶川特大地震重灾区泥石流滑坡气候特征分析.高原山地气象研究,2008.28(2):p.62-67.
    170. 郭化文,魏牲生,陈建昌,国内外求算可能最大降雨量研究综述.岱宗学刊,1997(4):p.22-28.
    171. 谢家泽,关于合理解决水文频率计算方法的问题.水利学报,1985(4).
    172. 李松仕,几种频率分布线型对我国洪水资料适应性的研究.水文,1984.1:p.1-7.
    173. 刘光文,水文频率计算评议.水文,1986(3):p.10-18.
    174. 么枕生,气候统计学的研究展望.气象科技,1984(6):p.1-8.
    175. 王红,涂方旭,广西一日最大降水量的极值分布.广西气象,1993(4):p.37-42.
    176. 盛祥耀,等,数学手册.2005,北京:清华大学出版社.516.
    177. Harp, E.L.; M.E. Reid, J.P. McKenna, et al., Mapping of hazard from rainfall-triggered landslides in developing countries:Examples from Honduras and Micronesia. Engineering Geology. In Press, Accepted Manuscript.
    178. MURPHY, W., The role of topographic amplification on the initiation of rock slopes failures during earthquakes. NATO Science Series, Landslides from Massive Rock Slope Failure,2006. PART 2,49:p.139-154.
    179. Faccioli, E., M. Vannini, L. Frassine, "Complex" Site Effects in Earthquake Ground Motions, Including Topography, in 12th European Conference on Earthquake Engineering.2002, Elsevier Science.
    180. Sepu'lveda, S.A., W. Murphy, R.W. Jibson, et al., Seismically induced rock slope failures resulting from topographic amplification of strong ground motions:The case of Pacoima Canyon, California. Engineering Geology,2005.80(3-4):p.336-348.
    181. Keefer, D.K., Landslides caused by earthquakes. GSA Bulletin,1984.95(4):p.406-421.
    182. 彭文飞,地震引起山崩之潜势图制作-考虑地形放大效应与土体滑动堆积行为,in资源工程学系.2008,成功大学:台湾.p.210.
    183. Peng, W.-F., C.-L. Wang, S.-T. Chen, et al., A seismic landslide hazard analysis with topographic effect, a case study in the 99 Peaks region, Central Taiwan. Environ Geol,2008. ORIGINAL ARTICLE.
    184. 中华人民共和国建设部,建筑抗震设计规范GB 50011-2001, ed.徐正忠,王亚勇.2002,北京:中国建筑工业出版社.125.
    185. 唐海,地形地貌对爆破振动波影响的实验和理论研究,in武汉岩土力学研究所.2007,中国科学院:武汉.p.118.
    186. Sepulveda, S.A., W. Murphy, D.N. Petley, Topographic controls on coseismic rock slides during the 1999 Chi-Chi earthquake, Taiwan. Quarterly Journal of Engineering Geology and Hydrogeology,2005(38):p.189-196.
    187. Ashford, S.A., N. Sitar, J. Lysmer, et al., Topographic Effects on the Seismic Response of Steep Slopes. Bulletin of the Seismological Society of America,1997.87(3):p.701-709.
    188. 许强,裴向军,黄润秋,et al.,汶川地震大型滑坡研究.2009,北京:科学出版社.473.
    189. DOBRY, R., I.M. IDRISS, E. NG, Duration characteristics of horizontal components of strong-motion earthquake records. Bulletin of the Seismological Society of America,1978. 68(5):p.1487-1520.
    190. 胡聿贤,地震工程学(第二版).2006,北京:地震出版社.566.
    191. Highland, L.M., P. Bobrowsky, The Landslide Handbook—A Guide to Understanding Landslides.2008, U.S. Geological Survey Circular 1325:Reston, Virginia.p.129.
    192. Heim, A., Bergsturz und Menschenleben. Fretz und Wasmuth, Zurich,1932:p.218.
    193. Kent, P.E., The transport mechanism in catastrophic rock falls. J. Geol,1966.74:p.79-83.
    194. Shreve, R.L., The Blackhawk landslide. Geol. Soc. Am. Spec. Pap.,1968a.108:p.1-47.
    195. Shreve, R.L., Leakage and fluidisation in air-layer lubricated avalanches. Geol. Soc. Am. Bull., 1968b.79:p.653-658.
    196. Voighta, B., J. Sousa, Lessons from Ontake-san:A comparative analysis of debris avalanche dynamics Engineering Geology,1994.38(3-4):p.261-297
    197. Sassa, K. Access to the dynamics of landslides during earthquakes by a new cyclic loading high-speed ring shear apparatus. in 6th Int. Symp. Landslides.1992. Christchurch:Balkema, Rotterdam.
    198. Davies, T.R.H., Spreading of rock avalanche debris by mechanical fluidization Rock Mechanics and Rock Engineering,1982.15(1):p.9-24.
    199. Campbell, C.S., P.W. Cleary, M. Hopkins, Large-scale landslide simulations:global deformation, velocities and basal friction. J. Geophys. Res.,1995.100:p.8267-8273.
    200. 胡广韬,滑坡动力学.1995,北京:地质出版社.
    201. 胡厚田,刘涌江,邢爱国,等.,高速远程滑坡流体动力学理论的研究.2003,成都:西南交通大学出版社.
    202. 程谦恭,彭建兵,胡广韬,等.,高速岩质滑坡动力学.1999,成都:西南交通大学出版社.
    203. 熊传祥,龚晓南,王成华,高速滑坡临滑变形能突变模型的研究.浙江大学学报(工学版),2000.34(4):p.443-447.
    204. 肖盛燮,周小平,杨海清,等.,二维高速滑坡力学模型.岩石力学与工程学报,2006.25(3):p.456-461.
    205. 刘涌江,胡厚田,白志勇,大型高速滑坡体运动的空气动力学研究.西南交通大学学报,2002.37(1):p.6-9.
    206. 赵晓彦,胡厚田,齐明柱,云南头寨沟大型岩质高速滑坡碰撞模型试验.自然灾害学报,2003.12(3):p.99-103.
    207. 殷跃平,西藏波密易贡高速巨型滑坡特征及减灾研究.水文地质工程地质,2000(4):p.8-11.
    208. 黄润秋,中国西部地区典型岩质滑坡机理研究.地球科学进展,2004.19(3):p.443-450.
    209. 刘忠玉,马崇武,苗天德,等.,高速滑坡远程预测的块体运动模型.岩石力学与工程学报,2000.19(6):p.742-746.
    210. 黄润秋,裴向军,李天斌,汶川地震触发大光包巨型滑坡基本特征及形成机理分析.工程地质学报,2008.16(6):p.730-741.
    211. 黄润秋,裴向军,张伟锋,等.,再论大光包滑坡特征与形成机制.工程地质学报,2009.17(6):p.725-736.
    212. 王涛,马寅生,龙长兴,等.,四川汶川地震断裂活动和次生地质灾害浅析.地质通报,2008.27(11):p.1913-1922.
    213. 张倬元,王士天,王兰生,工程地质分析原理.1994,北京:地质出版社.
    214. Li, X., Z. Zhou, H. Yu, et al., Strong motion observations and recordings from the great Wenchuan Earthquake. Earthquake Engineering and Engineering Vibration,2008.7(3):p. 235-246.
    215. 中华人民共和国建设部,建筑抗震设计规范(GB 50011-2001), ed.中国建筑科学研究院.2001,北京.
    216. 崔芳鹏,胡瑞林,殷跃平,等.,地震纵横波时差耦合作用的斜坡崩滑效应研究.工程地质学报,2009.17(4):p.455-462

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700