用户名: 密码: 验证码:
风电转换系统可靠性评估及其薄弱环节辨识
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源危机与环境保护的双重压力下,风电大规模开发利用已成为世界各国改变能源结构的重要措施。近年来,世界各国风电装机规模不断增加,风电转换系统额定容量不断增大。特别地,我国连续多年保持高增长率,风电装机容量已居世界首位。在风电转换系统的设计开发、维护维修、风电场规划、电力系统运行管理等活动中,可靠性的影响越来越突出,开展风电转换系统可靠性相关问题的研究具有重要意义。
     本文结合国家自然基金项目“风电场可靠性评估的概率模型及其应用”(51077135),进行了风电转换系统可靠性的研究和探索,重点研究了风速对变流器可靠性的影响、风速与气温对风电变压器绝缘寿命评估和容量选择的影响、多发电机及变流器模块并联结构对风电转换系统可靠性的影响、风电转换系统薄弱环节辨识方法等相关问题。
     基于风速随机变化对风电转换系统变流器运行功率、输入电压、功率损耗等相关参数的影响,建立变流器元件故障率的风速影响模型;进而结合变流器的拓扑结构和故障机理,基于变流器多状态概率模型,建立了风电转换系统变流器及其子系统(机侧变换器、直流环节、网侧变换器等)可靠性的风速影响模型。分析了风速、风机参数(切入风速、额定风速和切除风速)对风电转换系统变流器可靠性的影响。算例表明:风速和风机参数中的额定风速对风电转换系统变流器的可靠性有较大影响,风速与变流器故障率之间的关系曲线和风电转换系统输出功率特性曲线的形状类似;另外,变流器可靠性也具有季节性变化的特征。
     风电场中变压器运行状态受风速和气温影响,变压器负载率随风速变化而变化。基于IEEE变压器老化模型,建立了计及风速和气温的风电场中变压器绝缘老化评估模型;以此为基础,计及变压器油温、绕组温度、最大负荷系数等运行条件约束,以全寿命周期成本最低为目标函数,建立了风电场中变压器额定容量优化模型。分析了储能装置对风电场中变压器绝缘寿命和容量配置的影响。算例表明:变压器绝缘老化水平与风速相关;经过优化,风电场中,变压器额定容量可极大降低;另外,验证了风电场中变压器额定容量与其全寿命周期成本是正相关关系,即风电场中满足技术约束的最小容量的变压器即是经济上最优的变压器。
     根据现有多发电机或变流器模块并联的风电转换系统新型结构,提出风电转换系统年度期望风能损失等新的可靠性指标,建立计及风速的可靠性计算解析模型。分析了不同结构对风电转换系统可靠性的影响。算例表明:两种结构改善风电转换系统可靠性的本质不同。
     基于系统不可靠度由故障元件承担责任和比例分摊的原则,建立了风电转换系统可靠性跟踪模型,以量化风电转换系统各组件对系统可靠性指标的贡献;提出以年度强迫停运损失为风电转换系统薄弱环节判断指标,以综合反映系统可靠性和经济性信息;进而建立风电转换系统薄弱环节辨识模型,给出风电转换系统可靠性跟踪及薄弱环节辨识算法。分析了薄弱环节可靠性改善时系统指标的改善效果。为风电转换系统优化设计提供有用的信息,为运行维护策略的决策提供理论依据。算例表明:双馈风电转换系统中,齿轮箱、桨叶、发电机等是系统较为薄弱的环节,是可靠性设计、系统运行维护的关键部件。
Under the dual pressures from energy crisis and environmental protection,large-scale wind power development and utilization have become important measures tochange the energy composition of many countries in the world. In recent years, theinstalled capacity of wind power and rated capacity of individual wind energyconversion systems (WECS) have been increasing, especially in China, for many yearsto maintain a high growth rate of installed capacity. Currently, China has the largesttotal installed capacity of wind power in the world. The WECS reliability has significanteffects on the WECS design, development, maintenance, repair, wind farm planning,power system operation and management. Therefore, it is important to study the relativeissues of WECS reliability.
     Supported in part by the National Natural Science Foundation of China(“Probabilistic model and application of wind farm reliability evaluation”, No.51077135), this thesis conducted the researches and explorations of WECS reliability.The studies focus on the impacts of wind speed and other factors on the reliability ofwind turbine power converter system, impacts of wind speed and temperature on theinsulation life and capacity determination of wind power transformer, impacts ofparallel structure of generators and converter modules on the WECS reliability and theidentification method of WECS weak links.
     A multi-state probability analysis method is proposed considering the operatingcharacteristic of WECS power converter varying with wind speeds. Wind speed effectmodels of failure rate for power converter subsystems (Generator-side inverter, DC-linkand Grid-side inverter, etc.) and their power electronic components in WECS are built,and then wind speed effect model of WECS power converter reliability is built. Inaddition, the impacts of wind speed and wind turbine parameters (Cut-in, Rated andCut-out wind speeds) on the reliability of power converter in a WECS are analyzed. Theresults of case studies indicate that the reliability of wind turbine power converter isaffected significantly by the variations of wind speed and rated wind speed of windturbine. The relationship between wind speed and the converter failure rate is similar tothat between the output power of WECS and wind speed. In addition, the powerconverter reliability changes with seasons.
     Similarly, considering the characteristic that the operating state of transformer in a wind farm is affected by wind speeds and load factor of transformer changes with windspeeds, an evaluation model of wind farm transformer insulation aging is proposedbased on the IEEE transformer aging model. On basis of this, the capacity optimizationmodel of wind farm transformer is proposed to minimize the life cycle cost (LCC) oftransformer and meet its technique constraints (oil temperature, winding temperatureand maximal load factor). In addition, the impacts of energy storage system on thetransformer insulation life and capacity determination are analyzed. Case studies showthat the level of wind farm transformer insulation aging is related to wind speeds, andthe rated capacity of wind farm transformer can be reduced greatly using the proposedoptimization model. In addition, a positive correlativity between the rated capacity ofwind farm transformer and its LCC is verified. That is, the transformer with minimalcapacity to meet the technique constraints is economically optimal.
     According to the new structure of existing multiple generators or convertermodules in parallel in WECS, a new reliability index, annual expected energy loss(AEEL), is proposed and an analytical reliability model for this WECS is builtconsidering the effect of wind speeds to analyze the effects of different structures on thereliability performance of WECS. The results of case studies show that there is a largegap in essence of improving WECS reliability for two parallel structures.
     Based on the principle that the responsibility of system unreliability is assigned tofailed components and proportional-sharing-principle, a reliability-tracing model ofWECS is proposed to quantify the contribution of each subassembly to the WECSunreliability indices. According to the identification and analysis of WECS weak partsbased on different reliability indices, the annual losses due to forced outage arerecommended to be the most reasonable index for weak part identification because itcan comprehensively reflect the WECS reliability and economic performance. At thesame time, a flow chart for tracing the WECS unreliability and identifying weak parts ispresented. Finally, the impacts of improving the subassembly reliability performance onthe losses are analyzed. The proposed method can provide useful information foroptimization design and theoretical foundation for decision-making of operation andmaintenance strategy. The case studies show that the gearbox, blade/pitch and generatorare weaker parts of a double-fed WECS, which should be given great attention in theprocesses of system design, operation and maintenance.
引文
[1]我国风电装机容量去年同比增73.3%[EB/OL].http://www.serc.gov.cn/xyxx/zhxx/201103/t20110325_14505.htm,[2011-03-25].
    [2] Global Wind Energy Council (GWEC). Global Wind Statistics2011.[EB/OL].http://www.gwec.net/.
    [3]李阳丹.全球风能理事会:2020年风电占电力需求12%[EB/OL].http://news.cnfol.com/101013/101,1280,8578890,00.shtml,[2010-10-13].
    [4] U. S.-Canada Power System Outage Task Force. Final Report on the August14th Blackout inthe United States and Canada: Cause and Recommendations [EB/OL]. http://www.nerc.com,April2004.
    [5]唐葆生.伦敦南部地区大停电及其教训[J].电网技术,2003,27(11):1-5.
    [6] Power Failure in Eastern Denmark and Southern Sweden on23September2003-Final Reporton the Courses of Evenrs [EB/OL]. http://www.pserc.wisc.edu/, November,2003.
    [7] Union for the Coordination of Electricity Transmission (UCTE). Inter Report of theInvestigation Committee on the28September2003Blackout in Italy [EB/OL]. http://www.pserc.wisc.edu/, October,2003.
    [8]杨莳百,戴景宸,孙启宏.电力系统可靠性分析基础及应用[M].北京:水利电力出版社,,1986.
    [9]李文沅著,周家启,卢继平,胡小正,颜伟,谢开贵译.电力系统风险评估模型、方法和应用[M].北京:科学出版社,2006.
    [10]王承煦,张源主编.风力发电[M].北京:中国电力出版社,2003.
    [11] M. Liserre, R. Cárdenas, M. Molinas, J.Rodríguez. Overview of multi-MW wind turbines andwind parks [J]. IEEE Trans. Ind. Electron.,2011,58(4):1081-1095.
    [12]陆宇.国电联合动力6MW风电机组下线[EB/OL].中国能源报,[2012-01-02].http://paper.people.com.cn/zgnyb/html/2012-01/02/content_988333.htm?div=-1.
    [13] H. Li, Z Chen. Overview of different wind generator systems and their comparisons [J]. IETRenew. Power Gener.,2008,2(2):123–138.
    [14] M. Liserre, T. Sauter, and J. Y. Hung. Integrating renewable energy sources into the smartpower grid through industrial electronics [J]. IEEE Ind. Electron. Mag.,2010,4(1):18–37.
    [15] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus. Overview of control and gridsynchronization for distributed power generation systems [J]. IEEE Trans. Ind. Electron.,2006,53(5):1398–1409.
    [16] E. Wouter, O. Tom and S. Feike. Current developments in wind–2009[R]. Energy researchcentre of the Netherlands,2009.
    [17] B. Jens, A. Bj rn.Parallel-connected converter for optimizing efficiency, reliability and gridharmonics in a wind turbine [C].//2007European conference on power electronics andapplications,2007:1-7.
    [18]徐壮,李广军,徐殿国.永磁直驱风电系统发电机侧变流器的并联控制[J].高电压技术,2010,36(2):474-480.
    [19]赵渊.大电力系统可靠性评估的灵敏度分析及其校正措施模型研究[D].重庆大学博士学位论文,2004.
    [20]陈文高.配电系统可靠性实用基础[M].北京:中国电力出版社,1998.
    [21] R. Billinton, R. N. Allan. Reliability evaluation of power system [M]. Pitman,1984.
    [22]谢开贵,周平,周家启等.基于故障扩散的复杂中压配电系统可靠性评估算法[J].电力系统自动化,2001,2:45-48.
    [23]刘柏私,谢开贵,张红云等.高压配电网典型接线方式的可靠性分析[J].电网技术,2005,29(14):45-49.
    [24]谢开贵,易武,夏天等.面向开关的配网可靠性评估算法[J].电力系统自动化,2007,31(16):40-44.
    [25] W. Zhang, R. Billinton. Application of an adequacy equivalent method in bulk power systemreliability evaluation [J]. IEEE Trans. on Power System,1998,13(2):661-666.
    [26]吴开贵,吴中福.基于敏感度分析的电网可靠性算法[J].中国电机工程学报,2003,23(4):53-56.
    [27]王韶,周家启.基于函数性连接神经网络的发输电系统可靠性评估研究[J].中国电机工程学报,2004,24(9):142-146.
    [28]吴开贵,王韶,张安邦等.基于RBF神经网络的电网可靠性评估模型研究[J].中国电机工程学报,2000,20(6):9-12.
    [29] G. C. Oliverira, M. VF. Pereira. A technique for reducing computational effort in Monte-Carlobased composite reliability evaluation [J]. IEEE Trans. on Power System,1989,4(4):1309-1315.
    [30]丁明,李生虎.可靠性计算中加快蒙特卡洛仿真收敛速度的方法[J].电力系统自动化,2000,24(12):16-20.
    [31] D. Lieber, A. Nemirovskii, R. Y. Rubinstein. A fast Monte Carlo method for evaluatingreliability indexes [J]. IEEE Trans. on Reliability,1999,48,48(3):256-261.
    [32] F. Victor. Techniques for fast simulation of models of higly dependable systems [J]. IEEEReliability,2001,50(3):246-264.
    [33]宋晓通,谭震宇.改进的重要抽样法在电力系统可靠性评估中的应用[J].电网技术,2005,29(13):56-64.
    [34]王韶,卢继平,周家启.基于PC机群的发输电系统可靠性评估[J].中国电机工程学报,2007,27(7):34-39.
    [35]刘洋,周家启,谢开贵,等.基于Beowulf集群的大电力系统可靠性评估蒙特卡洛并行仿真[J].中国电机工程学报,2006,26(20):9-14.
    [36] N. Gubbala, C. Singh. Models and considerations for parallel implementation of Monte Carlosimulation methods for power system reliability evaluation [J]. IEEE Trans. on Power System,1995,10(2):779-786.
    [37] C. F. Desieno, L. L. Stine. Probability method for determining the reliability of electric powersystems [J]. IEEE Trans. on PAS,1964,83:174-179.
    [38]丁明,刘友翔,戴仁昶等.输电系统的分层可靠性建模及概率模拟[J].清华大学学报,1997,37(S1):99-103.
    [39]王韶,周家启.计及输电线路相关停运的大电网可靠性评估[J].重庆大学学报(自然科学版),2005,28(3):30-34.
    [40]王韶,周家启.双回平行输电线路可靠性模型[J].中国电机工程学报,2003,23(9):53-56.
    [41] B. Retterath, S. S. Venkata, A. A. Chowdhury. Impact of time-varying failure rates ondistribution reliability [J]. Electrical Power and Energy Systems,2005,27:682-688.
    [42] K. T. Muthanna, A.Sarkar, K.Das, and K.Waldner. Transformer insulation life assessment [J].IEEE Trans. on Power Del.,2006,21(1):150-156.
    [43] J. He, Y. Sun., P.Wang and L.Cheng. A hybrid conditions-dependent outage model of atransformer in reliability evaluation [J]. IEEE Trans. on Power Del.,2009,24(4):2025-2033.
    [44]丁明,戴仁昶,洪梅,徐先勇.影响输电网可靠性的气候条件模拟[J].电力系统自动化,1997,21(1):18-20.
    [45]刘洋,周家启.计及气候因素的大电力系统可靠性评估[J].电力自动化设备,2003,23(9):60-62.
    [46] Y. Zhou, A. Pahwa, S. Yang. Modeling weather-related failures of overhead distribution lines[J]. IEEE Trans. on Power System,2006,21(4):1683-1690.
    [47]陈永进,任震,黄雯莹.考虑天气变化的可靠性评估模型与分析[J].电力系统自动化,2004,28(21):17-21.
    [48]丁明,李生虎,洪梅.电力系统概率分析中的K均值聚类负荷模型[J].电力系统自动化,1999,23(19):51-54.
    [49]洪梅,丁明,戴仁昶.保护系统的概率模型及其对组合系统可靠性的影响[J].电网技术,1997,21(8):45-48.
    [50]刘海涛,程林,孙元章等.基于实时运行条件的元件停运因素分析与停运率建模[J].电力系统自动化,2007,31(7):6-12.
    [51] K. Xie, J. Ji. Recognizing the reliability non-coherence components of multiple paralleltransmission lines [J]. Electrical Review,2011,87(10):257-261.
    [52]纪静,谢开贵,曹侃,胡博.多回并列运行输电线路的可靠性非同调辨识[J].高电压技术,2011,37(4):1022-1028.
    [53] K. Xie, B. Hu and R. Karki. Tracing the component unreliability contributions andrecognizing the weak parts of a bulk power system [J]. Euro. Trans. Electr. Power,2011,21:254–262.
    [54]胡博,谢开贵,黎小林,曹侃,刘映尚.HVDC输电系统可靠性跟踪方法[J].中国电机工程学报,2010,30(10):29–35.
    [55]纪静,谢开贵,曹侃,胡博,吴伟杰.广东电网薄弱环节辨识及可靠性改善分析[J].电力系统自动化,2011,35(13):98–102.
    [56] K. Xie, K. Cao, and D. C. Yu. Reliability evaluation of electrical distribution networkscontaining multiple overhead feeders on a same tower [J]. IEEE Trans. on Power System,2011,26(4):2518-2525.
    [57]任震,梁振升,黄雯莹.交直流混合输电系统可靠性指标的灵敏度分析[J].电力系统自动化,2004,28(14):33-36.
    [58]刘海涛,程林,孙元章.交直流系统可靠性评估[J].电网技术,2004,28(23):27-31.
    [59]丁明,李生虎,吴红斌等.基于充分性和安全性的电力系统运行状态分析和量化评价[J].中国电机工程学报,2004,24(4):43-49.
    [60]丁明,李生虎,吴红斌.电力系统概率充分性和概率稳定性的综合评估[J].中国电机工程学报,2003,23(3):20-25.
    [61]李文沅,卢继平.暂态稳定概率评估的蒙特卡罗方法[J].中国电机工程学报,2005,25(10):18-23.
    [62] C. H. Park, G. Jang, and R. J. Thomas. The Influence of generator scheduling and time-varyingfault rates on voltage sag prediction [J]. IEEE Trans. on Power Delivery,2008,23(2):1243-1250.
    [63] R. E. Brown, G. Frimpong, H. L. Willis. Failure rate modeling using equipment inspectiondata [J]. IEEE Trans. on Power System,2004,19(2):782-787.
    [64]凡鹏飞,张粒子,麻秀范,王睿.基于保险理论的输电可靠性裕度决策模型[J].电力系统自动化,2010,34(10):40-44.
    [65]吴开贵,周家启,杨志,邓仁明,谢昭莉.基于面向对象的电网可靠性评估辅助决策系统[J].重庆大学学报,2000,23(4):96-98(119).
    [66]叶杭冶.风力发电机组的控制技术[M].北京:机械工业出版社,2002.
    [67]郭小燕.风电场风速预测模型的研究[D].华北电力大学硕士学位论文,2008.
    [68]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.
    [69]李东东,陈陈.风力发电系统动态仿真的风速模型[J].中国电机工程学报,2005,25(21):41-44.
    [70]常太华,王璐,马巍.基于AR、ARIMA模型的风速预测[J].华东电力,2010,38(1):59-62.
    [71] H. M. Geerts. Short range prediction of wind speeds: a system-theoretic approach. In:Proceedings of European Wind Energy Conference. Hamburg, Germany,1984, pp.594–599.
    [72] M. Alexiadis, P. Dokopoulos, H. Sahsamanoglou. Short term forecasting of wind speed andrelated electrical power [J]. Solar Energy,1998,63(1):61~68.
    [73] R. Karki, P. Hu, and R. Billinton. A simplified wind power generation model for reliabilityevaluation [J]. IEEE Trans. on Energy Conversion,2006,21(2):533-540.
    [74] W. Wangdee, R. Billinton. Considering load-carrying capability and wind speedcorrelation of WECS in generation adequacy assessment [J]. IEEE Trans. on EnergyConversion,2006,21(3):734-741.
    [75] W. Wangdee, R.Billinton. Reliability assessment of bulk electric systems containing largewind farms [J]. Electrical Power and Energy Systems29(2007):759–766.
    [76] R. Billinton, Y. Gao, and R. Karki. Composite system adequacy assessment incorporatinglarge-scale wind energy conversion systems considering wind speed correlation [J]. IEEETrans. on Power System,2009,24(3):1375-1382.
    [77] L. Kamal and Y. Z. Jafri. Time series models to simulate and forecast hourly averaged windspeed in Quetta, Pakistan [J]. Solar Energy,1997,61(1):23-32.
    [78]丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34.
    [79]孙春顺,王耀南,李欣然.小时风速的向量自回归模型及应用[J].中国电机工程学报,2008,28(14):112-117.
    [80] E. A. Bossanyi. Short-term wind prediction using Kalman filters [J]. Wind Engineering,1985,9(1):1-8.
    [81]潘迪夫,刘辉,李燕飞.基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J].电网技术,2008,32(7):82-86.
    [82]杨琦,张建华,王向峰,李卫国.基于小波–神经网络的风速及风力发电量预测[J].电网技术,2009,33(17):44-48.
    [83] G. Kariniotakis, G. Stavrakakis, E. Nogaret. Wind power forecasting using advanced neuralnetwork models [J]. IEEE Trans. on Energy Conversion,1996,11(4):762-767.
    [84] D. A. Fadare. The application of artificial neural networks to mapping of wind speed profilefor energy application in Nigeria [J]. Applied Energy,87(2010):934-942.
    [85] G. Ioannis. Damousis, C. Minas, etal. A Fuzzy Model forWind Speed Prediction and PowerGeneration in Wind Parks Using Spatial Correlation [J]. IEEE Trans. on Energy Conversion,2004,19(2):352-361.
    [86] M. C. Alexiadis, P. S. Dokopoulos, H. S. Sahsamanoglou. Wind-speed and power forecastingbased on spatial correlation models [J]. IEEE Trans. on Energy Conversion,1999,14(3):836-842.
    [87] G. E. P. Box, G. M. Jenkins. Time series analysis, forecasting and control [M]. San Francisco:Holden-Day,1976.
    [88]张国强,张伯明.基于组合预测的风电场风速及风电机功率预测[J].电力系统自动化,2009,33(18):92-95(109).
    [89]潘迪夫,刘辉,李燕飞.风电场风速短期多步预测改进算法[J].中国电机工程学报,2008,28(26):87-91.
    [90]井天军,阮睿,杨明皓.基于等效平均风速的风力发电功率预测[J].电力系统自动化,2009,33(24):83-87.
    [91] A. Seyit, Akdag, A. Dinler. A new method to estimate Weibull parameters for wind energyapplications [J]. Energy Conversion and Management,2009,50:1761–1766.
    [92] S. Akpinar, E. K. Akpinar. Wind energy analysis based on maximum entropy principle(MEP)-type distribution function [J]. Energy Conversion and Management,2007,48:1140–1149.
    [93] S. Akpinar, E. K. Akpinar. Estimation of wind energy potential using finite mixturedistribution models [J]. Energy Conversion and Management,2009,50:877–884.
    [94] W. Jiang, Z. Yan, D. Feng. A review on reliability assessment for wind power [J]. Renewableand Sustainable Energy Reviews,2009,13:2485–2494.
    [95] S. H. Karaki, R. B. Chedid, R. Ramadan. Probabilistic performance ssessment of windenergy conversion systems [J]. IEEE Trans. on Energy Conversion,1999,14(2):217-224.
    [96]马开玉.三参数Weibull分布参数估计的一种新方法[J].气象科学,1990,10(2):208-212.
    [97]杨维军,王斌.二参数Weibull分布函数对近地层风速的拟合及应用[J].应用气象学报,1999,10(1):118-122.
    [98] R. Billinton, H. Chen. Effect of wind turbine parameters on the capacity adequacy ofgenerating systems using wind energy [C].//Conference on Communications, Power andComputing WBCkYEX'97Proceedings; Winnipeg, MB; May22-23,1997, pp.47-52.
    [99] R. Billinton, H. Chen. Assessment of risk-based capacity benefit factors associated withwind energy conversion systems [J]. IEEE Trans. on Power Systems,1998,13(3):1191-1196.
    [100] P. Wang, R. Billinton. Reliability benefit analysis of adding WTG to a distribution system[J]. IEEE Trans. on Energy Conversion,2001,16(2):134-139.
    [101] A. S. Dobakhshari, M. Fotuhi-Firuzabad. A reliability model of large wind farms for powersystem adequacy studies [J]. IEEE Trans. on Energy Conversion,2009,24(3):792-801.
    [102] R. Billinton, Y. Gao. Multistate wind energy conversion system models for adequacyassessment of generating systems incorporating wind energy [J]. IEEE Trans. on EnergyConversion,2008,23(1):163-170.
    [103] C. Singh, A. Lago-Gonzalez. Reliability modeling of generation system includingunconventional energy sources [J]. IEEE Tran. on Power Systems,1985,104(5):1049–1056.
    [104] A. Ehsani, M. Fotuhi, A. Abbaspour, and A. M. Ranjbar. An analytical method for thereliability evaluation of wind energy systems [C]. TENCON2005IEEE Region10,2005:1-7.
    [105] P. Giorsetto, K. F. Utsurogi. Development of a new procedure for reliability modeling of windturbine generators [J]. IEEE Trans. Power Apparatus System,1983,102(1):134–143.
    [106] X. Wang, H. Dai, R. J. Thomas. Reliability modeling of large wind farms and electric utilityinterface systems [J]. IEEE Trans. Power Apparatus System,1984,103(3):569–575.
    [107] R. Billinton, A. A. Chowdhury. Incorporation of wind energy conversion system inconventional generating capacity adequacy assessment [J]. IEE Proceedings-C,1992,139(1):47–56.
    [108] P. Leite Andréa, L. T. Borges Carmen, and M. Falc o Djalma. Probabilistic wind farmsgeneration model for reliability studies applied to Brazilian sites[J]. IEEE Trans. on PowerSystems,2006,21(4):1493-1501.
    [109]别朝红,刘辉,李甘,王锡凡.含风电场电力系统电压波动的随机潮流计算与分析[J].西安交通大学学报,2008,42(12):1500-1505.
    [110]张国强,张伯明.考虑风电接入后二次备用需求的优化潮流算法[J].电力系统自动化,2009,33(8):25-28.
    [111] R. Billinton, L. Gan. Wind power modeling and application in generating adequacy assessment[C]. WESCANEX93.‘Communications, Computers and Power in the Modern Environment’.In: Conference Proceedings, IEEE;1993. pp.100–106.
    [112] M. Ding, Y. Wu. Optimal expansion planning of wind-diesel energy system [C]. In:International Conference on Power System Technology;2006.p.1–6.
    [113] N. B. Negra, O. Holmstr m, B. Bak-Jensen, and P. Sorensen. Aspects of relevance in offshorewind farm reliability assessment [J]. IEEE Trans. on Energy Conversion,2007,22(1):159-166.
    [114] P. Wang, R. Billinton. Time-sequential simulation technique for rural distribution systemreliability cost/worth evaluation including wind generation as alternative supply [J]. IEE Proc.Gener. Transm. Distrib.,2001,148(4):355–360.
    [115]冯双磊,王伟胜,刘纯,戴慧珠.风电场功率预测物理方法研究[J].中国电机工程学报,2010,30(2):1-6.
    [116]黄梅,万航羽.在动态仿真中风电场模型的简化[J].电工技术学报,2009,24(9):147-152.
    [117]曹娜,于群,戴慧珠.风速波动时风电场动态特性分析[J].太阳能学报,2009,30(4):497-502.
    [118]郑睿敏,李建华,李作红,刘议华.考虑尾流效应的风电场建模以及随机潮流计算[J].西安交通大学学报,2008,42(12):1515-1520.
    [119]张硕,李庚银,周明,刘伟.风电场可靠性建模[J].电网技术,2009,33(13):38-41(53).
    [120] Y. Gao, R. Billinton. Adequacy assessment of generating systems containing wind powerconsidering wind speed correlation [J]. IET Renew. Power Gener,2009,3(2):217–226.
    [121] K. Xie, R. Billinton. Considering wind speed correlation of WECS in reliability evaluationusing the time-shifting technique [J]. Electric Power Systems Research,2009,79:687–693.
    [122] C. D. Annunzio, S. Santoso. Wind power generation reliability analysis and modeling [C].Power Engineering Society General Meeting, IEEE,2005. pp.35–39.
    [123] R. Karki, P. Hu. Impact of wind power growth on capacity credit [J]. Elect Comput. Eng.,2007,1586–1589.
    [124] F. Spinato, P. J. Tavner, G. J. W. van Bussel, E. Koutoulakos. Reliability of wind turbinesubassemblies [J]. IET Renew. Power Gener.,2009,3(4):387–401.
    [125] J. Ribrant. Reliability performance and maintenance-A survey of failures in wind powersystems [D]. Stockholm: KTH School of Electrical Engineering,2006.
    [126] J. Ribrant, L. M. Bertling. Survey of failures in wind power systems with focus on Swedishwind power plants during1997–2005[J]. IEEE Trans. on Energy Conversion,2007,22(1):167-173.
    [127] P. J. Tavner, J. Xiang, and F. Spinato. Reliability analysis for wind turbines [J]. Wind Energy,2007,10:1–18.
    [128] M. Arifujjaman, M. T. Iqbal, J. E. Quaicoe. Reliability analysis of grid connected small windturbine power electronics [J]. Applied Energy,2009,86:1617–1623.
    [129] M. Aten, G. Towers, C. Whitlry, P. Wheeler, J. Clare, K. Bradley. Reliability comparison ofmatrix and other converter topologies [J]. IEEE Trans. Aero. Electron. Syst.,2006,42(3):867–875.
    [130] B. Abdi, A. H. Ranjbar, G. B. Gharehpetian, J. Milimonfared. Reliability considerations forparallel performance of semiconductor switches in high-power switching power supplies[J]. IEEE Trans. on Industrial Electronics,2009,56(6):2133-2139.
    [131] A. Goel, R. J. Graves. Electronic system reliability: Collating prediction models [J]. IEEETrans. on Device and Materials Reliability,2006,6(2):258-265.
    [132] D. Hirschmann, D. Tissen, S. Schr der, and R. W. De Doncker. Reliability prediction forinverters in hybrid electrical vehicles [J]. IEEE Trans.on Power Electronics,2007,22(6):2511-2517.
    [133] Military Handbook MIL-HDBK-217F. Reliability prediction of electronic equipment.Washington, DC: US Dept. Defense;1991.
    [134]吴佳梁,王广良,魏振山等编著.风力机可靠性工程[M].北京:化学工业出版社,2011.
    [135] H. Arabian-Hoseynabadi, H. Oraee, P. J. Tavner. Wind turbine productivity consideringelectrical subassembly reliability [J]. Renewable Energy,2010,35:190–197.
    [136] H. Polinder, F. A. Frank, van der Pijl, G. J. de Vilder, P. J. Tavner. Comparison of direct-driveand geared generator concepts for wind turbines [J]. IEEE Trans. on Energy Conversion,2006,21(3):725-733.
    [137] P. J. Tavner, C. Edwards, A. Brinkman, and F. Spinato. Influence of wind speed on windturbine reliability [J]. Wind Engineering,2006,30(1):55-72.
    [138] G. Chen, R. Burgos, Z. Liang, F. Lacaux, F. Wang, J. D. van Wyk, W. G. Odendaal, and D.Boroyevich. Reliability-oriented design considerations for high-power converter modules [C].The35fh Annual IEEE Power Elecfronics Specialisrs Conference, Aachen, Germany,2004,pp.419-425.
    [139] M. Ciappa. Selected failure mechanisms of modern power modules [J]. Micro electronicsReliability,2002,42:653–667.
    [140] A. Morozumi, K. Yamada, T. Miyasaka, et al. Reliability of Power Cycling for IGBT PowerSemiconductor Modules [C]. IEEE IAS Annual Meeting,2001, pp:1912–1918.
    [141] A. Hamidi, S. Kaufmann, E. Herr. Increased Lifetime of Wire Bonding Connections for IGBTPower Modules, IEEE APEC2001.
    [142] E.Herr, T.Frey, R.Schlegel, et al. Substrate-to-base solder joint reliability in high power IGBTmodules [J]. Microelectron. Rel.,1997,37:1719-1722.
    [143] D. Katsis and J. Wyk. Void-Induced Thermal Impedance in Power Semiconductor Modules:Some Transient Temperature Effects [J]. IEEE Trans. on Industry Applications,2003,39(5):1239-1246.
    [144] D. C. Katsis, J. D. Van Wyk. A thermal, mechanical, and electrical study of voiding in thesolder die-attach of power MOSFETs [J]. IEEE Trans. on Components and PackagingTechnologies,2006,29(1):127-136.
    [145]李玉淋.功率电源中IGBT失效机理及其检测方法的研究[D].陕西:西安理工大学,2008.
    [146] S. M. Sze. Physics of Semiconductor Devices [M]. New York: Wiley,1981.
    [147] C. Duvvury, J. Rodriguez, C. Jones, and M. Smayling. Device integration for ESD robustnessof high voltage power MOSFETs[C]. in Proc. Int. Electron Devices Meeting,1994, pp.407–411.
    [148] N. Mohan, T. Undeland, and W. Robbins. Power Electronics: Converters, Applications, andDesign [M]. New York: Wiley,1995
    [149] J. Bernstein, M. Gurfinkel, X. Li, J. Walters, Y. Shapira, and M. Talmor. Electronic circuitreliability modeling [J]. Microelectron. Rel.,2006,46(12):1957–1979.
    [150] Reliability Methodology for Electronic Systems. FIDES guide2009, May2009.
    [151]廖勇,庄凯,姚骏等.直驱式永磁同步风力发电机双模功率控制策略的仿真研究[J].中国电机工程学报,2009,29(33):76-82.
    [152] M. E. Haque, M. Negnevitsky, and K. M. Muttaqi. A novel control strategy for avariable-speed wind turbine with a permanent-magnet synchronous generator [J]. IEEETrans.on Industry Applications,2010,46(1):331-339.
    [153] Umans, D. Stephen. Electric machinery [M]. Henry Dream press,2008.
    [154]汪万伟,尹华杰,管霖.双闭环矢量控制的电压型PWM整流器参数整定[J].电工技术学报,2010,25(2):67-72(79).
    [155] D. Xu, H. Lu, L. Huang, et al. Power loss and junction temperature analysis of powerdemiconductor fevices [J]. IEEE Trans. on Industry Applications,2002,38(5):1426-1431.
    [156] M. Mohr, F. W. Fuchs. Comparison of three phase current source inverters and voltage sourceinverters linked with DC to DC boost converters for fuel cell generation systems [C]. In:Proceedings of the European conference on power electronics and applications, EPE, Dresden,Germany;2005.
    [157] F. Casanellas, C. Eng, MIEE. Losses in PWM inverters using IGBTs [J]. IEE Proc-electricpower applications,1994,141(5):235-239.
    [158] F. Casanellas, et al. Losses in PWM inverters using IGBTs [J]. IEE Proc-electric powerapplications,1995,142(4):285-288.
    [159] H. Zhang, L. M. Tolbert. Efficiency impact of silicon carbide power electronics for modernwind turbine full scale frequency converter [J]. IEEE Trans. on Ind. Electron.,2011,58(61):21–28.
    [160] H. Zhang, L. M. Tolbert. SiC’s potential impact on the design of wind generation system [C].in Proc. IEEE Ind. Electron. Conf., Nov.10–13,2008, pp.2231–2235.
    [161] IEEE guide for loading mineral-oil-immersed transformers[S]. IEEE Std. C57.91-1995.
    [162] D. Susa, M. Lehtonen, and H. Nordman. Dynamic thermal modelling of power Transformers[J]. IEEE Trans. on Power Del.,2005,20(1):197-204.
    [163] Z. Radakovic and K. Feser. A new method for the calculation of the hot-spot temperature inpower transformers with ONAN cooling [J]. IEEE Trans. on Power Del.,2003,18(4):1284-1292.
    [164] J. A. Jardini, J. L. P. Brittes, L. C. Magrini, M. A. Bini, and J. Yasuoka. Power transformertemperature evaluation for overloading conditions [J]. IEEE Trans. on Power Del.,2005,20(1):179-184.
    [165] W. Fu, J. D. McCalley, and V. Vittal. Risk assessment for transformer loading [J]. IEEE Trans.on Power Systems,2001,16(3):346-353.
    [166] Y. Hong, J. Wu. Determination of transformer capacities in an industrial factory withintermittent loads [J]. IEEE Trans. on Power Del.,2004,19(3):1253-1258.
    [167] A. Navarro and H. Rudnick. Large-scale distribution planning—part I: Simultaneous networkand transformer optimization [J]. IEEE Trans. on Power Systems,2009,24(2):744-751.
    [168]刘昌金,胡长生,李霄,陈敏,徐德鸿.基于超导储能系统的风电场功率控制系统设计[J].电力系统自动化,2008,32(16):83-88.
    [169] T. K. A. Brekken, A. Yokochi, A. v. Jouanne, etal. Optimal energy storage sizing and controlfor wind power applications [J]. IEEE Trans. on Sustainable Energy,2011,2(1):69-77.
    [170] Y. Yuan, Q. Li, W. Wang. Optimal operation strategy of energy storage unit in wind powerintegration based on stochastic programming [J]. IET Renew. Power Gen.,2011,5(2):194-201.
    [171] A. Salehi-Dobakhshari, M. Fotuhi-Firuzabad. Integration of large-scale wind farm projectsincluding system reliability analysis [J]. IET Renew. Power Gen.,2011,5(1):89–98.
    [172]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会,中华人民共和国国家标准GB/T1094.7-2008,油浸式电力变压器负载导则[S].北京:中国标准出版社,2008.
    [173] J. Nilsson and L. Bertling. Maintenance management of wind power systems using conditionmonitoring systems—life cycle cost analysis for two case studies [J]. IEEE Trans. on EnergyConversion,2007,22(1):223-229.
    [174] J. M. V. Noortwijk. Explicit formulas for the variance of discounted life-cycle cost [J].Reliability Engineering and System Safety,2003,80:185–195.
    [175] K. Xie, W. Li. Analytical model for unavailability due to aging failures in power systems [J].Electrical Power and Energy Systems,2009,31:345–350.
    [176] W. Li, S. Pai. Evaluating unavailability of equipment aging failures [J]. IEEE Power Eng Rev.,2002,22:52–54.
    [177] W. Li. Risk assessment of power systems: models, methods and applications [M]. IEEE Pressand John Wiley and Sons Inc.;2004[chapter2].
    [178] P. J. Tavner, G. J. W van Bussel, F. Spinato. Machine and converter reliabilities in windturbines [C].//IEE2nd International Conference on Power Electronics, Machine&Drives,Dublin, April2006.
    [179] Forecasting of Maintenance and Repair Costs of Wind Energy Plants [EB/OL].Available online: http://www.powergenu.com/courses/4/PDF/1007PGU_FrctgofMantnce.pdf.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700