用户名: 密码: 验证码:
海马齿盐适应细胞形态、结构、蛋白变化及耐盐基因功能初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海马齿(Sesuvium portulacastrum L.)是一种生长在热带、亚热带盐滩涂地的肉质草本植物,在淡水栽培和海水栽培条件下均能生长良好,并完成生活史。
     本研究以淡水栽培和海水栽培3个月的海马齿植物为材料,从叶和茎的显微形态结构变化、叶肉细胞超微结构、蛋白质积累、离子微区分布、比较蛋白质组学等对海马齿植物的耐盐适应性进行了比较。并从海马齿植物的基因组中分离了三个与耐盐相关的新基因(STRG152)的同源基因,并对其功能在酵母菌和遗传模式植物拟南芥中进行了初步的分析。结果如下:
     1.海马齿在海水栽培条件下,叶片增厚,叶表皮细胞层中薄壁细胞体积变大,且向外凸出形成泡状细胞。我们推测这些细胞主要是吸收水分,稀释被运输到叶片表皮层的盐浓度。
     2.海水栽培的海马齿叶肉细胞质膜明显向内折叠,出现大量大小、形状各异的质膜突起,以及质膜片层;而淡水栽培的海马齿叶肉细胞质膜向内折叠不明显,质膜突起少见。
     3.海水栽培的海马齿植物叶肉细胞叶绿体变小、数量增多;形状变短,由肾形、梭形或弓形变成椭圆形或一端膨大的不规则形状;叶绿体基粒片层结构清晰完整,垛叠程度增加,叶绿体没有受到明显伤害;叶绿体中淀粉粒数量增多,体积变大,淀粉粒表面出现皱褶,形状由长椭圆型变成短椭圆形或不规则形状,电子云密度变低;叶绿体上脂质体增多且体积变大。
     4.海水栽培的海马齿叶肉细胞线粒体数目增加,体积变小,形状由淡水处理的棒状和球状变成椭圆状和球状,线粒体结构保持完整,线粒体嵴清晰,外膜模糊,受到伤害;而淡水栽培的海马齿叶肉细胞线粒体轮廓清晰,嵴清晰。
     5.淡水栽培的海马齿植物茎中Na元素比叶中Na元素要高,而海水栽培的海马齿叶片中的Na元素比茎中Na元素要高;在盐胁迫下,Na元素在叶片的表皮、栅栏组织和贮水组织中均大量增加,各部分增加的比例基本相等;而海水栽培的海马齿茎中Na元素相对于淡水栽培的海马齿茎中的Na元素也有所增加,各部分增加的比例髓细胞相对于表皮和维管束系统要高。
     6.海马齿植物,Na+的毒害,没有减少植物对K+离子的吸收,反而增加了它在海马齿茎中的含量,所以海马齿植物在盐胁迫条件下,植物不会因为缺K+而受到伤害。
     7.盐胁迫条件能使氯元素含量在茎和叶Na元素增加的组织中增加较多;在茎的微管系统中基本保持不变,但在茎的髓细胞和叶的表皮细胞层中Cl元素增加较多。我们推测氯元素在海马齿中的作用为中和阳离子,增加渗透压使细胞吸水,促进海马齿叶片肉质化。
     8.海水栽培的海马齿茎中的薄壁细胞颗粒状和膜状物质增多;蛋白质类物质在叶片中各组织中积累增加,但在茎中增加不是很明显。
     9.淡水栽培和海水栽培的海马齿植物差异蛋白点以表达量正负2倍为标准,海水栽培的海马齿蛋白质表达有约13.3%的下调,有约15.7%的上调,通过MALD-TOF-MS和MALD-TOF-TOF-MS分析表达差异在±2.5倍的蛋白质点,共鉴定出73个蛋白质,这些蛋白质可以分成11类。(ⅰ)8个胁迫相关蛋白;(ⅱ)25个光合作用相关蛋白;(ⅲ)6个能量代谢相关蛋白;(ⅳ)10个碳代谢相关蛋白;(ⅴ)4个转录、翻译相关蛋白;(ⅵ)4个抗氧化酶类;(ⅶ)6个信号转导相关蛋白;(ⅷ)2个细胞骨架蛋白;(ⅸ)2个生长发育相关蛋白;(ⅹ)5个功能不清楚蛋白;(Ⅺ)1个核酸代谢相关蛋白。
     10.从海马齿植物基因组中分离了3个STRG152同源基因,命名为SRTG152-Ⅰ, SRTG152-Ⅱ和SRTG152-Ⅲ并登陆(GenBank登录号为:FJ457924,FJ457925和FJ457926),对其中的一个基因SRTG152-Ⅰ在酵母菌和遗传模式植物拟南芥中进行了初步的功能分析,初步判断该基因与抗高浓度K+有关。
Sesuvium portulacastrum L. is a kind of succulent herb growing in tropical and subtropical intertidal land. It grows well and finishs life cycle when it is cultivated in both fresh and sea water. In this study, the seedlings of S. portulacastrum watered with fresh water and sea water for 3 months were used as the materials to study their adaptable characteristics in response to salt tolerances, which included morphological structure, mesophyll cell ultrastructure, protein accumulation, the ion micro-distriction and protein expression. In addition, we isolated three STRG152 homologous genes from S. portulacastrum and preliminarily analysis their function in yeast and Arabidopsis. The results are as follows:
     1. When the plants of S. portulacastrum were watered with sea water, the leaves were thicken, and the leaf epidermal cells consisted of the bubble-like parenchyma cells that were enlarged and bulged from the surface. It is deduced that the main function of these cells was for water-absorbing from outside to reduce the cell osmotic pressure, which they are useful to reduce the salt concentration in plant vivo.
     2. When the plants of S. portulacastrum were watered with the sea water, the plasma membrane of mesophyll cells were clearly folded inward, and formed many of different sizes and shapes of protrusions and lamellaes in their plasma membrane; However when the plants of S. portulacastrum were cultivated in the fresh water, the folding inward of plasma membrane in mesophyll cells was not so obvious.
     3. When the plants of S. portulacastrum were watered with sea water, the chloroplasts in mesophyll cells were smaller with shorted shape, but the number of them was increased. The shape of chloroplasts was changed from shapes of kidney, spindle or arciform to ellipse or irregular. The grana lamella of chloroplasts was integrity and clear, and the stacking degree was increased. The chloroplasts had not been significantly hurt. The number of starch grains in chloroplasts was increased, and the size was enlarged. The surface of starch grains appeared wrinkly, and the shape was changed from oblong to short oval or irregular. Electron density was become lower. The number of liposomes on chloroplast was increased, and the size was enlarged.
     4. When the plants of S. portulacastrum were watered with sea water, the mitochondria in mesophyll cells were smaller with shorted shape, but the number of them was increased. The shape was changed from the shapes of stick and sphere to ellipse and sphere. The construct of mitochondria was integrity. The mitochondrial cristaes were clear, but the mitochondria membrane was fuzzy and hurt. When the plants of S. portulacastrum were watered with fresh water, the mitochondria were line profile and the mitochondrial cristaes were clear.
     5. The Na element in the stem was higher than that in leaf of S. portulacastrum when it was watered with fresh water, but Na element in the leaf was higher than that in the stem of S. portulacastrum when it was watered with sea water. Under salt stress, Na element sharply increased in the leaf tissues of epidermal cells, palisade tissue and water organization, and the increasing proportion among them was almost equal. Na element in stem of S. portulacastrum watered with sea water was slightly hgher than that of S. portulacastrum watered with sea water, and the increasing proportion among the stem tissues was higher in the pith cells than epidermal and vascular system.
     6. The Na+ poison didn't decrease the absorption of K+ in S. portulacastrum vivo, in contrast to it, the K+ content was increased when the plants were watered with sea water, so they was not hurt because of lacking K+ under salt-stress.
     7. Under salt stress, the Cl element was much increased in the parts of leaf and stem, in which Na element was increased. Cl element was almost the similar level in vascular system of stem, but the Cl element is higher in pith and epidermal systems when the plants were watered with sea water. It is deduced that Cl element plays a role in cation neutralization; osmotic pressure addition, and leaf succulence.
     8. When the plants of S. portulacastrum were watered with sea water, the granular materials and membranous materials were increased in the stem parenchyma cells, and protein accumulationwas increased in all tissue of leaf, but not clearly increased in stem.
     9. With plus or minus 2 fold protein expression as a standard,13.3% down-regulation protein dots, and 15.7% up-regulation dots were observed when the plants of S. portulacastrum were watered with sea water.73 protein dots with plus or minus 2.5 fold protein expressing have been analyzed by Using MALDI-TOF-MS and MALDI-TOF-TOF-MS. These protein dots can be divided into 11 categories. (ⅰ) 8 protein dots belong to stress responses and defense related proteins; (ⅱ) 25 protein dots belonge to photosynthesis related proteins; (ⅲ) 6 protein dots belong to energy metabolism related proteins; (ⅳ)10 protein dots belong to carbohydryate metabolism associated proteins; (ⅴ) 4 protein dots belong to transcription, translation and trafficking; (ⅵ) 4 protein dots belong to detoxifying and antioxidant enzymes; (ⅶ) 6 protein dots belong to signal transduction related proteins; (ⅷ) 2 protein dots belong to cytoskeleton dynamics; (ⅸ) 2 protein dots belong to growth and development related proteins; (ⅹ) 5 protein dots belong to function unknown and hypothetical proteins; (Ⅺ) 1 protein dot belongs to nucleotide acid metabolism protein.
     10. We cloned tree homologous genes of STRG152 from S. portulacastrum andnamed SRTG152-Ⅰ, SRTG152-Ⅱand SRTG152-Ⅲ(GenBank accession:FJ457924, FJ457925 and FJ457926). We preliminarily analyzed the function of SRTG152-Ⅰgene in Yeast and Arabidopsis. SRTG152-Ⅰgene was preliminarily identified to relate high K+ tolerance.
引文
1. Abdelbaki GK, Siefritz F, Man HM, et al. Nitrate reductase in Zea mays L. under salinity. Plant Cell Environ.2000,23:15-521
    2. Allakhverdiev SI, Nishiyama Y, Suzuki I, et al. Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress. PNAS,1999,96(10):5862-5867
    3. Apse MP, Aharon GS, Snedden WA. et al. Salt tolerance conferred by over expression of a vacuolar Na+/H+ antiport in Arabidopsis. Science,1999,285: 1256-1258
    4. Askari H, Edqvist J, Hajheidari M, et al. Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics,2006,6:2542-2554
    5. Balnokin YV, Myasoedo NA, Shamsutdinov ZS, et al. Significance of Na+ and K+ for sustained hydration of organ tissues in ecologically distinct halophytes of the family Chenopodiaceae. Russ J Plant Physl,2005,52:882-890
    6. Bekesiova I, Nap JP, Mlynarava L. Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Mol Biol Rep,1999, 17:269-277
    7. Bhandal IS and Malik CP. Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. International Review of Cytology,1988,110:205-254
    8. Blumwald E. Sodium transport and salt tolerance in plant. Curr Opin Cell Biol, 2000,12:431-434
    9. Bohnert HJ, Ayoubi P, Borchert C, et al. A genomics approach towards salt tolerance. Plant Physiol Biochem,2001,39:295-311
    10. Bohnert HJ, Nelson DE, Jensen RG, et al. Adaptations to Environmental Stresses. The Plant Cell.1995,7:1099-1111
    11. Bohnert HJ, Ostrem JA, Cushman JC, et al. Mesembryanthemum crystallinum,a higher plant model for the study of environmentally induced changes in gene expression. Plant Mol Biol Rep,1988,6:10-28
    12. Bongani K, Ndimba S, Chivsa WJ, et al. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics,2005,5:4185-4196
    13. Borsani O, Valpuesta V, Botella MA. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol,2001,126:1024-1030
    14. Bruns S and Hecht C. Light and electron-microscope studies on the leaves of several potato cultivars after application of salt at various developmental stages. Potato Res,1990,33:33-41
    15. Capell T and Christou P. Progress in plant metabolic engineering. Current Opinion in Biotechnology.2004,15:148-154
    16. Cheeseman JM. Mechanisms of Salinity Tolerance in Plants. Plant Physiol,1988, 87:547-550
    17. Curto M, Camafeita E, Lopez J, et al. A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics,2006,6: S163-174
    18. Dubcovsky J, Maris GS, Epstein E, et al. Mapping of the K+/Na+ discrimination locus Knal in wheat. Theoretical and applied genetics,1996,92(3-4):448-454
    19. Endress AG, Sjoloud RD. Ultra-structural cytology of callus cultures of Strepantus tortuosus as affect by temperature. Am.J.Bot,1976,63 (9):1213-1224
    20. Flowers T J, Yeo A R. Ion relation of plant under drought and salinity. A ust J Plant Physiol,1986,13:75-91
    21. Flowers TJ. Improving crop salt tolerance. J Exp Bot,2004,44:307-319
    22. Fulda S, Mikkat S, Huang F, et al. Proteome analysis of salt stress response in the cyanobacteriu Synechocystis sp. Strain PCC6803. Proteomics,2006,6: 2733-2745
    23. Ghnaya T, Nouairi I, Slama I, et al. Cadmium effects on growth and mineral nutrition of two halophytes:Sesuvium portulacastrum and Mesembryanthemum crystallinum.J Plant Physiol,2005,162 (10):1133-1140
    24. Ghnaya T, Nouairi I, Slama I, et al. Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesmbryanthemum crystallinum: consequences on growth. Journal of chemosphere,2007,67,72-79
    25. Ghnaya T, Slama I, Messedi D, et, al. Cd-induced growth reduction in the halophyte Sesuvium portulacastrum is significantly improved by NaCl.J Plant Res,2007,120(2):309-16
    26. Gorham J. Salt tolerance in the Triticeae:K/Na discrimination in synthetic hexaploids wheats. Journal of Experiment Botany,1990,41:623-627
    27. Greenway H and Munns R. Mechanism of salt tolerance in non-halophytes.Anal. Biochem,1980,126:355-359
    28. Greenway H and Munns R. Mechanisms of salt tolerance in non-halophytes.Ann Rev Plant Physiol,1980,31:149-190.
    29. Grieve CM, Francois LE, Maas EV. Salinity affects the timing of physic development in spring wheat. Crop Sci,1994,34:1544-1549
    30. Grieve CM, Lesch SM, Maas EV, et al. Leaf and spimordia initiation in salt-stressed wheat. Crop Sci,1993,33:1286-1292
    31. Hasegawa PM, Bressan RA, Zhu JK. Plant cellular and molecular responses to high salinity.Ann Rev Plant Mol Biol.2006,51:463-499
    32. Kaneko T, Kotani H, Nakamura Y, et al, Structural analysis of Arabidopsis thaliana chromosome 5.V. DNA Res,1998,5:131-145
    33. Keiper F, Chen D, De Filippis L. Respiratory photosynthetic and ultra-structural changes accompanying salt adaptation in E. microcorys. Plant Physiol,1998,152: 564-573
    34. Khavarinejad RA and Mostofi Y. Effects of NaCl on photo synthetic pigments, saccharides, and chloroplast ultra-structure structure in leaves of tomato cultivars. Photosynthetica,1998,35:151-154
    35. Kishor PBK, Hong Z, Miao GH, et al. Over expression of [delta]-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmo tolerance in Transgenic Plants. Plant Physiology,1995,18(4): 1387-1394
    36. Lee S, Lee EJ, Yang EJ, et al. Proteomic identification of annexins, calciu-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell,2004,16:1378-1391
    37. Lee Y, Kim MH. Kim SK, et al. Phytochrome-mediated differential gene expression of plant Ran/TC4 small G-proteins. Planta,2008,228:215-224
    38. Leigh RA, Wyn, Jones RJ. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol,1984,97:1
    39. Maathuis FJM, Amtmann A. K+ nutrition and Na+ toxicity:the basis of cellular K+/Na+ ratios. Annals of botany,1999,84(2):123-133
    40. Messeddid D, Labidi N, Grignon C, et al. Limits imposed by salt to the growth of the halophyte Sesuvium portulacastrum. Plant Nutrition Soil Science,2004,
    167(6):720-725
    41. Messeddid D, Sleimi N, Abdelly C. Salt tolerance in Sesuvium portulacastrum. Plant Nutrition,2001,92:406-406
    42. Michelet B, Boutry M. The plasma membrane H+-ATPase(A highly regulated enzyme with multiple physiological functions). Plant Physiol,1995,108:1-6
    43. Milani V, Frankenberger B, Heinz O, et al. Melanoma-associated antigen tyrosinase but not Melan-A/MART-1 expression and presentation dissociate during the heat shock response. Oxford University Press,2005
    44. Mitsuya S, Takeoka Y, Miyake H. Effects of sodium chloride on foliar ultras-tructure structure of sweet potato plantlets grown under light and dark conditions in vitro.J Plant Physiol,2000,157:661-667
    45. Moghaieb RA, Saneoka H, Fujita K. Effect of salinity on osmotic adjustment, glycinebetaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant SCI,2004,166:1345-1349
    46. Moons A, Bauw G, Prinsen E, et al. Molecular and physiological response to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiol,1995,107:177-186
    47. Moons A, Keyser AD, Montagu MV. Molecular and physiological responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene,1997,191:197-204
    48. Munns R, Gardner A, Tonnet ML, et al. Growth and development in NaCl-treated plants Lupinus albus. Ⅱ. Do Na+ or Cl- concentrations in dividing or expanding tissues determine growth in barley. Aust J Plant Physiol,1988,15: 529-540
    49. Ndimba BK, Chivasa S, Simon WJ, et al. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics,2005,5:4185-4196
    50. Niu XM, Bressan RA, Hasegawa PM, et al. Ion homeostasis in NaCl stress environment. Plant Physiol,1995,109:735-742
    51. Niu XM, Narasimhan ML, Salzman RA, et al. NaCl regulation of plasma membrane H+-ATPase gene expression in a glycophyte and a halophyte. Plan Physiol,1993,103:713-718
    52. Parida AK, Das AB, Mittra B. Effects of NaCl stress on the structure, pigment complex composition and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica,2003,41:191-200
    53. Ramani B, Reeck T, Debez A, et al. Aster tripolium L. and Sesuvium portulacastrum L.:two halophytes, two strategies to survive in saline habitats. Plant Physiol Biochem.2006,44(5-6):395-408
    54. Ravanel S, Gakiere B, Job D, et al. The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA,1998,95: 7805-7812
    55. Sahi C, Singh A, Kumar K, et al. Salt stress response in rice:genetics, molecular biology, and comparative genomics. Funct Integr Genomics,2006,6:263-284
    56. Salekdeh GH, Siopogco J, Wade LJ, et al. A Proteomic approach to analyzing drought and salt responsiveness in rice. Field Crops Res,2002,76:199-219
    57. Serrano R and Navarro AR. Ion homeostasis during salt stress in plant, Curr Opin Cell Biol,2001,13:399-404
    58. Slama I, Ghnaya T, Messedi D, et al. Effect of sodium chloride on the response of the halophyte species Sesuvium portulacastrum grown in mannitol-induced water stress. J Plant Res,2007,120:291-299
    59. Sugihara K, Hanagata N, Dubinsky Z. Molecular characterization of cDNA encoding oxygen evolving enhancer protein 1 increased by salt treatment in the mangrove Bruguiera gymnorrhiza. Plant Cell Physiol.2000,41(11):1279-1285
    60. Urao T. Two genes that encode Ca2+ dependent protein kinase are induced by drought and high-salt stresses in Arabidopsis thaliana. Molecular and Genetics and Genomics.1994,244(4):331-340
    61. Vain B, Pardha P, Saradhi P M. Alternation in chloroplast structure and thylakoid membrane composition due to vivo heat treatment in rice seedlings:correlation with the function changes. Plant Physiol,2001,158:583-592
    62. Very AA, Sentenac H. Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol,2003,54:575-603
    63. Volkmar KM, Hu Y, Steppuhn H. Physiological responses of plants to salinity: a review. Plant Science.1998,78:19-27
    64. Wada K, Tada T, Nakamura Y, et al. Crystal structure of chloroplastic ascorbate peroxidase from tobacco plants and structural insights into its instability. J Biochem,2003,134:239-244
    65. Walker RR, Blackmore DH. Carbon dioxide assimilation and foliar ion concentration in leaves of Lemon tress irrigated with NaCl and Na2SO4. Plant Physiol,1993,20:173-185
    66. Wang JY, Zhang GH, Su Q, et al. Research advances about the relation between membrane spanned ion transporter and salt tolerance in plants-. Acta Botanica Boreali-Occidentalia Sinica,2006,26(3):635-640
    67. Wang XC, Li XF, Deng X, et al. A protein extraction method compatible with proteomic analysis for the euhalophyte Salicornia europaea. Electrophoresis, 2007,28,3976-3987
    68. William JH, Chester SF, Charlene KT. A Comparison of the Effect of Salt on Polypeptides and Translatable mRNAs in Roots of a Salt-Tolerant and a Salt-Sensitive Cultivar of Barley. Plant Physiol,1989,90(4):1444-1456
    69. Wood AJ, Saneoka H. Betaine aldehyde dehydrogenase in sorghum. Molecular cloning and expression of two related genes. Plant Physiol.1996,110:1129-1142.
    70. Yamada K, Lim J, Dale JM, et al. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science,2003,302:842-846
    71. Zhang FW, Zhang ZL, Lin Y. Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulastrum. Plant Cell Rep,2009,28(6):975-984
    72. Zhu JK. Plant salt tolerance. Trends Plant Sci,2001,6:66-71.
    73. Zidan I, Aaizeh H, Neumann PM. Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification. Plant Physiol,1990,93:7-11
    74. Zouari N, Saad RB, Legavre T, et al. Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. Gene,2007,404:61-69
    75.陈阳.新疆盐生植物生理生态适应性及硅提高植物抗盐作用机制的研究,学位论文,2002
    76.陈宣钦,於丙军,刘友良.栽培和野生大豆及其杂交后代幼苗的耐氯性与多胺积累的关系.植物生理与分子生物学学报,2007,33(1):46-52
    77.迟丽华,宋凤斌.松嫩平原西部盐碱地区10种植物叶片结构特征及其生态适应性,生态环境,2006,15(6):1269-1273
    78.段瑞军,胡新文,符少萍等.盐胁迫下海马齿叶肉细胞超微结构观察.热带作物学报,2010,31(3):397-403
    79.方孝东,吴多桂,林栖凤等.一种适用于盐生植物的RNA提取方法.海南大学学报自然科学版.1998,12(4):311-313
    80.冯笃敬,懂任瑞,葛旦之.植物钾营养的理论与实践.湖南科技出版社,1993,28
    81.葛晓萍,石琰瑕.一种适合富含多糖、多酚植物的RNA提取方法.青岛科技大学学报(自然科学版).2007,2(1):6-8
    82.韩善华,王双,李琪,等.冬季沙冬青液泡中膜状内含物的超微结构研究.电子显微学报,1994(4):241-246
    83.侯彩霞,汤章城.细胞相容性物质的生理功能及其作用机制[J].植物生理学通讯,1999,35(1):1-7
    84.华栋,耿德贵.盐度对盐生杜氏藻叶绿体超微结构的影响[J].徐州师范大学学报,1999,17(4):54-56
    85.贾恢先,赵曼容,马莹.典型盐地植物细胞膜质过氧化伤害与质膜超微结构变化的研究.西北植物学报,1994,14(6):1-5
    86.克热木·伊力,侯江涛,买合木提,等.盐胁迫对2种扁桃植物苗期离子吸收及叶绿体超微结构的影响.新疆农业大学学报,2006,29(4):22-26
    87.李彬,王志春,孙志高,等.中国盐碱地资源与可持续利用研究[J].干旱地区农业研究,2005,23(2):154-158
    88.李芳,王燕凌,李文兵,等.不同水位条件对刚毛柽柳叶绿体超微结构的影响.干旱区研究,2009,6(1):65-70
    89.李宏,王新力.植物组织RNA提取的难点及对策.生物技术通报.1999,15(1):36-39
    90.李啸浪,胡新文,刘晓丽.热带地区拟南芥栽培技术及基因转化体系的构建.热带作物学报,2005,26(3):56-60
    91.廉彭彭,周桂玲,魏岩.5种滨藜属植物叶肉细胞超微结构的比较解剖.干旱区研究,2008,26(6):790-796
    92.梁峥,骆爱玲.甜菜碱和甜菜碱合成酶[J].植物生理学通讯,1995,35(1):1
    93.粱胜伟.海马齿对无机汞耐性和吸附积累研究.学位论文毕业论文,2009.
    94.林栖凤.耐盐植物.科学出版社,2004
    95.刘刚。盐生植物海马齿中与耐盐相关STRG152同源基因在微生物中的表达及其功能分析.学位论文,2009
    96.刘爱荣,王桂芹,章小华.NaCl处理对空心莲子草营养器官解剖结构的影响广西植物,2007,27(5):682-686
    97.刘小京,刘孟雨.盐生植物利用与区域农业可持续发展[M].北京:气象出版社,2002,1-9
    98.刘友良,汪良驹.植物对盐胁迫的反应和耐盐性[J].植物生理与分子生物学, 1998,752-54
    99.卢萍,卢青,杜荣骞.LEA基因及Lea蛋白的研究进展.内蒙古师大学报自然科学(汉文)版,1999,28(2):138-142
    100.吕芝香,乙引.NaCl对小麦苗叶片脯氨酸氧化酶活性和游离脯氨酸累积的影响[J].植物生理学报,1992,18(4):376
    101.马焕成,蒋东明.木本植物抗盐性研究进展.西南林学院学报,1998,18(1):52-59
    102.宁顺斌,宋运淳,王玲,等.胁迫诱导的植物细胞凋亡~植物抗盐的可能生理机制.实验生物学报,2000,33(3):245-25
    103.曲泽洲,王永蕙,周吉柱等.关于枣树的起源问题(第二报)—再谈酸枣的演变枣树的起源问题.河北农业大学报,1987,10(中国枣研究专辑):1-9
    104.史宝胜,卓丽环.紫叶李叶片总RNA提取方法的改进与比较.分子植物育种.,2006,4(5):721-725
    105.唐昌林.中国植物志.北京科学出版社,1996,26:302-321
    106.万里强,石永红,李向林,等.高温干旱胁迫下三个多年生黑麦草品种叶绿体和线粒体超微结构的变化.干旱区研究,2009,18(1):2-31
    107.王波,宋风斌,任长忠,等.盐碱胁迫对燕麦叶绿体超微结构及一些生理指标的影响.吉林农业大学学报,2005,27(5):473-485
    108.王宝山,赵可夫.NaCl胁迫下玉米黄化苗质外体和共质体Na+、Ca2+浓度的变化.作物学报.,1997,23(1):27-33
    109.王关林.植物基因工程,科学出版社,2002
    110.王玖瑞,刘盂军,代丽.枣树组织培养研究进展.果树学报,2002,19(53):332-339
    111.王丽燕.盐胁迫对海篷子、玉米光合速率和叶绿体超微结构的影响.德州学院学报,2006,22(3):91-95
    112.王文和,许玉凤.肥叶碱蓬叶和茎的解剖结构研究.植物研究,2005,25(1):45-48
    113.王旭初.盐角草喜盐的形态、生理特点及比较蛋白质组学初步研究.学位论文,2008
    114.徐世昌,沈秀瑛,顾慰连,等.土壤干旱下玉米叶细胞膜脂过氧化和膜磷脂脱酯化反应以及膜超微结构的变化.作物学报,1994,20(5):564-569
    115.杨少辉,季静,王罡.盐胁迫对植物的影响及植物的抗盐机理.世界科技研究与发展,2006,4:70-76
    116.样成龙.盐生植物海马齿(S. portulacastrum L.)耐盐性的生理分析与Na+/H+逆 向转运蛋白基因的克隆.学位论文,2009
    117.余梅,张峰.功能基因组学在寻找植物耐盐基因方面的研究进展。生物学通报,2002,37:11-12
    118.余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1998:752-769
    119.曾会才.红树林植物海马齿耐盐相关基因克隆.博士学位论文,2003
    120.翟中和,王喜忠,丁明孝.细胞生物学.北京高等教育出版社.2000,207-245
    121.张福锁.环境胁迫与植物育种.北京:中国农业出版社,1993:330-335
    122.张立新,李生秀.甜菜碱与植物抗旱/盐性研究进展.西北植物学报,2004,24(9):17652-1771
    123.张士诚,高吉寅.外源甜菜碱对盐胁迫下小麦幼苗体内几种与抗逆能力有关物质含量及钾钠吸收和运输的影响.植物生理学通讯,2000,36(1):23
    124.赵可夫,范海,Harris PJC.钾抑制盐生植物生长的生理基础研究.植物学报,1995,37(6):437-442
    125.赵可夫,李法曾.中国盐生植物.北京:科学出版社,1999,1-311
    126.赵可夫,冯立田.中国盐生植物资源.北京:科学出版社,2001,32-43
    127.赵可夫.植物对盐演逆境的适应.生物学通报,2002,37(6):7-10
    128.赵可夫.植物抗盐生理.北京:科学出版社,1993,1-320
    129.郑成木,刘进平.热带亚热带植物微泛指.湖南科学技术出版社,2001
    130.郑敏娜,李向林,万里强,等.水分胁迫对6种禾草叶绿体、线粒体超微结构及光合作用的影响.草地学报,2009,17(5):643-649
    131.周广奇.盐生植物海马齿在盐胁迫下的生理和显微结构的变化研究.学位论文,2009
    132.朱宇旌,张勇,胡自治,等.小花碱茅叶适应盐胁迫的显微结构研究.中国草叶,2001,23(2):19-22
    133.左志锐,高俊平,穆鼎,等.盐胁迫下百合两个品种的叶绿体和线粒体超微结构比较.园艺学报,2006,33(2):429-432

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700