用户名: 密码: 验证码:
蒸发水滴中的液体流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体的蒸发现象在自然界和人类活动中普遍存在,并在制冷、印刷、涂层和新材料制备等领域得到广泛利用。研究表明,液滴靠近接触线的微观区域在液滴的传热、传质过程中起着极为重要的作用。由于系统分辨率的限制,关于液滴接触线附近区域液体流动的实验研究较少。
     本文的主要工作之一是研制了一台微流体观测系统。系统由荧光显微镜、CCD及图像处理软件等组成,采用颗粒示踪测速(Particle Tracking Velocimetry,PTV)技术,并以荧光纳米颗粒作为示踪颗粒,实现了对微小区域内流体的速度测量。该系统具有较高的分辨率和测量精度,系统测量误差主要来源于示踪颗粒的布朗运动。
     应用该系统,对蒸发水滴中的Marangoni流动进行了观测和分析。结果表明,液气界面上存在一个驻点,表面流动、表面张力梯度和表面温度梯度在该点改变方向,这种现象在以往的文献中很少报道。本文通过引入液滴接触线附近区域的热传导模型,解释了液滴表面温度的这种非单调变化。
     液滴接触线附近区域的液体流动,与液滴微观区域(Micro-region)中的蒸发和散热有着紧密联系。实验发现,在液滴附着且Marangoni流动存在时,接触线附近宏观区域中液体外向流动速度与位置无关,并随时间增大。分析表明,液体外向流动速度和外向流动区域的高度有关。光干涉膜厚测量技术的测量结果表明,外向流动区域高度随时间的变化与本文的分析相吻合。
     颗粒浓度低时,液滴接触线平稳解附,随着颗粒浓度的增加,出现突然解附和多次附着现象。分析表明这和颗粒沉积引起的解附势垒增高有关。实验发现Marangoni流动导致了颗粒在液滴表面的聚集,不同的接触角产生不同的聚集状态。
     此外,通过观察垂直射流中纳米颗粒与固体表面的碰撞、吸附和解吸现象,模拟了固体表面的材料去除过程,为研究化学机械平坦化(Chemical Mechanical Planarization, CMP)中材料去除机理提供了新的手段。
The evaporation of the liquid is ubiquitous in nature and human activities, and has a wide application in different industries including refrigeration, printing, coating, and production of novel materials. Previous studies show that the micro-region plays a key role in the heat and mass transfer of the liquid droplet. Due to the limitation of the resolution, experimental investigations on the liquid flow in the region near the contact line are scarce.
     In this study, a microfluid measurement system has been established by adopting the PTV technique. The system includes a fluorescent microscope, a CCD camera, and an image processing software, and utilizes fluorescent nanoparticles as tracing particles. The error analysis of the system shows that the Brownian motion of tracing particles plays a significant role in the accuracy of velocity measurements.
     By using the system, the Marangoni flow in the evaporating water droplets has been observed. The flow pattern of the droplet indicates that a stagnation point where the surface flow, the surface tension gradient, and the surface temperature gradient change their directions exists at the droplet surface. The deduced non-monotonic variation of the droplet surface temperature, which is different from that in some previous works, is explained by a heat transfer model considering the adsorbed thin film of the evaporating liquid droplet.
     The movement of the liquid in the region near the contact line of the droplet is closely relative to the evaporation and the heat transfer in the micro-region. The experimental results indicate that the velocity of the outward flow in the macro-region near the contact line is independent of the position, and increases with time. Analysis shows that the velocity of the outward flow relates to the height of the outward region. The result of the height measurement of the outward region using optical interference technique exhibits a consistency with the analysis in this work.
     A lower particle concentration in the liquid droplet results in a smooth de-pinning of the contact line while a higher concentration leads to an abrupt one. This is because that the deposition of the particles will increase the potential energy barrier for de-pining. As a result of the Marangoni flow, the collection of the particles on the droplet surface can lead a radial deposition.
     In addition, by observing the collision, the adsorption and the desorption of nanoparticles in a normal impacting liquid jet, the material removal process of the solid surfaces is simulated. It can provide means for investigating the material removal mechanism in the Chemical Mechanical Planarization.
引文
[1] Maxwell J C. Collected Scientific Papers. Cambridge, 1890: 625.
    [2] Fuchs N A. Evaporation and droplet growth in gaseous media. Translated by J. M. Pratt. New York: Pergamon Press, 1959.
    [3]肖志英.提高蒸发式冷凝器效率的途径.河北化工, 2007, 30(1):32-33.
    [4]谢晓强,戴旭涵,赵小林,等. MEMS工艺微热管传热性能的定量分析.电子机械工程, 2005, 21(5):15-18.
    [5] Park K, Lee K S. Flow and heat transfer characteristics of the evaporating extended meniscus in a micro-capillary channel. Int. J. Heat Mass Transf., 2003, 46:4587-4594.
    [6] Park K, Noh K J, Lee K S. Transport phenomena in the thin-film region of a micro-channel. Int. J. Heat Mass Transf., 2003, 46:2381-2388.
    [7] Sartre V, Zaghdoudi M C, Lallemand M. Effect of interfacial phenomena on evaporative heat transfer in micro heat pipes. Int. J. Therm. Sci., 2000, 39:498-504.
    [8] Groll M, Schneider M, Sartre V, et al. Thermal control of electronic equipment by heat pipes. Rev. Gén. Therm., 1998, 37(5):323-352.
    [9] Denkov N D, Velev D, Kralchevsky P A, et al. Mechanism of Formation of two-Dimensional Crystals from Latex Particles on Substrates. Langmuir, 1992, 8:3183-3190.
    [10] Dimitrov A S, Dushkin C D, Yoshimura H, et al. Observations of Latex Particle Two-Dimensional-Crystal Nucleation in Wetting Films on Mercury, Glass, and Mica. Langmuir, 1994, 10:432-440.
    [11] Wang HT, Wang ZB, Huang LM, et al. Surface Patterned Porous Films by Convection-Assisted Dynamic Self-Assembly of Zeolite Nanoparticles. Langmuir, 2001, 17:2572-2574.
    [12] Alivisatos P. Colloidal quantum dots. From scaling laws to biological applications. Pure Appl. Chem., 2000, 72(1-2):3-9.
    [13] Chang S T, Velev O D. Evaporation-Induced Particle Microseparations inside Droplets. Langmuir, 2006, 22:1459-1468.
    [14] Maillard M, Motte L, Pileni M P. Rings and Hexagons Made of Nanocrystals. Adv. Mater., 2001, 13(3):200-205.
    [15] Boneberg J, Burmeister F, Sch?fle C, et al. The Formation of Nano-Dot and Nano-Ring Structures in Colloidal Monolayer Lithography. Langmuir, 1997, 13:7080-7084.
    [16] Mancini H, Maza D. Pattern formation without heating in an evaporative convection experiment. Europhys. Lett., 2004, 66(6):812-818.
    [17] Nikolov A D, Wasan D T, Chengara A, et al. Superspreading driven by Marangoni flow. Adv. Colloid Interface Sci., 2002, 96:325-338.
    [18] Cachile M, Bénichou O, Poulard C, et al. Evaporating Droplets. Langmuir, 2002, 18:8070-8078.
    [19] Hocking L M. On contact angles in evaporating liquids. Phys. Fluids, 1995, 7(12): 2950-2955.
    [20] Cachile M, Bénichou O, Cazabat A M. Evaporating Droplets of Completely Wetting Liquids. Langmuir, 2002, 18:7985-7990.
    [21] Langmuir I. The evaporation of small spheres. Phys. Rev., 1912, 12:368-370.
    [22] Birdi K S, Vu D T, Winter A. A Study of the Evaporation Rates of Small Water Drops Placed on a Solid Surface. J. Phys. Chem., 1989, 93:3102-3703.
    [23] Peiss C N. Evaporation of small water drops maintained at constant volume. J. Appl. Phys., 1989, 65(12):5235-5237.
    [24] Woodland D J, Mack E JR. The Effect of Curvature of Surface on Surface Energy. Rate of Evaporation of Liquid Droplets, Thickness of Saturated Vapor Films. J. Am. Chem. Soc., 1933, 55, 3149-3161.
    [25] Bradley R S, Evans M G, Whytlaw R W. The Rate of Evaporation of Droplets. Evaporation and Diffusion Coefficients, and Vapour Pressures of Dibutyl Phthalate and Butyl Stearate. Proc. R. Soc. London A, 1946, 186:368-390.
    [26] Birks J, Bradley R S. The Rate of Evaporation of Droplets. II. The Influence of Changes of Temperature and of the Surrounding Gas on the Rate of Evaporation of Drops of Di-n-butyl Phthalate. Proc. R. Soc. London A, 1949, 198:226-239.
    [27] Bradley R S, Shellard A D. The Rate of Evaporation of Droplets. III. Vapour Pressures and Rates of Evaporation of Straight-Chain Paraffin Hydrocarbons. Proc. R. Soc. London A, 1949, 198, 239-251.
    [28] Monchick L, Reiss H. Studies of evaporation of small drops. J. Chem. Phys., 1954, 22(5):831-836.
    [29] Ray A K, Lee J, Tilley H L. Direct Measurements of Evaporation Rates of Single Droplets at Large Knudsen Numbers. Langmuir, 1988, 4:631-637.
    [30] Potash M JR, Wayner P C JR. Evaporation from a two-dimensional extended meniscus. Int. J. Heat Mass Transf., 1972, 15:1851-1863.
    [31] Buffone C, Sefiane K. Investigation of thermocapillary convective patterns and their role in the enhancement of evaporation from pores. Int. J. Multiph. Flow, 2004, 30:1071-1091.
    [32] Ajaev V S. Spreading of thin volatile liquid droplets on uniformly heated surfaces. J. FluidMech., 2005, 528:279-296.
    [33] Schonberg J A, DasGupta S, Wayner P C Jr. An Augmented Young-Laplace Model of an Evaporating Meniscus in a Microchannel with High Heat Flux. Exp. Therm. Fluid Sci., 1995, 10:163-170.
    [34] Gokhale S J, Plawsky J L, Wayner P C Jr. Spreading, Evaporation, and Contact Line Dynamics of Surfactant-Laden Microdrops. Langmuir, 2005, 21:8188-8197.
    [35] Mazzoco R R, Wayner P C Jr. Aqueous wetting films on fused quartz. J. Colloid Interface Sci., 1999, 214:156-169.
    [36] Zheng L, Wang YX, Plawsky J L, et al. Accuracy of measurements of curvature and apparent contact angle in a constrained vapor bubble heat exchanger. Int. J. Heat Mass Transf., 2002, 45:2021-2030.
    [37] Hu H, Larson R G. Analysis of the effects of Marangoni stresses on the Microflow in an evaporating sessile droplet. Langmuir, 2005, 21:3972-3980.
    [38] Block M J. Surface Tension as the Cause of Bénard Cells and Surface Deformation in a Liquid Film. Nature, 1956, 178:650-658.
    [39] Pearson J R A. On convection cells induced by surface tension. J. Fluid Mech., 1958, 4:489-500.
    [40] Buffone C, Sefiane K, Christy J R E. Experimental investigation of self-induced thermocapillary convection for an evaporating meniscus in capillary tubes using micro-particle image velocimetry. Phys. Fluids, 2005, 17:052104.
    [41] Hu H, Larson R G. Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B, 2006, 110:7090-7094.
    [42] Buffone C, Sefiane K. IR measurements of interfacial temperature during phase change in a confined environment. Exp. Therm. Fluid Sci., 2004, 29:65-74.
    [43] Palmer H J. The hydrodynamic stability of rapidly evaporating liquids at reduced pressure. J. Fluid Mech., 1976, 75:487-511.
    [44] He Q, Hallinan K P. A new particle image velocimetry technique for three-dimensional full field fluid flow measurement in evaporating films. Exp. Therm. Fluid Sci., 1998, 17:230-237.
    [45] Hegseth J J. Natural convection in droplet evaporation. Phys. Rev. E, 1996, 54(2): 1640-1644.
    [46] Deegan R D, Bakajin O, Dupont T F, et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature, 1997, 389:827-829.
    [47] Steinchen A, Sefiane K. Self-organised Marangoni motion at evaporating drops or in capillary menisci-thermohydrodynamical model. J. Non-equilib. Thermodyn., 2005, 30:39-51.
    [48] Cammenga H K, Schreiber D, Barnes G T, et al. On Marangoni convection during the evaporation of water. J. Colloid Interface Sci., 1984, 98:585-586.
    [49] Garrabos Y, Lecontre-Chabot C, Hegseth J, et al. Gas spreading on a heated wall wetted by liquid. Phys. Rev. E, 2001, 64:051602.
    [50] Barnes G T, Hunter D S. Heat Conduction during the Measurement of the Evaporation Resistances of Monolayers. J. Colloid Interface Sci., 1982, 88:437-443.
    [51] Ward C A, Duan. F Turbulent transition of thermocapillary flow induced by water evaporation. Phys. Rev. E, 2004, 69:056308.
    [52] Deegan R D, Bakajin O, Dupont T F, et al. Contact line deposits in an evaporating drop. Phys. Rev. E, 2000, 62:756-765.
    [53] Holm F W, Goplen S P. Heat transfer in the meniscus thin-film transition region. J. Heat Transf.-Trans. ASME, 1979, 101:543-547.
    [54] Stephan P C, Büsse C A. Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls. Int. J. Heat Mass Transf., 1992, 35(2):383-391.
    [55] Hu H, Larson R G. Evaporation of a Sessile Droplet on a Substrate. J. Phys. Chem. B, 2002, 106:1334-1344.
    [56] H?hmann C, Stephan P. Microscale temperature measurement at an evaporating liquid meniscus. Exp. Therm. Fluid Sci., 2002, 26:157-162.
    [57] Hu H, Larson R G. Analysis of the Microfluid Flow in an Evaporating Sessile Droplet. Langmuir, 2005, 21:3963-3971.
    [58] Petsi A J, Burganos V N. Potential flow inside an evaporating cylindrical line. Phys. Rev. E, 2005, 72:047301.
    [59] Petsi A J, Burganos V N. Evaporation-induced flow in an inviscid liquid line at any contact angle. Phys. Rev. E, 2006, 73:041201.
    [60] Fischer B J. Particle Convection in an Evaporating Colloidal Droplet. Langmuir, 2002, 18:60-67.
    [61] Nguyen V X, Stebe K J. Patterning of Small Particles by a Surfactant-Enhanced Marangoni-Bénard Instability. Phys. Rev. Lett., 2002, 88(16):164501.
    [62] Truskett V N, Stebe K J. Influence of Surfactants on an Evaporating Drop: Fluorescence Images and Particle Deposition Patterns. Langmuir, 2003, 19:8271-8279.
    [63] Andersona, D M Davis S H. The spreading of volatile liquid droplets on heated surfaces. Phys. Fluids, 1995, 7(2):248-265.
    [64] Poulard C, Bénichou O, Cazabat A M. Freely Receding Evaporating Droplets. Langmuir, 2003, 19:8828-8834.
    [65] Sefiane K, Tadrist L. Experimental investigation of the de-pinning phenomenon on roughsurfaces of volatile drops. Int. Commun. Heat Mass Transf., 2006, 33:482-490.
    [66] Picknett R G, Bexon R. The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci., 1977, 61(2):336-350.
    [67] Bourges-Monnier C, Shanahan. M Influence of Evaporation on Contact Angle. Langmuir, 1995, 11:2820-2829.
    [68] Shanahan M E R. Simple theory of“stick-slip”wetting hysteresis. Langmuir, 1995, 11:1041-1043.
    [69] Deegan R D. Pattern formation in drying drops. Phys. Rev. E, 2000, 61(1):475-485.
    [70] De-Gennes P. Wetting: statics and dynamics. Rev. Mod. Phys., 1985, 57:827-863.
    [71]王浩,曾理江.二维及三维流场的光学测量方法.光学技术, 2001, 3:139-142.
    [72]李正正,蔡虹,洪小刚,等.双光束激光多普勒测速系统.物理实验, 2005, 25(3):44-47.
    [73] Kikura H, Takeda Y, Durst F. Velocity profile measurement of the Taylor vortex flow of a magnetic fluid using the ultrasonic Doppler method. Exp. Fluids, 1999, 26:208-214.
    [74] Adrian R J. Twenty years of particle image velocimetry. Exp. Fluids, 2005, 39:159-169.
    [75] Santiago J G, Wereley S T, Meinhart C D, et al. A particle image velocimetry system for microfluidics. Exp. Fluids, 1998, 25:316-319.
    [76] Meinhart C D, Wereley S T, Santiago J G. PIV measurements of a microchannel flow. Exp. Fluids, 1999, 27:414-419.
    [77] Meynart R. Flow velocity measurement by a speckle method. Proceedings of the 2nd European congress on optics applied to metrology. Strasbourg, France: 1979, 210:25-28.
    [78] Maynes D, Wedd A R. Velocity profile characterization in sub-millimeter diameter tubes using molecular tagging velocimetry. Exp. Fluids, 2002, 32:3-15.
    [79] Paul P H, Garguilo M G, Rakestraw D J. Imaging of pressure and electrokinetically driven flows through open capillaries. Anal. Chem., 1998, 70:2459-2467.
    [80] Lempert W R, Harris S R. Flow tagging velocimetry using caged dye photo-activated fluorophores. Meas. Sci. Technol., 2000, 11:1251-1258.
    [81]张军,赵峰,洪方文,等.粒子图像测速技术在拖曳水池中的应用.中国造船, 2002, 43(3):81-87.
    [82] Okuno T, Sugii Y, Nishio S. Image measurement of flow field using physics-based dynamic model. Meas. Sci. Technol., 2000, 11:667-676.
    [83] Ohmi K, Li HY. Particle-tracking velocimetry with new algorithms. Meas. Sci. Technol., 2000, 11:603-616.
    [84]段菁华,王柯敏,谭蔚泓,等.新型有机荧光染料嵌合的核壳荧光纳米材料研制.高等学校化学学报, 2003, 24(2):255-259.
    [85] Meinhart C D, Wereley S T, Gray M H B. Volume illumination for two-dimensional particle image velocimetry. Meas. Sci. Technol., 2000, 11:809-14.
    [86] Einstein A. On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat // Theory of the Brownian Movement. New York: Dover Publications, Inc, 1905:1-18.
    [87]清华大学工程力学系.流体力学基础(下册).北京:机械工业出版社, 1994:281-283.
    [88] Gokhale S J, Plawsky J L, Wayner P C Jr. Inferred pressure gradient and fluid flow in a condensing sessile droplet based on the measured thickness profile. Phys. Fluids, 2004, 16:1942-1955.
    [89] Wayner P C JR, Kao Y K, Lacroix L V. The interline heat-transfer coefficient of an evaporating wetting film. Int. J. Heat Mass Transf., 1975, 19: 487-492.
    [90] Luo JB, Wen SZ, Huang P. Thin film lubrication Part I: Study on the transition between EHL and thin film lubrication using a relative optical interference intensity technique. Wear, 1996, 194:107-115.
    [91] Luo JB, Liu S. The investigation of contact ratio in mixed lubrication. Tribol. Int., 2006, 39:409-416.
    [92] Schrader M E, Weiss G H. Free Energy and Vapor Pressure of Sessile Drops. 1. Rapidly Established Contact Angle Equilibrium. J. Phys. Chem., 1987, 91:353-356.
    [93]刘大有,王光谦,李洪州.泥沙运动的受力分析-关于碰撞力的讨论.泥沙研究, 1993, 2:41-47.
    [94] Zantye P B, Kumara A, Sikder A K. Chemical mechanical planarization for microelectronics applications. Mater. Sci. Eng. R-Rep., 2004, 45: 89-220.
    [95] G B Basim, J J Adler, U Mahajan, et al. Effect of Particle Size of Chemical Mechanical Polishing Slurries for Enhanced Polishing with Minimal Defects. J. Electrochem. Soc., 2000, 147: 3523-3528.
    [96] Bielmann M, Mahajan U, Singh R K. Effect of Particle Size during Tungsten Chemical Mechanical Polishing. Electrochem. Solid State Lett., 1999, 2:401-403.
    [97] Stavreva Z, Zeidler D, Pl?tner M, et al., Characteristics in chemical-mechanical polishing of copper: comparison of polishing pads. Appl. Surf. Sci., 1997, 108:39-44.
    [98] Xu J, Luo JB, Lu XC, et al. Progress in material removal mechanisms of surface polishing with ultra precision. Chin. Sci. Bull., 2004, 49:1687-1693.
    [99] Lei H, Luo JB. CMP of hard disk substrate using a colloidal SiO2 slurry: preliminary experimental investigation. Wear, 2004, 257:461-470.
    [100] Zhou CH, Shan L, Hight J R, et al. Influence of Colloidal Abrasive Size on Material Removal Rate and Surface Finish in SiO2 Chemical Mechanical Polishing. Tribol. trans., 2002, 45:232-238.
    [101] Basse J L, Liang H. Probable role of abrasion in chemo-mechanical polishing of tungsten. Wear, 1999, 233-235:647-654.
    [102] Tamboli D, Banerjee G, Waddell M. Novel Interpretations of CMP Removal Rate Dependencies on Slurry Particle Size and Concentration. Electrochem. Solid State Lett., 2004, 7:F62-F65.
    [103] Luo JF, Dornfeld D A. Material Removal Mechanism in Chemical Mechanical Polishing: Theory and Modeling. IEEE Trans. Semicond. Manuf., 2001, 14:112-133.
    [104] Seok J, Sukama C P, Kima A T, et al. Multiscale material removal modeling of chemical mechanical polishing. Wear, 2003, 254:307-320.
    [105] Mejia D C, Perlov A, Beaudoin S. Qualitative Prediction of SiO2 Removal Rates during Chemical Mechanical Polishing. J. Electrochem. Soc., 2000, 147:4671-4675.
    [106] Su Y. Investigation of Removal Rate Properties of a Floating Polishing Process. J. Electrochem. Soc., 2000, 147:2290-2296.
    [107] Jeng YR, Huang PY. Impact of Abrasive Particles on the Material Removal Rate in CMP. Electrochem. Solid State Lett., 7(2), G40-G43(2004).
    [108] Jeng YR, Huang PY. A Material Removal Rate Model Considering Interfacial Micro-Contact Wear Behavior for Chemical Mechanical Polishing. J. Tribol.-Trans. ASME, 2005, 127:190-197.
    [109] Luo JF, Dornfeld D A. Effects of Abrasive Size Distribution in Chemical Mechanical Planarization: Modeling and Verification. IEEE Trans. Semicond. Manuf., 2003, 16:469-476.
    [110] Runnels S R, Eyman L M. Tribology Analysis of Chemical-Mechanical Polishing. J. Electrochem. Soc., 1994, 141:1698-1701.
    [111] Tichy J, Levert J A, Shan L, et al. Contact Mechanics and Lubrication Hydrodynamics of Chemical Mechanical Polishing. J. Electrochem. Soc., 1999, 146:1523-1528.
    [112] Hensel H, Urbassek H M. Implantation and damage under low-energy Si self-bombardment. Phys. Rev. B, 1998, 57:4756-4763.
    [113] Cheng H. Cluster-surface collisions: Characteristics of Xe55- and C20- Si[111] surface bombardment. J. Chem. Phys., 1999, 111:7583-7592.
    [114] Fukui K, Sumpter B G, Runge K, et al. Collision dynamics and surface wetting of nano-scale polymer particles on substrates. Chem. Phys., 1999, 244:339-349.
    [115] Diaz T, Gilmer G H. Structure transformations and defect production in ion implanted silicon: a molecular dynamics simulation study. Phys. Rev. Lett., 1995, 74:2507-2510.
    [116] Insepov Z, Allen L P, Santeufemio C, et al. Computer modeling and electron microscopy of silicon surfaces irradiated by cluster ion impacts. Nucl. Instrum. Methods Phys. Res. B, 2003, 202:261-268.
    [117] Xu J, Luo JB, Lu XC, et al. Atomic scale deformation in the solid surface induced by nanoparticle impacts. Nanotechnology, 2005, 16:859-864.
    [118] Duan FL, Luo JB, Wen SZ. Repulsion mechanism of nanoparticle colliding with monocrystalline silicon surface. Acta Phys. Sin., 2005, 54:2832-2837.
    [119]雷红,雒建斌,马俊杰.化学机械抛光(CMP)技术的发展、应用及存在问题.润滑与密封, 2004, 4:73-76.
    [120]李薇薇,刘玉岭,周建伟,等. CMP过程中纳米级颗粒在芯片表面吸附状态控制.电子工艺技术, 2005, 26:344-348.
    [121] Larsen L G, Crimaldi J P. The effect of photobleaching on PLIF. Exp. Fluids, 2006, 41:803-812.
    [122] Hinds W C. Aerosol technology. New York: John Wiley & Sons, 1982:109-111.
    [123] Ma Q, Fang R, Xiang L. Handbook of practical thermal physical property. Beijing: Agriculture Machine Press, 1986:167.
    [124] Lide D R. CRC Handbook of Chemistry and Physics. Boca Raton: CRC Press, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700