用户名: 密码: 验证码:
滇西新近纪翅果数值分类和被子植物叶片的古环境重建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滇西地处横断山南部,青藏高原东南缘,是我国现代植物最具多样性的地区之一,也是我国新生代植物化石保存最好的地区之一。研究保存于新近系中的植物化石,不仅可为植物的分类和演化提供材料,为认识和理解我国植物多样性的渊源提供实证;而且可以提取保存于化石记录中的古环境信息,重建滇西新生代全球降温背景下的古气候演化,认识晚新生代构造运动对该区的作用和影响。
     本文采用数值统计工具,对产于云南腾冲上新统的两类翅果化石进行了数值分类和分支分析。结果表明,类黄杞翅果化石可以分为4个类型,包括2个已知种和2个新种,它们分别是:Palaeocarya guangxiensis,Palaeocarya koreanica,Palaeocarya longialata sp.nov.和Palaeocarya yunnanensis sp.nov.。这些类黄杞化石与生长于东南亚和我国华南的现生黄杞属具有较多的相似性,具有较近的亲缘关系。黄杞族植物在我国从上新世到目前地理分布范围的变化,印证了晚新生代全球变冷趋势。
     对上新世槭属翅果化石的数值分类表明:所有标本可以划分成7个形态类型,分别为:Acer subpictum,Acer miofranchetii,Acer browni,Acer macrocarpium sp.nov.,Acer globicarpium sp.nov.,Acer tengchongense sp.nov.和Acer sp.。对其所做的分支分析表明:7个化石种具有形态上的多样性,处于不同的演化水平,某些化石种已经具有与现生槭属相当的进化水平。
     利用大量的被子植物叶片化石,基于叶相特征进行了单变量和多变量的古气候重建。结果显示:单变量方法得到的结果要高于多变量分析,气候与叶片多变量分析结果为:云南腾冲上新世年均温在17.16~17.68℃之间,热月平均温度在25~25.5℃之间,冷月平均温度在9.54-10.8℃之间,生长季月数在9.71~9.5之间;生长季降雨量在183.43~190.12cm之间,生长季平均月降雨量在22.24~23.05cm之间,3个连续最湿润月降雨量在89.21~91.78cm之间,3个连续最早月份降雨量在47.45~51.28cm之间,相对湿度在76.65~77.75之间,比湿度为10.74~10.79,热熵为318.4~319.7ki/kg。
     根据被子植物叶片的气孔指数和碳同位素组成对古大气CO_2浓度和植物古生理参数进行了定量重建.分析结果为:利用气孔方法重建的大气CO_2浓度变化趋势与古海洋有孔虫地球化学证据相一致,上新世早期大气CO_2浓度较高,超出当前水平:两种植物化石的碳同位素分馏值高于现存对应种,水分利用效率低于现存对应种,印证了上新世早期的气候比现在温暖湿润。气孔指数还表明,上新世晚期大气CO_2浓度较低,略低于目前水平。
The west of Yunnan Province locates in the south of the Hengduan Mountains and southeast margin of the Qinghai-Tibet Plateau, where well-preserved plant fossils were sampled in the current research. West Yunnan is one of the best localities not only for modern plants diversified, but also for preservation of Cenozoic plant fossils. The present study on Neogene fossil plants can provide evidence for plant systematics and evolution, and furthermore, it may strengthen our knowledge about the origin of plant diversity in China. Moreover, we can also acquire the knowledge about paleoclimatic evolution and paleoenvironmental changes. Thereby, we can get the information about the influence of the Late Cenozoic movement on West Yunnan's environment.
     The numerical taxonomy on Palaeocarya specimens suggests that four species were recognized, and they were assigned to Palaeocarya guangxiensis, Palaeocarya koreanica, Palaeocarya longialata sp. nov., and Palaeocarya yunnanensis sp.nov. These fossil species are much similar to Engelhardia species that now inhabit Southeast Asia and South China, and they may be close relatives. Engelhardieae species from the Pliocene to today moved southward or maintained at lower latitudes while the more northerly populations became extinct provides additional evidence that Neogene cooling affected the north/south latitudinal distributions of the Engelhardieae and many other plant species.
     The clustering based on morphological characters assign specimens of Acer fruits into seven types. They are Acer subpictum, Acer miofranchetii, Acer browni, Acer macrocarpium sp. nov., Acer globicarpium sp. nov., Acer tengchongense sp. nov., and Acer sp. The cladistic analysis showed that the fossil species of Acer much diversified in morphology and may be at different evolutional levels, even some species have evolved into comparative levels with certain extant Acer species.
     We also conduct paleoclimatic reconstruction based on the leaf physiognomy of angiosperm fossils with the methodology of univariate and multivariate statistics. The results demonstrated that the univariate analysis abtain a higher result than the multivariate method. The multivariate program (CLAMP) acquired the following climate values: mean annual temperature (MAT; 17.16~17.68℃), warm month mean temperature (WMMT; 25~25.5℃), cold month mean temperature (CMMT; 9.54~10.8℃), length of the growing season (GRS; 9.71~9.5 months), growing season precipitation (GSP; 183.43~190.12cm), mean monthly growing season precipitation (MMGSP; 22.24~23.05cm), precipitation during the three consecutive wettest months (3WET; 89.21~91.78cm), precipitation during the three consecutive driest months (3DRY; 47.45~51.28cm), relative humidity(RH, 76.65~77.75%), specific humidity (SH, 10.74~10.79), and Enthalpy (ENTHAL, 318.4~319.7 kj/kg).
     We also investigated the stomatal indices and carbon isotope composition of fossil angiosperm leaves, and then calculated paleo-CO_2 level and phytophysiological parameters in Pliocene. The results show stoma-based paleo-CO_2 estimates is consistent with the independent evidence of geochemistry from marine foraminifera. The paleo-CO_2 level in Early Pliocene is higher than current levels. The carbon isotope discrimination of fossil plants is also higher than that of their nearest living relatives (NLRs), whereas, water use efficiencies of the fossils is lower than that of their NLRs, which confirmed the climate of Early Pliocene was more humid and warmer than it is now. The stomatal data also demonstrate slightly lower Paleo-CO_2 concentration in the Late Pliocene than today.
引文
1 李浩敏,叶结构分析——鉴定被子植物叶化石的新方法.古生物学研究的新技术新方法,ed.穆西南.1987,北京:科学出版社.54.
    2 Dilcher D.L., Approaches to Identification of Angiosperm Leaf Remains. Botanical Review, 1974.40(1): 1-157.
    3 Hickey L.J., Classification of the Architecture of Dicotyledonous Leaves. American Journal of Botany, 1973.60(1): 17-33.
    4 Hickey L.J.,Wolfe J.A., Bases of Angiosperm Phylogeny - Vegetative Morphology.Annals of the Missouri Botanical Garden, 1975.62(3): 538-589.
    5 Hickey L.J., Stratigraphy and paleobotany of the Golden Valley Formation (Early Tertiary) of western North Dakota. 1977, Boulder, Colo.: Geological Society of America. ⅸ, 183 p., 55 leaves of plates.
    6 王宇飞,陶君容,植物角质层分析术语新体系.植物学通报,1991.8(4):6-13.
    7 Wang Y., Guignard G., Thevenard F., Dilcher D., Barale G., Mosbrugger V., Yang X.,Mei S., Cuticular anatomy of Sphenobaiera huangii (Ginkgoales) from the Lower Jurassic of Hubei, China. American Journal of Botany, 2005.92(4):709-721.
    8 孙启高,宋书银,介绍双子叶植物叶结构分类术语.植物分类学报,1997.35(3):275-288.
    9 LAWG, Manual of Leaf Architecture-morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms. 1999, Washington, D.C.: Smithsonian Institution.
    10 Hill R.S., A Numerical Taxonomic Approach to the Study of Angiosperm Leaves. Botanical Gazette, 1980. 141(2): 213-229.
    11 钟杨,李伟,黄德世,分支分类的理论与方法.1994,北京:科学出版社.310.
    12 冷琴,周巍,分支系统学简评.古生物学报,1997.36(1):122-131.
    13 Mosbrugger V., The nearest liming relative method, in Fossil Plants Spores: Modern techniques, Y.P. Jones and N.P. Rowe, Editors. 1999, Geological Society: London. p. 261-265.
    14 陶君容,中国晚白垩世至新生代植物区系发展演变.2000,北京:科学出版社.p.282.
    15 Mosbrugger V.,Utescher T., The coexistence approach—a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997. 134(1-4): 61-86.
    16 李承森,王宇飞,等,定量分析第三纪以来环境变化的新方法:一特有种气候分析法.Acta Botanica Sinica(植物学报:英文版),2001.43(2):217-220.
    17 Wang Y.F., Li C.S., Collinson M.E., Lin J.,Sun Q.G., Eucommia (Eucommiaceae), a potential biothermometer for the reconstruction of paleoenvironments. Am. J. Botany American Journal of Botany, 2003.90(1): 1-7.
    18 Hickey L.J.,Taylor D.W., The Leaf Architecture of Ticodendron and the Application of Foliar Characters in Discerning Its Relationships. Annals of the Missouri Botanical Garden, 1991.78(1): 105-130.
    19 Beerling D.J., The future as the key to the past for palaeobotany? Trends in Ecology & Evolution, 1998.13(8): 311-316.
    20 Beerling D.J., Terry A.C., Hopwood C.,Osborne C.P., Feeling the cold: atmospheric CO_2 enrichment and the frost sensitivity of terrestrial plant foliage. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002. 182(1-2): 3-13.
    21 Royer D.L., Osborne C.P.,Beerling D.J., High CO_2 increases the freezing sensitivity of plants: Implications for paleoclimatic reconstructions from fossil floras. Geology, 2002.30(11): 963-966.
    22 Wilf P., When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology, 1997.23(3): 373-390.
    23 Wolfe J.A., Temperature parameters of humid to mesic forests of Eastern Asia and relation to forests of other regions of the Northern Hemisphere and Australasia. 1979, [Reston, Va.]:: Dept. of the Interior, Geological Survey;. 37.
    24 Burnham R.J., Pitman N.C., Johnson K.R.,Wilf P., Habitat-related error in estimating temperatures from leaf margins in a humid tropical forest. Am. J. Botany American Journal of Botany, 2001.88(6): 1096-1102.
    25 Greenwood D.R., Wilf P., Wing S.L.,Christophei D.C., Paleotemperature estimation using leaf-margin analysis: Is Australia different? Palaios, 2004.19(2): 129-142.
    26 Royer D.L.,Wilf P., Why do toothed leaves correlate with cold climates? Gas exchange at leaf margins provides new insights into a classic paleotemperature proxy. International Journal of Plant Sciences, 2006. 167(1): 11-18.
    27 Wiemann M.C., Manchester S.R., Dilcher D.L., Hinojosa L.F.,Wheeler E.A., Estimation of temperature and precipitation from morphological characters of dicotyledonous leaves. American Journal of Botany, 1998.85(12): 1796-1802.
    28 Wilf P., Wing S.L., Greenwood D.R.,Greenwood C.L., Using fossil leaves as paleoprecipitation indicators; an Eocene example. Geology, 1998.26(3): 203-206.
    29 Wolfe J.A., Palaeobotanical evidence for a marked temperature increase following the Cretaceous/Tertiary boundary. Nature, 1990. 343(6254): 153-156.
    30 Wolfe J.A., A method of obtaining climatic parameters from leaf assemblages. 1993, Washington:: U.S.G.P.O.;. 71.
    31 Kovach W.L.,Spicer R.A., Canonical correspondence analysis of leaf physiognomy: a contribution to the development of a new palaeoclimatological tool. Palaeoclimates, 1996.2:125-138.
    32 Spicer R.A., Leaf Physiognomy and Climate Change, in Biotic Response to Global Change: The Last 145 Million Years, S.J. Culver and P.F. Rawson, Editors. 1999, Cambridge University Press: Cambridge. p. 244-264.
    33 Wolfe J.A.,Spicer R.A., Fossil Leaf Character States: Multivariate Analysis, in Fossil Plants and Spores: Modern Techniques, T.P. Jones and N.P. Rowe, Editors. 1999, Geological Society: London. p. 233-239.
    34 Spicer R.A., Harris N.B., Widdowson M., Herman A.B., Guo S., Valdes P.J., Wolfe J.A.,Kelley S.P., Constant elevation of southern Tibet over the past 15 million years. Nature, 2003. 421(6923): 622-624.
    35 Traiser C., Klotz S., Uhl D.,Mosbrugger V., Environmental signals from leaves - a physiognomic analysis of European vegetation. New Phytologist New Phytologist, 2005. 166(2): 465-484.
    36 Uhl D., Bruch A., Traiser C.,Klotz S., Palaeoclimate estimates for the Middle Miocene Schrotzburg flora (S Germany): a multi-method approach. International Journal of Earth Sciences, 2006: 1-15.
    37 Gregory-Wodzicki K.M., Relationships between leaf morphology and climate, Bolivia: implications for estimating paleoclimate from fossil floras. Paleobiology, 2000.26(4): 668-688.
    38 Spicer R.A., Herman A.B.,Kennedy E.M., The sensitivity of CLAMP to taphonomic loss of foliar physiognomic characters. Palaios, 2005.20(5): 429-438.
    39 Green W.A., Loosening the clamp: An exploratory graphical approach to the Climate Leaf Analysis Multivariate Program. Palaeontologia Eleetronica, 2006. 9(2): 17.
    40 吴征镒,朱彦丞,云南植被.1987,北京:科学出版社.
    41 李星学,中国地质时期植物群.广州:广东科技出版社.1995.
    42 Hay W., Soeding E., DeConto R.,Wold C., The Late Cenozoic uplift - climate change paradox. International Journal of Earth Sciences, 2002.91(5): 746-774.
    43 Manchester S.R., Fossil history of the Juglandaceae. 1981, Indiana University: Indianapolis. p. 209.
    44 Manchester S.R., The fossil history of the Juglandaceae (Monographs in systematic botany from the Missouri Botanical Garden). 1987: Missouri Botanical Garden. 137.
    45 路安民,论胡桃科植物的地理分布.植物分类学报,1982.20(3):257-274.
    46 Dilcher D.L., Potter F.W.,Crepet W.L., Investigations of Angiosperms from the Eocene of North America: Juglandaceous Winged Fruits. American Journal of Botany, 1976.63(5): 532-544.
    47 方文培,中国植物志·槭树科.1981,北京:科学出版社.
    48 徐廷志,槭属的一个系统.云南植物研究,1996.18(3):277-292.
    49 徐廷志,我国横断山区槭属植物的地理分布和区系特征.云南植物研究,1983.5(4):391—400.
    50 徐廷志,槭树科的地理分布.云南植物研究,1996.18(1):43-50.
    51 徐廷志,槭属的系统演化与地理分布.云南植物研究,1998.20(4):383-393.
    52 田欣,李德铢,槭树科植物广义形态学性状分支分析.云南植物研究,2004.26(4):387-397.
    53 Wolfe J.A.,Tanai T., Systematics, phylogeny, and distribution of Acer (maples) in the Cenozoic of western North America Journal of the Faculty of Science, Hokkaido University, (Japan) series Ⅳ, 1987.22: 1-246.
    54 田欣,徐廷志,等,云南槭树科植物新资料.云南植物研究,2001.23(3):291-292.
    55 Tian X., Guo Z.H.,Li D.Z., Phylogeny of Aceraceae based on ITS and trnL-F data sets. Acta Botanica Sinica, 2002.44(6): 714-724.
    56 中国新生代植物编写组,中国植物化石第三册——中国新生代植物.1978,北京:科学出版社.
    57 陶君容,孔昭宸,云南洱源三营煤系的植物化石群和孢粉组合.植物学报,1973.15(1):120-126.
    58 刘耕武,李代芸,等,云南元谋盆地上新世甘棠组植物和孢粉组合及其古气候意义.古生物学报,2002.41(1):1—9.
    59 徐廷志,翅果形态及其在槭树科分类与演化上的意义.广西植物,1996.16(2):109—122.
    60 Sun Q., Collinson M.E., Li C.S., Wang Y.,Beerling D.J., Quantitative reconstruction of palaeoclimate from the Middle Miocene Shanwang flora, eastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002. 180(4): 315-329.
    61 孙泽轩,姚毅锋,陈勇,李国新,龙川江盆地上第三系芒棒组沉积体系与层序地层分析.铀矿地质,2004.20(5):286-293,298.
    62 尚映莲,腾冲硅藻土矿床及其成因.云南地质,2003.22(4):418-425.
    63 戈宏儒,李代芸,云南西部新生代含煤盆地及聚煤规律.1999,昆明:云南科技出版社.88.
    64 陶君容,杜乃秋,云南腾冲新第三纪植物群及其时代.植物学报,1982.24(3):273-281.
    65 赵崇贺,陈廷方,腾冲新生代火山作用构造—岩浆类型的探讨—一种滞后型的弧火山.现代地质,1992.6(2):119-130
    66 姜朝松,腾冲地区新生代火山活动分期.地震研究,1998.21(4):320-320.
    67 李大明,李齐,腾冲火山区上新世以来的火山活动.岩石学报,2000.16(3):362-370.
    68 李锡康,谭筱虹,高子英,姚金昌,腾冲上新统芒棒组地质时代及沉积环境.云南地质,2004.23(2):241-251.
    69 木士春,中国陆相硅藻上物化特征及对硅藻生长、堆理环境指示意义.湘潭矿业学院学报,2002.17(3):16-21
    70 李百福,腾冲硅藻土层孢粉组合特征.云南地质,1994.13(3):312-323.
    71 Jahichen H., Friederick W.L.,Takác M., Engelhardioid leaves and fruits from the European Tertiary, Part Ⅱ. TertiaryRes., 1984.6(3): 109-134.
    72 Manchester S.R., Collinson M.E.,Goth K., Fruits of the Juglandaceae from the Eocene of Messel, Germany, and Implications for Early Tertiary Phytogeographic Exchange between Europe and Western North America. International Journal of Plant Sciences, 1994. 155(3): 388-394.
    73 Akhmetyev M.A.,Bratzeva G.M., Fossil remains of the genus Engelhardita from cenozoic deposits of sikhote-alin and southern primorye. Review of Palaeobotany and Palynology, 1973.16(1-2): 123-132.
    74 Tanai T.,Uemura K., Engelhardia fruits from the Tertiary of Japan. Jour. Fac. Sci., Hokkaido Univ., Set. Ⅳ,, 1983.20(2-3): 249-260.
    75 郭双兴,张光富,吉林龙井渐新世三合植物群.古生物学报,2002.41(2):193—210.
    76 李浩敏,陈运发,陈耿娇,邝国敦,黄志涛,广西宁明第三纪类黄杞翅果化石.古生物学报,2003(04):59-69.
    77 陈邦余,海南黄杞属植物二新种.植物分类学报,1981.19(2):250-252.
    78 Lu A.M.,Stone D.E.,Grauke L.J.,Juglandaceae,in Flora of China.1999,Science Press:Beijing.p.277-285.
    79 徐克学,数量分类学.1994,北京:科学出版社.340.
    80 匡可任,路安民,中国植物志第21卷.1979,北京:科学出版社.
    81 Khalik K.A., Maesen L.J.G.v.d., Koopman W.J.M.,Berg R.G.v.d., Numerical taxonomic study of some tribes of Brassicaceae from Egypt. Plant Systematics and Evolution, 2002. V233(3): 207-221.
    82 Manchester S.R., Early history of the Juglandaceae. Plant Systematics and Evolution, 1989. 162(1-4): 231-250.
    83 MacGinitie H.D., A Middle Eocene flora from the central Sierra Nevada (Contributions to paleontology). 1941, Wash. Pub.: Carnegie Inst. 178.
    84 路安民,张志耘,胡桃目的分化,进化和系统关系.植物分类学报,1990.28(2):96-102.
    85 Huang P., Phylogeny and Historical Biogeography of Acer. 2002, University of Missouri—St. Louis.
    86 McClain A.M.,Manchester S.R., Dipteronia (Sapindaceae) from the Tertiary of North America and implications for the phytogeographic history of the Aceroideae. Am. J. Botany American Journal of Botany, 2001.88(7): 1316-1325.
    87 田欣,郭振华,等,基于ITS与trnL—F序列探讨槭树科的系统发育.Acta Botanica Sinica(植物学报:英文版),2002,44(6):714-724.
    88 施雅风,李吉均,晚新生代青藏高原的隆升与东亚环境变化.地理学报,1999.54(1):10-21
    89 Krieger J.D., Guralnick R.P.,Smith D.M., Generating empirically determined, continuous measure of leaf shape for paleoclimate reconstruction. Palaios, 2007. 22(2): 212-219.
    90 Sun B.N., Yan D.F., Xie S.P., Cong P.Y., Xin C.L.,Yun F., Palaeogene fossil Populus leaves from Lanzhou Basin and their palaeoclimatic significance. Chinese Science Bulletin, 2004.49(14): 1494-1501.
    91 Hill R.S.,Scriven L.J., Palaeoclimate across an altitudinal gradient in the Oligocene-Miocene of northern Tasmania: an investigation of nearest living relative analysis. Australian Journal of Botany, 1997.45(3): 493-505.
    92 肖良,孙柏年,阎德飞,解三平,韦利杰,云南保山上新统黄背栎Quercus pannosa Hand.-Mazz.角质层特征及古环境意义.微体古生物学报,2006.23(1):23—30
    93 Uhl D., Klotz S., Traiser C., Thiel C., Utescher T., Kowalski E.,Dilcher D.L., Cenozoic paleotemperatures and leaf physiognomy — A European perspective. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007. 248(1-2): 24-31.
    94 Greenwood D.R., Leaf form and the reconstruction of past climates. New Phytologist, 2005. 166(2): 355-357.
    95 国家气象信息中心气象资料室,中国地面气候标准值(1971-2000).2004:北京.
    96 国家气象信息中心气象资料室,中国地面气候示意图图集(1971-2000).2004:北京.
    97 韦利杰,孙柏年,解三平,闫德飞,肖良,云南腾冲上新统植物油丹Alseodaphne hainanensis Merr.表皮微细构造研究.微体古生物学报,2005.22(4):392-399.
    98 Royer D.L., Wilf P., Janesko D.A., Kowalski E.A.,Dilcher D.L., Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. American Journal of Botany, 2005.92(7): 1141-1151.
    99 Jacobs B.F., Estimation of low-latitude paleoclimates using fossil angiosperm leaves: examples from the Miocene Tugen Hills, Kenya. Paleobiology, 2002.28(3): 399-421.
    100 Jacobs B.F.,Herendeen P.S., Eocene dry climate and woodland vegetation in tropical Africa reconstructed from fossil leaves from northern Tanzania. Palaeogeography Palaeoclimatology Palaeoecology, 2004.213(1-2): 115-123.
    101 Cain S.A.,Castro G.M.d.O., Manual of vegetation analysis. 1959, New York,: Harper. 325p.
    102 Spicer R.A. CLAME 2006 2006.03.06 [cited; Available from: http://www.open.ac.uk/earth-research/spicer/CLAMP/Clampset1.html.
    103 Spicer R.A., Herman A.B.,Kennedy E.M., Foliar physiognomic record of climatic conditions during dormancy: Climate Leaf Analysis Multivariate Program (CLAMP) and the cold month mean temperature. Journal of Geology, 2004. 112(6): 685-702.
    104 Herman A.B.,Spicer R.A., Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature, 1996. 380(6572): 330-333.
    105 Wolfe J.A., Paleoclimatic Estimates from Tertiary Leaf Assemblages. Annual Review of Earth and Planetary Sciences, 1995.23:119-142.
    106 Zachos J., Pagani M., Sloan L., Thomas E.,Billups K., Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present. Science, 2001. 292(5517): 686-693.
    107 孙柏年,解三平,阎德飞,丛培允,Ulmus harutoriens Oishi et Huzioka角质层特征及古环境意义.兰州大学学报,自然科学报,2003.39(1):80-85.
    108 孙柏年,丛培允,阎德飞,解三平,云南腾冲晚第三纪两种被子植物化石的角质层构造及其古环境意义.古生物学报,2003.42(2):216-222.
    109 解三平,孙柏年,阎德飞,丛培允,肖良,韦利杰,滇西新近纪植物气孔、碳同位素组成与古环境分析.沉积学报,2006.24(6):883-888.
    110 Royer D.L., Osborne C.P.,Beerling D.J., Contrasting seasonal patterns of carbon gain in evergreen and deciduous trees of ancient polar forests. Paleobiology, 2005. 31(1): 141-150.
    111 Liang M.M., Bruch A., Collinson M., Mosbrugger V., Li C.S., Sun Q.G.,Hilton J., Testing the climatic estimates from different palaeobotanical methods: an example from the Middle Miocene Shanwang flora of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003. 198(3-4): 279-301.
    112 Yang J., Wang Y.-F., Spicer R.A., Mosbrugger V., Li C.-S.,Sun Q.-G., Climatic reconstruction at the Miocene Shanwang basin, China, using leaf margin analysis, CLAMP, coexistence approach, and overlapping distribution analysis. Am. J. Bot., 2007. 94(4): 599-608.
    113 Farquhar G.D.,Sharkey T.D., Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology, 1982.33(1): 317-345.
    114 Chen L.Q., Li C.S., Chaloner W.G., Beerling D.J., Sun Q.G., Collinson M.E.,Mitchell P.L., Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO_2 change. American Journal of Botany, 2001.85(7): 1309-1315.
    115 解三平,阎德飞,韦利杰,丛培允,孙柏年,精确重建古大气CO_2浓度的气孔方法.古生物学报,2005.44(3):464-471.
    116 Beerling D.J.,Royer D.L., Fossil plants as indicators of the phanerozoic global carbon cycle. Annual Review of Earth and Planetary Sciences, 2002.30: 527-556.
    117 Woodward F.I., Stomatal numbers are sensitive to increases in CO_2 from pre-industrial levels. Nature, 1987. 327(6123): 617-618.
    118 Vanderburgh J., Visscher H., Dilcher D.L.,Kurschner W.M., Paleoatmospheric Signatures in Neogene Fossil Leaves. Science, 1993. 260(5115): 1788-1790.
    119 McElwain J.C., Beerling D.J.,Woodward F.I., Fossil plants and global warming at the Triassic-Jurassic boundary. Science, 1999. 285(5432): 1386-1390.
    120 Royer D.L., Wing S.L., Beerling D.J., Jolley D.W., Koch P.L., Hickey L.J.,Berner R.A., Paleobotanical Evidence for Near Present-Day Levels of Atmospheric CO_2 During Part of the Tertiary. Science, 2001. 292(5525): 2310-2313.
    121 Roth-Nebelsick A., Utescher T., Mosbrugger V., Diester-Haass L.,Walther H., Changes in atmospheric CO_2 concentrations and climate from the Late Eocene to Early Miocene: palaeobotanical reconstruction based on fossil floras from Saxony, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004. 205(1-2): 43-67.
    122 McElwain J.C.,Chaloner W.G., Stomatal Density and Index of Fossil Plants Track Atmospheric Carbon-Dioxide in the Paleozoic. Annals of Botany, 1995.76(4): 389-395.
    123 Sun B., Dilcher D.L., Beerling D.J., Zhang C., Yan D.,Kowalski E., Variation in Ginkgo biloba L. leaf characters across a climatic gradient in China. Proceedings of the National Academy of Sciences U.S.A., 2003. 100(12): 7141-7146.
    124 孙柏年,石亚军,张成君,王云鹏,植物化石角质层分析及其应用.2005,北京:科学出版社.116.
    125 Royer D.L., Stomatal density and stomatal index as indicators of paleoatmospheric CO_2 concentration. Review of Palaeobotany and Palynology, 2001. 114(1-2): 1-28.
    126 McElwain J.C., Do fossil plants signal palaeoatmospheric CO_2 concentration in the geological past? Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 1998.353(1365): 83-95.
    127 Berner R.A.,Kothavala Z., GEOCARB Ⅲ: A revised model of atmospheric CO_2 over phanerozoic time. American Journal of Science, 2001. 301(2): 182-204.
    128 Pearson P.N.,Palmer M.R., Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 2000. 406(6797): 695-699.
    129 Fedorov A.V., Dekens P.S., McCarthy M., Ravelo A.C., deMenocal P.B., Barreiro M., Pacanowski R.C.,Philander S.G., The Pliocene Paradox (Mechanisms for a Permanent El Nino). Science, 2006. 312(5779): 1485-1489.
    130 Roth-Nebelsick A., Reconstructing atmospheric carbon dioxide with stomata: possibilities and limitations of a botanical pCO_2 sensor. Trees-Structure and Function, 2005.19(3): 251-265.
    131 Farquhar G.D., O'Leary M.H.,Berry J.A., On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 1982.9(2): 121-37.
    132 Farquhar G.D., Ehleringer J.R.,Hubick K.T., Carbon Isotope Discrimination and Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1989.40(1): 503-537.
    133 Benner R., Fogel M.L., Sprague E.K.,Hodson R.E., Depletion of ~(13)C in lignin and its implications for stable carbon isotope studies. Nature, 1987.329(6141): 708-710.
    134 Farquhar G.D.,Richards R.A., Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology, 1984.11(6): 539-552.
    135 Veizer J., Ala D., Azmy K., Bruckschen P., Buhl D., Bruhn F., Carden G.A.F., Diener A., Ebneth S.,Godderis Y., 87 Sr/86 Sr, 13 C and 18 O evolution of Phanerozoic seawater. Chemical Geology, 1999. 161: 59-88.
    136 云南省地质矿产局,云南省区域地质志.1990,北京:地质出版社.
    137 Raymo M.E.,Ruddiman W.F., Tectonic forcing of late Cenozoic climate. Nature, 1992.359(6391): 117-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700