用户名: 密码: 验证码:
金属有机化合物M_3[Co(CN)_6]_2纳米粒子的合成和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然普鲁士蓝类化合物早在17世纪就已经被发现,但是其气体吸附等性能到最近才被关注,并且这些性质主要集中在块体材料上,纳米尺度的普鲁士蓝类化合物和其他金属有机化合物的性质被研究得较少。材料的物理化学性能在很大程度上与其形貌和尺寸有关。因此,发展一种简单方法合成普鲁士蓝类化合物纳米材料,以发现新性能或改善已有的性能是很有价值的。本论文旨在探索简单的方法制备分子式为M3Ⅱ[Co(CN)6]2·nH2O的普鲁士蓝类化合物的纳米粒子,研究其气体吸附性能;并且用该普鲁士蓝类化合物的纳米粒子作为前驱物,在空气中加热分解制备金属氧化物及复合氧化物,利用气体的逃逸在材料中形成多孔结构;开展多孔纳米材料在锂离子电池负极材料和污水处理中的应用研究。
     1.以金属盐和K3[Co(CN)6]为反应物,在室温液相体系中成功制备了M3Ⅱ[Co(CN)6]2·nH2O (M=Mn, Co, Cd, Zn, Fe)纳米粒子。利用表面活性剂(聚乙烯吡咯烷酮和十二烷基苯磺酸钠)和溶剂(水和乙醇)的改变来调控粒子的生长习性,制备了立方块,截角立方块,八面体,球形等多种形貌的粒子。N2吸附显示纳米粒子的比表面积要稍小于块体材料的比表面积,这可能是因为部分表面活性剂残留在M3Ⅱ[Co(CN)6]2·nH2O的框架里。Mn3[Co(CN)6]2多孔纳米立方块的二氧化碳的吸附量为10.9%,要高于块体的二氧化碳吸附量(10%)。Cd3[Co(CN)6]2立方体和八面体的二氧化碳的吸附量分别53cm3g-1和38.5cm3g-1,氢气吸附量分别计算为1.3wt%和1.05wt%。Co3[Co(CN)6]2纳米粒子二氧化碳的吸附量为8.7%。虽然M3Ⅱ[Co(CN)6]2纳米粒子的比表面积稍微小一些,但是气体(二氧化碳,氢气)吸附性能却优于块体材料。这表明比表面积不是影响气体吸附性能的唯一因素,M3Ⅱ[Co(CN)6]2在纳米尺度更适合作气体吸附剂。的确,多孔框架结构(内表面和孔径)难以改变,但是减小粒子的尺寸将会有可能提高材料的气体吸附性能。正如我们所知,当材料粒子的尺寸减小到纳米尺度时,材料的化学,物理性质将会发生很大的变化。随着粒径的减小,纳米粒子的表面积和表面能也都迅速增加。这主要是因为粒径越小,处于表面的原子数越多。而表面原子的晶体场环境和结合能与内部原子的结合能等又不同。表面原子因为周围缺少相邻的原子,存在许多悬空键,而具有不饱和性质,很容易与其他原子相结合而稳定下来,因此表现出很大的化学和催化活性,能够有效的提高材料的表面吸附能力。另一方面,粒子变小后,气体分子进入内部孔洞的机会增加,对大块材料来说,虽然框架结构一样,但在吸附过程中气体分子可能仅仅存在孔洞口,这样会降低粒子内部孔道的利用率,从而削弱材料的吸附性能。此外Mn3[Co(CN)6]2·nH2O纳米粒子在水溶液中对重金属离子也有很好的吸附性能,吸附效率可以到达94%。因为在室温下为顺磁性,所以可以用磁铁进行磁分离。
     2.以合成的M3Ⅱ[Co(CN)6]2·nH2O (M=Mn, Co)纳米粒子作为前驱物,在空气中400℃加热分解,成功制备了具有多孔壳层的C0304纳米笼,MnxCo3-xO4泡沫状立方块。Co3O4纳米笼拥有较大的比表面积(66m2/g)、多孔壳层、尺寸小(60nm)和少量的碳等特殊结构和成份,因而能够很好的克服Co3O4作为锂离子电池负极材料的固有缺点,如容量衰减快等,表现出很高的容量和循环稳定性。在300mAg-1电流密度下,经过50次循环以后,容量保持在1465mAh g-1,高于文献报道的最好结果。MnxCo3-xO4泡沫状立方块也拥有较大的比表面积(129m2/g)和较小尺寸(200nm),很好的克服了传统高温煅烧方法制备尖晶石材料的缺点,如颗粒大,比表面积小等。MnxCo3-xO4泡沫状立方块用作锂离子电池负极材料,也表现出较好的充放电性能,包括容量高,倍率放电性能好等。在200mAg-1电流密度下,经过30次循环以后,容量保持在733mAhg-1。Co3O4纳米笼和MnxCo3-xO4泡沫状立方块电池性能好的原因是:一方面因为较大的比表面积更有利于电解液和锂离子的进入,可以增大电解液和电极材料的接触面积,减小扩散的阻力,加速其扩散的速率;另一方面,多孔结构可以减小在锂离子嵌入和脱出过程中材料体积的变化,使晶格不容易坍塌,增强循环稳定性。
     3.以合成的M3Ⅱ[Co(CN)6]2·nH2O (M=Zn, Fe)作为前驱物,在空气中加热分解,分别得到ZnO/Co3O4纳米复合材料和FexCo3-xO4多孔球。ZnO/Co3O4多孔纳米复合材料在室温下显示了铁磁性,矫顽力大约为230Oe。ZnO/Co3O4纳米复合材料在室温时呈现铁磁性有两种可能的解释:一种是由Co3O4纳米粒子的表面原子所引起的,即表面原子的电子自旋-轨道耦合导致纳米粒子内部的磁有序变化,另一种是钴原子对ZnO半导体的掺杂形成稀磁半导体,具体原因有待进一步研究。同时,FexCo3-xO4多孔球具有较大的比表面积(81m2/g),在水溶液中对染料分子刚果红有很好的吸附性能,吸附效率可达88.24%,可用于污水处理。此外,因为产物在室温下是铁磁性,所以很容易从水体系中分离。
     4.用两步法成功制备了Mn203和CoMn2O4的具有分级结构的微球,该微球是由多孔纳米片组装成的。首先,用溶剂热方法,在乙二醇(EG)体系中,利用金属离子和-OH的配位作用,制备了Mn-EG和Mn-Co-EG微球。然后在空气中600℃煅烧3h分别形成Mn203和CoMn2O4微球。由于在煅烧过程中有二氧化碳等气体放出,所以微球具有多孔结构。同时,Mn203和CoMn2O4微球作为锂离子电池负极材料时,也表现出较好的充放电性能。Mn203微球在50mAg-1电流密度下,经过45次循环以后,容量保持在750mAhg-1。CoMn2O4微球在100mAg-1电流密度下,经过65次循环,容量保持在900mAh g-1。同时,倍率测试表明产物也具有快速充放电的潜在应用。产物优异的电池性能主要归因于下面二个原因:(1)纳米尺度的子单位即多孔纳米片不仅可以让电极反应进行的更为容易,而且可以使在电极材料表面可逆形成/溶解凝胶状的聚合物层,这二个因素对高容量均有贡献。(2)材料的多孔性和分解结构可以忍受在锂离子脱出/嵌入过程中,材料的体积的变化,缓和材料极化问题,增强循环稳定性。
Though Prussian blue analogues (PBA) were discovered in the17th century, gas adsorption properties of these materials were explored very recently. However, in these studies the main focus is the properties of bulk PBA, few research focuses on the properties of PBA and other metal-organic framework at the nanoscale. It was found that the shape and size are important factors to fine-tune the properties of the material. Therefore, it is a strong desire to develop a simple method to prepare the PBA nanomaterials with enhanced or new properties.
     The objective of this dissertation is to explore new simple avenue for synthesis the nanoparticles of PBA with molecular formula M3Ⅱ[Co(CN)6]2·nH2O, and investigate their gas storage properties. Moreover, a new facile strategy has been designed to fabricate metal oxides and composite metal oxides, which involved a morphology conserved and pyrolysis-induced transformation of Prussian Blue Analogues (PBA) in air. Owing to the release of born gases in the process of decomposition, the products with porous structure were effectively obtained. The applications of these porous nanomaterials in lithium-ion batteries and waste water were also investigated.
     1. M3Ⅱ[Co(CN)6]2·nH2O (M=Mn, Co, Cd, Zn, Fe) nanoparticles have been successfully synthesized at room temperature using K3[Co(CN)6] and metal salt as starting materials. Surfactants (polyethylene pyrrole and dodecylbenzenesulfonic acid sodium) and solvents (ethanol and water) were employed to adjust the growth habit of nanoparticles, and nanoparticles with various morphologies were fabricated, including nanocubes, truncated nanocubes, octahedrons, spheres and so on. Full nitrogen sorption showed that the surface area of nanoparticle were lower than that of bulk materials, which is resulted from a large number of residual surfactants appears in the porous framework of M3Ⅱ[Co(CN)6]2-nH2O. The adsorbed CO2wt%of Mn3[Co(CN)6]2porous at room temperature and670mm Hg pressure was10.9%, higher than Mn3[Co(CN)6]2bulk materials (≈10%). The adsorbed H2wt%of Cd3[Co(CN)6]2nanocubes and octahedrons at77K and1bar pressure were1.3%and1.05%, while the adsorbed CO2wt%were53cm3g-1and38.5cm3g-1, respectively. The adsorbed CO2wt%of Co3[Co(CN)6]2was8.7%. Although the surface area of M3n[Co(CN)6]2bulk materials is little higher than that of nanoparticles, better gas adsorption (CO2, H2) performance was shown by using nanoparticles. This result proves that the surface area is not the only factor that influences gas adsorption, and the materials at the nanoscale are more favorable to adsorption applications. Indeed, the porous framework, or in another word, the internal surface, is not easy to be changed. However, downsizing MOFs to the nanometer regime will lead to more possibilities of enhancing their gas storage capacity for the following reasons at the same time. As we all know, chemical and physical phenomena are usually strongly affected when material becomes nanometer-sized. With decreased particle size, the proportion of the atoms lies on the surface will increase as a result. Furthermore, compared with the bulk material, the nano-sized PCPs possess higher surface energy. The binding energy between the surface atoms is higher than that of the internal atomic. Surface atom, lacking adjacent atom, display unsaturated properties and are easy to combine with other atoms, which will improve their surface adsorption as well. Moreover, Mn[Co(CN)e]2·nH2O nanoparticles display excellent adsorption properties for heavy metal ions in water solution, and the adsorption efficiency was94%. Mn3[Co(CN)6]2·nH2O shows paramagnetic properties at room temperature, and a magnet can be used to separate precipitates from the treated solutions.
     2. Co3O4nanocages with porous shell and foam-like MnxCo3-xO4porous nanocubes have been successfully synthesized, which involved a pyrolysis-induced transformation of M3Ⅱ[Co(CN)6]2·nH2O (M=Co, Mn) in air at400℃. Co3O4nanocages possess high surface area (66m2/g), porous shell, small size (60nm) and a small amount carbon, therefore can overcome the disadvantage (capacity fade fast) of traditional Co3O4as the lithium ion battery anode materials, displaying high capacity and better cycle stability. The capacities up to1465mA h g-1are attained after50cycles at a current density of300mA g-1. This result breaks the highest record capacity of Co3O4anode materials. Foam-like MnxCo3-xO4porous nanocubes also possess high surface area (129m2/g) and small size (200nm), which are different from the spinel materials with small surface area and large size obtained by traditional high temperature firing methods. When evaluated as electrode materials for lithium-ion, the foam-like MnxCo3-xO4porous nanocubes display high specific discharge capacity and excellent rate capability. The capacity of733mAh g-1could be maintained after30cycles at a relatively high current density of200mA g-1. We deduce that the high lithium storage capacity and good cyclic stability of Co3O4nanocages and MnxCo3-xO4porous nanocubes might be due to the large surface areas which are more convenient for the intercalation of Li+ions into the active materials and accelerating their diffusion velocity. Moreover, the large surface areas can enlarge the electrolyte/materials contact area, shorten the Li+-ion diffusion length in the materials and reduce the resistance of electrolyte. On the other hand, the porous structure may endure the volume expansion/contraction during the Li+-ion insertion/extraction processes, enhance the cycle stability.
     3. ZnO/Co3O4nanocomposites and FexCo3-xO4porous spheres have been successfully synthesized, which involved a pyrolysis-induced transformation of M3Ⅱ[Co(CN)6]2·nH2O (M=Zn, Fe) in air. ZnO/Co3O4porous nanocomposites display ferromagneticlike behavior at room temperature, and the coercive field is230Oe. It is shown that the magnetism seems to be related to the following two factors. One is Co3O4surface atomic electron spin-track coupling change the particle internal magnetic-order. Another is cobalt atoms dope into ZnO semiconductor to form dilute magnetic semiconductor. The specific reason needs to be studied further. FexCo3-xO4porous spheres possess high surface area (81m2/g). When served as the adsorbent for Congo red in water, the as-prepared FexCo3-xO4porous spheres exhibit a high adsorption capacity for the dye removal with adsorption efficiency of88.24%, suggesting their potential use in water treatment. Moreover, the product can be easily separated from water system duo to its ferromagnetism at room temperature.
     4. Mn2O3and CoMn2O4hierarchical microspheres self-assembled with porous nanosheets have been obtained by a two-step method. First, a solvothermal treatment is employed to prepare the Mn-EG (EG=ethylene glycol) and Mn-Co-EG precursor by coordination of-OH with the metal ions, and then Mn2O3microspheres and CoMn2O4microspheres were obtained by annealing the precursor powder in air at600℃for3h. Owing to the release of born gases in the process of decomposition, the products possess porous structure. When evaluated as electrode materials for lithium-ion, the products display high specific discharge capacity. After45cycles, the capacity of Mn2O3microspheres can be retained at750mAh g-1at a current density of50mA g-1, while the capacity of Mn2O3microspheres can be retained at900mAh g-1at a current density of100mA g-1after65cycles. Moreover, the excellent rate capability demonstrate the product have a great potential as a high-rate anode material in lithium ion batteries. The superior electrochemical performances of Mn2O3and CoMn2O4hierarchical microspheres can be attributed to the following two factors:(1) The nanometer-sized subunits (porous nanosheets) not only allow the reversible formation/dissolution of polymeric gel-like film at the surface of the active materials but also make the conversion reaction more feasible, both of which can contribute to the high specific capacities.(2) The hierarchical structure and porosity in the surfaces can buffer the large volume change of anodes based on the conversion reaction during the repeated Li+insertion/extraction, thus alleviating the pulverization problem and enhancing the cycling performance.
引文
[1]张立德,能源环境领域应用纳米材料的新动向,《中国颗粒学会超微颗粒专业委员会第五届年会暨海峡两岸纳米颗粒学术研讨会论文集》,2007。
    [2]Wei, L. Z.; Yan, N.; Chen, Q. W. Environ. Sci. Technol. 2011, 45, 534.
    [3]Wei, L. Z.; Chen, Q. W.; Kong, X. K. J. Am. Ceram. Soc. 2011, 94, 3078.
    [4]Lee, H. W.; Muralidharan, P.; Ruffo, R.; Mari, C. M.; Cui, Y.; Kim, D. K. Nano Lett. 2010,10, 3852.
    [5]Wang, C. Y.; Li, D.; Too, C. O.; Wallace, G. G. Chem. Mater. 2009, 21, 2604.
    [6]Zou, Y. Q.; Kan, J.; Wang, Y. J. Phys. Chem. C 2011, 775, 20747.
    [7]Yu, A. P.; Park, H. W.; Davies, A.; Higgins, D. C.; Chen, Z. W.; Xiao, X. C. J. Phys. Chem. Chem. Lett. 2011, 2, 1855.
    [8]Takahashi, Y.; Kasai, H.; Nakanishi, H.; Suzuki, T. M. Angew. Chem., Int. Ed. 2006,45,913.
    [9]Jang, S. H.; Jeonga, G. Y.; Mina, B. G.; Lyoob, W. S.; Lee, S. C. J. Hazard. Mater. 2008, 759, 294.
    [10]Zhou, Y. T.; Nie, H. L.; White, C. B.; He, Z. Y.; Zhu, L. M. J. Colloid Interf. Sci. 2009, 330, 29.
    [11]Jin, J.; Li, R.; Wang, H.; Chen, H.; Liang, K.; Ma, J. Chem. Commun. 2007, 4, 386.
    [12]Zhu, T.; Chen, J. S.; (David) Lou. X. W. dx.doi.org/10.1021/jp300224s.
    [13]Wang, X.; Zhong, Y. T.; Zhai, T. Y.; Guo, Y. F.; Chen, S. M.; Ma, Y.; Yao, J. N.;
    Bandoa, Y.; Golberg, D. J. Mater. Chem. 2011, 21, 17680.
    [14]Buser, H. J.; Schwarzenbach, D.; Petter, W. Inorg Chem. 1977,16, 2704.
    [15]Ito, A.; Suenaga, M.; Ono, K. J. Chem. Phys. 1968, 48, 3597.
    [16]Ohkoshi, S.; Phys Rev B. 1997, 56, 11642.
    [17]Ohkoshi, S.; Phys Rev Lett. 1999, 82, 1285.
    [18]Ohkoshi, S.; Phys Rev B. 2001, 64,132404.
    [19]黄海富,李晓刚,夏艳芳,顿中万,何云,梁福沛.广西师范大学学报(自然科学版),2009,27,50.
    [20]NEFF, V. D. J Electrochem Soc.1978,125.
    [21]梁汝萍,谢慧英,邱建丁.分析试验室,2005,27,23.
    [22]Itaya, K.; Shoji, N.; Uchida, I. J. Am. Chem.Soc.1984,106,3423.
    [23]Owar, O.; Fislunan, H. A.; Ziv, N. E. Anal. Chem.1995,67,4261.
    [24]Alaejos, M. S.; Montelongo, F. J. Chem. Rev.2004,104,3239.
    [25]Atsushi, S.; Ikeda, S. I.; Izumi, K. Anal. Chim. Acta.1998,373,9.
    [26]Gamella, M.; Campuzano, S.; Reviejo, A. J.; Anal. Chim. Acta.2008,609,210.
    [27]Shokouhimehr, M.; Soehnlen, E. S.; Hao, J. H.; Griswold, M.; Flask, C.; Fan, X. D.; Basilion, J. P.; Basu, S.; Huang, S. P. D. J. Mater. Chem.2010,20,5251.
    [28]Chapman, K. W.; Southon, P. D.; Weeks, C. L.; Kepert, C. J. Chem. Commun. 2005,3322.
    [29]Motkuri, R. K.; Thallapally, P. K.; B. McGrail, P.; S. Ghorishi, B. CrystEngComm 2010,12,4003.
    [30]Windisch, C. F. J; Thallapally, P. K.; McGrail, B. P. Spectrochim. Acta, Part A 2009,74,629.
    [31]Fernandez, C. A.; Nune, S. K.; Motkuri, R. K.; Thallapally, P. K.; Wang, C. M.; Liu, J.; Exarhos, G. J.; McGrail, B. Peter. Langmuir 2010,26,18591.
    [32]Kaye, S. S.; Long, J. R. J. Am. Chem. Soc.2005,127,6506.
    [33]Krap, C. P.; Balmaseda, J.; Zamora, B.; Reguera, E. Int J Hydrogen Energy 2010, 35,10381.
    [34]Natesakhawat, S.; Culp, J. T.; Matranga, C.; Bockrath, B. J. Phys. Chem. C2007, 111,1055.
    [35]Zhang, D.; Wang, K.; Sun, D. C. J. Solid State Electrochem.2003,7,561.
    [36]Ho, K.; Chen, C.; Hsu, H. Biosens., Bioelectron.2004,20,3.
    [37]Karyyakin, A. A.; Puganova, E. A.; Budashov, I. A. Anal. Chem.2004,76,474.
    [38]Puganova, E. A.; Karyyakin, A. A. Sensor Actuat. Chem. B 2005,109,167.
    [39]Uemura, T.; Kitagawa, S. J. Am. Chem. Soc.2003,125,7814.
    [40]Laure, C. Chem. Commun.2005,746.
    [41]Viktoria, H.; Imre, D. J. Colloid Interface Sci.2007,309,176.
    [42]孔芹,樊娟.成都理工大学学报(自然科学版),2008,34,464.
    [43]Mingotaud, C.; Lafuente, C.; Amiell, J.; Delhaes, P. Langmuir 1999,15, 289.
    [44]Takashi, Y. J.Am. Chem. Soc. 2005,127, 16065.
    [45]Li, Z. H.; Zhang, J. L.; Mu, T. C. Colloids Surf A 2004, 243, 63.
    [46]Sebastien, V.; John, F. Nano Lett. 2002, 2, 225.
    [47]Cao, M. H.; Wu, X. L.; He, X. Y.; Hu, C. W. Chem. Commun. 2005,2241.
    [48]Buchold, D. H. M.; Feldmann, C. Chem. Mater. 2007,19, 3376.
    [49]Buchold, D. H. M.; Feldmann, C. Adv. Funct. Mater. 2008,18, 1002.
    [50]Xu, S. H.; Qian, X. F.; Li, Gang. Mater. Res. Bull. 2008, 43, 135.
    [51]Zhang, X. L.; Sui, C. H.; Gong, J. Appl. Surf. Sci. 2007,253, 9030.
    [52]Du, D. J.; Cao, M. H.; He, X. Y.; Liu, Y. Y.; Hu, C. W. Langmuir 2009, 25, 7057.
    [53]Hu, M.; Jiang, J. S.; Zeng, Y. Chem. Commun. 2010, 46, 1133.
    [54]Hu, M.; Jiang, J. S.; Ji, R. P.; Zeng, Y. CrystEngComm 2009,11, 2257.
    [55]Hu, M.; Jiang, J. S.; Lin, C. C.; Zeng, Y. CrystEngComm 2010,12, 2679.
    [56]Hu, M.; Furukawa, S.; Ohtani, R.; Sukegawa, H.; Nemoto, Y.; Reboul, J.;
    Kitagawa, S.; Yamauchi, Y. Angew. Chem. Int. Ed. 2012, 51, 984.
    [57]Chen, H. M.; Zhao, Y. Q.; Yang, M. Q.; He, J. H.; Chu, P. K.; Zhang, J.; Wu, S. H. Anal. Chim. Acta 2010, 659, 166.
    [58]Park, Jinsoo.; Shen, X. P.; Wang, G. X. Sensors and Actuators B 2009, 136, 494.
    [59]Lavela, P.; Tirado, J. L.; Vidal-Abarca, C. Electrochim. Acta 2007, 52, 7986.
    [60]Wang, G. X.; Liu, H.; Horvat, J.; Wang, B.; Qiao, S. Z.; Park, J.; Ahn, H. Chem. Eur.J. 2010,16, 11020.
    [61]Nayak, S.; Malik, S.; Indris, S.; Reedijk, J.; Powell, A. K. Chem. Eur. J. 2010,16, 1158.
    [62]Zhou, Y. X.; Yao, H. B.; Yao, W. T.; Zhu, Z.; Yu, S. H. DOI: 10.1002/chem.201102736.
    [63]Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.
    [64]Du, N.; Zhang, H.; Chen, B. D.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D. R.; Huang, X. H.; Tu, J. P. Adv. Mater. 2007,19, 4505.
    [65]Tian, L.; Zou, H. L.; Fu, J. X.; Yang, X. F.; Wang, Y.; Guo, H. L.; Fu, X. H.; Liang, C. L.; Wu, M. M.; Shen, P. K.; Gao, Q. M. Adv. Fund. Mater. 2010, 20, 617.
    [66]Li, W. Y.; Xu, L. N.; Chen, J. Adv. Fund Mater. 2005,15, 851.
    [67]Ban, C. M.; Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. F.; Blackburn, J. L.; Dillon, A. C. Adv. Mater. 2010, 22, E145.
    [68]Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. ACS Nano 2010, 4, 3187.
    [69]Wang, G. X.; Shen, X. P.; Yao, J.; Wexler, D.; Ahn, J. H. Eledrochem. Commun. 2009,11, 546.
    [70]Zhan, F. M.; Geng, B. Y.; Guo, Y. J. Chem. Eur. J. 2009,15, 6169.
    [71]Fan, Y. Q.; Shao, H. B.; Wang, J. M.; Liu, L.; Zhang, J. Q.; Cao, C. N. Chem. Commun. 2011, 47, 3469.
    [72]Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Adv. Mater. 2008, 20, 258.
    [73]Chen, J. S.; Zhu, T.; Hu, Q. H.; Gao, J. J.; Su, F. B.; Qiao, S. Z.; Lou, X. W. Appli. Mater. Interface. 2010,12, 3628.
    [74]Yang, S. B.; Feng, X. L.; Ivanovici, S.; Mullen, K. Angew. Chem. Int. Ed. 2010, 49, 1.
    [75]Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. Nat. Mater. 2006, J, 567.
    [76]Cui, Z. M.; Jiang, L. Y.; Song, W. G.; Guo, Y. G. Chem. Mater. 2009, 21, 1162.
    [77]Wang, B.; Chen, J. S.; Wu, H. B.; Wang, Z. Y.; Lou, X. W. J. Am. Chem. Soc. 2011, 133, 17146 .
    [78]Wang, Z. Y.; Luan, D. Y.; Madhavi, S.; Li, C. M.; Lou, X. W. Chem. Commun. 2011, 47, 8061.
    [79]Wang, Z. Y.; Luan, D. Y.; Madhavi, S.; Hu, Y.; Lou, X. W. Energy Environ. Sci. 2012 , 5 , 5252 .
    [80]Larcher, D.; Masquelier, C.; Bonnin, D.; Chabre, Y.; Masson, V.; Leriche, J. B.; Tarascon, J. M. J. Eledrochem. Soc. 2003,150, A133.
    [81]Chen, J.; Xu, L.; Li, W.; Gou, X. Adv. Mater. 2005, 17, 582.
    [82]Reddymv, Y. T.; Sow, C. H.; Shen, Z. X.; Lime, T.; Rao. G. V. S.; Chowdari, B. V. R.Adv. Funct. Mater.2007,17,2792.
    [83]Reddy, A. L. M.; Shaijumon, M. M.; Gowda, S. R.; Ajayan, P. M. Nano Lett. 2009,9,1002.
    [84]Guo, C. X.; Wang, M.; Chen, T.; Lou, X. W.; Li, C. M. Adv. Energy. Mater. 2011,1,736.
    [85]Liu, D.; Zhang, Q.; Xiao, P.; Garcia, B. B.; Guo, Q.; Champion, R.; Cao, G. Chem. Mater.2008,20,1376.
    [86]Gao, J.; Lowe, M. A.; Abruna, H. D. Chem. Mater.2011,23,3223.
    [87]Wang, H. L.; Cui, L. F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J.J. Am. Chem. Soc.2010,132,13978.
    [88]Grugeon, S.; Laruelle, S.; Herrera-urbina, R.; Dupont, L.; Poizot, P.:Tarascon. J. M. J. Electrochem. Soc.2001,148, A285.
    [89]Debart, A.; Dupont, L.; Poizot, P.; Leriche, J. B.; Tarascon, J. M. J. Electrochem. Soc.2001,148, A1266.
    [90]Zhou, L.; Wu, H. B.; Zhu, T.; (David) Lou, X. W. J. Mater. Chem.2012,22,827.
    [91]Zhou, L.; Zhao, D. Y.; Lou, X. W. Adv. Mater.2012, DOI: 10.1002/adma.201104407.
    [92]Alcantara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L.; Jumas, J. C.; Olivier-fourcade, J. Electrochem. Commun.2003,5,16.
    [93]Selvan, R. K.; Kalaiselvi, N.; Augustin, C. O.; Doh, C. H. Electrochem. Solid-State Lett.2006,9, A390.
    [94]Sharma, Y.; Sharma, N.; Rao, G. V. S.; Chowdari, B. V. R. Electrochim. Acta 2008,53,2380.
    [95]Sharma, Y.; Sharma, N.; Rao, G. V. S.; Chowdari, B. V. R. Adv. Funct. Mater. 2007,17,2855.
    [96]Qiu, Y. C.; Yang, S. H.; Deng, H.; Jin, L. M.; Li, W. S. J. Mater. Chem.2010,20, 4439.
    [97]Luo, W.; Hu, X. L.; Sun, Y. M.; Huang, Y. H. DOI:10.1039/c2jm00094f.
    [98]胡鸣.铁氧化物与普鲁士蓝类化合物的形貌可控合成与非经典结晶机理研究 华东师范大学博士学位论文2010.
    [99]Wu, H. B.; Chen, J. S.; Hng, H. H.; (David) Lou, X. W. Nanoscale 2012,4, 2526.
    [100]Hasell, T.; Chong, S. Y.; Jelfs, K. E.; Adams, D. J.; Cooper, A. I. J. Am. Chem. Soc.2012,134,588.
    [101]Ritchie, L. K.; Trewin, A.; Reguera-Galan, A.; Hasell, T.; Cooper, A. I. Microporous Mesoporous Mater.2010,132,132.
    [102]Diring, S.; Furukawa, S.; Takashima, Y.; Tsuruoka, T.; Kitagawa, S. Chem. Mater.2010,22,4531.
    [1]Garay, A. L.; Pichon, A.; James, S. L.Chem. Soc. Rev. 2007, 36, 846.
    [2]McKinlay, A. C.; Morris, R. E.; Horcajada, P.; Ferey, G.; Gref, R.; Couvreur, P.; Serre, C. Angew. Chem. Int. Ed. 2010, 49, 6260.
    [3]McKinlay, A. C.; Xiao, B.; Wragg, D. S.; Wheatley, P. S.; Megson, I. L.; Morris, R. E.J. Am. Chem. Soc. 2008, 130, 10440.
    [4]Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. Angew. Chem. Int. Ed. 2006, 45, 5914.
    [5]Thallapally, P. K.; Motkuri, R. K.; Fernandez, C. A.; McGrail, B. P. Behrooz G. S. Inorg. Chem. 2010, 49, 4909.
    [6]Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.
    [7]Thallapally, P. K.; Motkuri, R. K.; Fernandez, C. A.; Nune, S. K.; Liu, J.; Peden, C. H. F. Dalton Trans. 2010, 39, 1692.
    [8]Doty, F. P.; Bauer, C. A.; Skulan, A. J.; Grant, P. G.; Allendorf, M. D. Adv. Mater. 2009, 21, 95
    [9]Czaja, A. U.; Trukhan, N.; Muller, U. Chem. Soc. Rev. 2009, 38, 1284.
    [10]Kaye, S. S.; Long, J. R. J. Am. Chem. Soc. 2005,127, 6506.
    [11]Motkuri, R. K.; Thallapally, P. K.; McGrail, B. P.; Ghorishi, S. B. CrystEngComm 2010, 12, 4003.
    [12]Fernandez, C. A.; Nune, S. K.; Motkuri, R. K.; Thallapally, P. K.; Wang, C. M.; Liu, J.; Exarhos, G. J.; McGrail, B. P. Langmuir 2010, 26, 18591.
    [13]Nune, S. K.; Thallapally, P. K.; Dohnalkova, A.; Wang, C. M.; Liu, J.; Exarhos, G. J. Chem. Commun. 2010, 46, 4878.
    [14]DeLongchamp, D. M.; Hammond, P. T. Adv. Funct. Mater. 2004, 14, 224.
    [15]Chapman, K. W.; Southon, P. D.; Weeks, C. L.; Kepert, C. J. Chem. Commun. 2005, 3322.
    [16]Cao, M. H.; Wu, X. L.; He, X. Y.; Hu, C. W. Chem. Commun. 2005, 2241.
    [17]Du, D. J.; Cao, M. H.; He, X. Y.; Liu, Y. Y.; Hu, C. W. Langmuir 2009, 25, 7057.
    [18]Buchold, D. H. M.; Feldmann, C. Chem. Mater. 2007, 19, 3376.
    [19]Hu, M.; Jiang, J. S.; Zeng, Y. Chem. Commun. 2010, 46, 1133.
    [20]Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Chem. Mater. 2011, 23, 2130.
    [21]Ma, M. Y.; Zacher, D.; Zhang, X. N.; Fischer, R. A.; Metzler-Nolte, N. Cryst. Growth Des. 2011, 77,185.
    [22](a) Hong, D. Y.; Hwang,Y. K.; Serre, C.; Ferey, G.; Chang, J. S. Adv. Funct. Mater. 2009,19, 1537. (b) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, Christine.; Chang, J. S.; Hwang,Y. K.; Marsaud, V.; Bories, P. N.; Cynober, Luc; Gil, S.; Ferey, G.; Couvreur, P.; Gref, R. Nat. Mater. 2009, 9., 172.
    [23]Taylor, K. M. L.; Rieter, W. J.; Lin, W. B. J. Am. Chem. Soc. 2008, 730, 14358.
    [24]Taylor, K. M. L.; Jin, A.; Lin, W. B. Angew. Chem. Int. Ed. 2008, 47, 7722.
    [25]Taylor-Pashow, K. M. L.; Rocca, J. D.; Xie, Z. G.; Tran, S.; Lin, W. B. J. Am. Chem. Soc. 2009,131, 14261.
    [26]Umemura, A.; Diring, S.; Furukawa, S.; Uehara, H.; Tsuruoka, T.; Kitagawa, S. J. Am. Chem. Soc. 2011,133, 15506.
    [27) Lee, T.; Lin, Z. X.; Lee, H. L. Cryst. Growth Des. 2011, 77, 4146.
    [28]Buchold, D. H. M.; Feldmann, C. Adv. Funct. Mater. 2008,18, 1002.
    [29]Wu, X. L.; Cao, M. H.; Hu, C. W.; He, X. Y. Cryst. Growth Des. 2006, 6, 26.
    [30]Uemura, T.; Kitagawa, S. J. Am. Chem. Soc. 2003,125, 7814.
    [31]Vaucher, S.; Li, M.; Mann, S. Angew. Chem., Int. Ed. 2000, 39, 1793.
    [32]Lee, S. M.; Cho, S. N.; Cheon, J. Adv. Mater. 2003,15, 441.
    [33]Wu, Z. X.; Zhao, D. Y. Chem. Commun. 2011, 47, 3332.
    [34]Sun, L.; Tian, C. G.; Wang, L.; Zou, J. L.; Mu, G.; Fu, H. G. J. Mater. Chem. 2011,27,7232.
    [35]Ni, Y. H.; Li, J.; Jin, L.; Xia, J.; Hong, J. M.; Liao, K. M. New J. Chem. 2009, 33, 2055.
    [36]Liu, A. M.; Hidajat, K.; Kawi, S.; Zhao, D. Y. Chem. Commun. 2000, 1145.
    [37]Ni, Y. H.; Mi, K.; Cheng, C.; Xia, J.; Ma, X.; Hong, J. M. Chem. Commun.2011, 47,5891.
    [38]Zhang, D.; Wei, S.; Kaila, C.; Su, X.; Wu, J.; Karki, A. B.; Young, D. P.; Guo, Z. H.Nanoscale 2010,2,917.
    [39]Bystrzejewski, M.; Pyrzynska, K.; Huczko, A.; Lange, H.; Carbon,2009,47, 1201.
    [40]Wang, H.; Yu, Y. F.; Chen, Q. W.; Cheng, K. Dalton Trans.2011,40,559.
    [41]Song, R. Q., Colfen, H. Adv. Mater.2010,22,1301.
    [42]Lee, T.; Zhang, C. W. Pharm. Res.2008,25,1563.
    [43]Hu, M.; Jiang, J. S.; Ji, R. P.; Zeng, Yi. CrystEngComm 2009,11,2257.
    [44]Hu, M.; Jiang, J. S.; Lin, C. C.; Zeng, Y. CrystEngComm 2010,12,2679.
    [45]Hasell, T.; Chong, S. Y.; Jelfs, K. E.; Adams, D. J.; Cooper, A. I.; J. Am. Chem. Soc.2012,134,588.
    [1]Ji,X.L.;Lee,K.T.;Nazar,L.F.Nat.Mater.2009,8,500.
    [2]Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angew. Chem. Int. Ed. 2008, 47, 2930.
    [3]Du, N.; Zhang, H.; Chen, B. D.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D. R.; Huang, X. H.; Tu, J. P. Adv. Mater. 2007, 19, 4505.
    [4]Tian, L.; Zou, H. L.; Fu, J. X.; Yang, X. F.; Wang, Y.; Guo,H. L.; Fu, X. H.; Liang, C. L.; Wu, M. M.; Shen, P. K.; Gao, Q. M. Adv. Funct. Mater. 2010, 20, 617.
    [5]Li, W. Y.; Xu, L. N.; Chen, J. Adv. Funct. Mater. 2005,15, 851.
    [6]Ban, C. M.; Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. F.; Blackburn, J. L.; Dillon, A. C. Adv. Mater. 2010, 22, El45.
    [7]Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nature 2000, 407, 496.
    [8]Wu, H. B.; Chen, J. S.; Hng, H. H.; (David) Lou, X. W. Nanoscale 10.1039/c2nrll966h
    [9]Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Adv. Mater. 2008, 20, 258.
    [10]Cui, Z. M.; Jiang, L.Y.; Song, W. G.; Guo, Y. G. Chem. Mater. 2009, 21, 1162.
    [11]Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M.ACS Nano 2010, 4, 3187.
    [13]Cheng, F.; Tao, Z.; Liang, J.; Chen, J. Chem. Mater. 2008, 20, 667.
    [14]Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. Adv. Mater. 2005,17, 582.
    [15]Wang, B.; Chen, J. S.; Wu, H. B.; Wang, Z.; Lou, X. W. J. Am. Chem. Soc. 2011, 133, 17146.
    [16]Yang, S. B.; Feng, X. L.; Ivanovici, S.; Mullen, K. Angew. Chem. Int. Ed. 2010, 49, 1.
    [17]Zhan, F. M.; Geng, B. Y.; Guo, Y. J. Chem. Eur. J. 2009, 75, 6169.
    [18]Geng, B. Y.; Zhan, F. M.; Fang, C. H.; Yu, N. J. Mater. Chem. 2008, 18, 4977.
    [19]Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. J. Mater. Chem. 2008, 18, 4397.
    [20]Cong, H. P.; Yu, S. H. Cryst. Growth Des. 2009, 9, 1,
    [21]Wang, Y.; Xia, H.; Lu, L.; Lin, J. Y. ACS Nano 2010, 4, 1425.
    [22]Cheng, F. Y.; Shen, J.; Peng, B.; Pan, Y. D.; Tao, Z. L.; Chen, J. Nat. Chem. 2011, 3,79.
    [23]Hemberger, J.; Lunkenheimer, P.; Fichtl, R.; Krag von Nidda, H.-A.; Tsurkan, V.; Loidl, A. Nature 2005, 434, 364.
    [24]Fan, H. J.; Knez, M.; Scholz, R.; Nielsch, K.; Pippel, E.; Hesse, D.; Zacharias, M.; Gosele, U. Nat. Mater. 2006, 5, 627.
    [25]Matsuda, M.; Ueda, H.; Kikkawa, A.; Tanaka,Y.; Katsumata, K.; Narumi, Y.; Inami, T.; Ueda, Y.; Lee, S. H. Nat. Phys. 2008, 3, 397.
    [26]Vila, E.; Rojas, R. M.; M. de Vidales, J. L.; Garcia-Martinez, O. Chem. Mater. 1996, 8, 1078.
    [27]Zhang, H. T.; Chen, X. H. Nanotechnology 2006,17, 1384.
    [28]Shoemaker, D. P.; Li, J.; Seshadri, R. J. Am. Chem. Soc. 2009,131, 11450.
    [29]Fierro, G.; Ferraris, G.; Dragone, R.; Jacono, M. L.; Faticanti, M. Catal. Today. 2006, 116, 38.
    [30]Lavela, P.; Tirado, J. L.; Vidal-Abarca, C. Electrochim. Acta 2007, 52, 7986.
    [31]Rojas, R. M.; Eladio, V.; Oscar, G.; Jose L, M. V. J. Mater. Chem. 1994, 4, 1635.
    [32]Matsushita, Y.; Ueda, H.; Ueda, Y. Nat. Mater. 2005, 4, 845.
    [33]Lavela, P.; Tirado, J. L.; Vidal-Abarca, C. Electrochim. Acta 2007, 52, 7986.
    [34]Liu, J.; Xia, H.; Lu, L.; Xue, D. F. J. Mater. Chem. 2010, 20, 1506.
    [35]Liu, J. ; Xue, D. F. Adv. Mater. 2008, 20, 2622.
    [36]Lavela, P.; Tirado, J. L.; Vidal-Abarca, C. Electrochim. Acta 2007, 52, 7986.
    [37]Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; Rao, G V. S.; Chowdari, B. V. R. Adv. Funct. Mater. 2007, 17, 2792.
    [38]Lee, S. FL; Kim, Y H.; Philip, R. D.; Parilla, A.; Whitney, E.; Gillaspie, D. T.; Jones, K. M.; Mahan, A. H.; Zhang, S. B.; Dillon, A. C. Adv. Mater. 2008, 20, 3627.
    [39]Paek, S. M. ; Yoo, E. J. ; Honma, I. Nano Lett. 2009, 9, 72.
    [40]Rong, A.; Gao, X. P.; Li, G R.; Yan, T. Y.; Zhu, H. Y.; Qu, J. Q.; Song, D. Y. J. Phys. Chem. B 2006,110, 14754.
    [41]Sharma, Y.; Sharma, N.; Subba Rao, G. V.; Chowdari, B. V. R. Adv. Funct. Mater. 2007, 77,2855.
    [42]Qiu, Y. C.; Yang, S. H.; Deng, H.; Jin, L. M.; Li, W. S. J. Mater. Chem. 2010, 20, 4439.
    [1]Brinkman, A.; Huijben, M.; Zalk, M. V.; Huijben, J.; Zeitler, U.; Maan, J. C.; Vander Wiel, W. G.; Rijnders, G.; Blank, D. H. A.; Hilgenkamp, H. Nat. Mater. 2007, 6, 493.
    [2]Bruno, F. Y.; Garcia-Barriocal, J.; Torija, M.; Rivera, A.; Sefrioui, Z.; Leighton, C.; Leon, C.; Santamaria, J. Appl. Phys. Lett. 2008, 92, 082106.
    [3]Hu, Y.; Qian, H. S.; Guo, C. F.; Mei, T. CrystEngComm 2010,12, 2687.
    [4]Liu, Y.; Yu, L.; Hu, Y.; Guo, C. F.; Zhang, F. M.; (David) Lou, X. W. DOI: 10.1039/clnrllll4k.
    [5]Zhao, Z. W.; Liu, J.; Cui, F. Y.; Feng, H.; Zhang, L. L. DOI: 10.1039/c2jm00153e.
    [6]Wang, X.; Zhong, Y. T.; Zhai, T. Y.; Guo, Y. R; Chen, S. M.; Ma, Y.; Yao, J. N.; Bandoa, Y.; Golberg, D. J. Mater. Chem. 2011, 21, 17680.
    [7]Chen, J. S.; Chen, C. P.; Liu, J.; Xu, R.; Qiao, S. Z.; Lou, X. W. Chem. Commun. 2011,47,2631.
    [8]Hong, R. Y.; Zhang, S. Z.; Di, G. Q.; Li, H. Z.; Zheng, Y.; Ding, J.; Wei, D. G. Mater. Res. Bull. 2008, 43, 2457.
    [9]Liu, X. W.; Fang, Z.; Zhang, X. J.; Zhang, W.; Wei, X. W.; Geng, B. Y. Cryst. Growth Des. 2009, 9, 197.
    [10]Hu, Y.; Qian, H. H.; Liu, Y.; Du, G. H.; Zhang, F. M.; Wang, L. B.; Hu, X. CrystEngComm 2011, 13, 3438.
    [11]Quesada, A.; Garcia, M. A.; Andres, M.; Hernando, A. J. Appl. Phys. 2006, 100, 113909.
    [12]Schwartz, D. A.; Kittilstved, K. R.; Gamelin, D. R. Appl. Phys. Lett. 2004, 55, 1395.
    [13]Khare, N.; Kappers, M. J.; Wei, M.; Blamire, M. G.; MacManus-Driscoll, J. L. Adv. Mater. 2006,18, 1449.
    [14]Nakayama, M.; Tanaka, H.; Masuko, K.; Fukushima, T.; Ashida, A.; Fujimura, N. Appl. Phys. Lett. 2006, 88, 241908.
    [15]He, J. H.; Lao, C. S.; Chen, L. J.; Davidovic, D.; Wang, Z. L. J. Am. Chem. Soc. 2005,127, 16376.
    [16]Yuhas, B. D.; Zitoun, D. O.; Pauzauskie, P. J.; He, R.; Yang, P. Angew. Chem. Int. Ed. 2006, 45, 420.
    [17]Flipse, C. F. J.; Rouwelaar, C. B.; de Groot F. M. F. Eur. Phys. J. D 1999, 9, 479.
    [18]Kanjwal, M. A.; Sheikh, F. A.; Barakat, N. A. M.; Chronakis, I. S.; Kim, H. Y. Appl. Surf. Sci. 2011, 257, 7975.
    [19]Qiu, Y. C. Chen, W.; Yang, S. H.; Zhang, B.; Zhang, X. X.; Zhong, Y. C.; Wong, K. S. Cryst. Growth Des. 2010,10, 1.
    [20]Wang, B.; Wu, H. B.; Yu, L.; Xu, R.; Lim, T. T.; (David) Lou, X. W. Adv. Mater. 2012,24,1111.
    [21]Hu, J. S.; Zhong, L. S.; Song, W. G.; Wan, L. J. Adv. Mater. 2008, 20, 2977.
    [22]Choi, W. S.; Koo, H. Y.; Zhong, B. Z.; Li, Y. D.; Kim, D. Y. Adv. Funct. Mater. 2007,77,1743.
    [23]Zhao, Y. F.; He, S.; Wei, M.; Evans, D. G; Duan, X. Chem. Commun. 2010, 46, 3031.
    [24]Cai, W. Q.; Yu, J. G.; Cheng, B.; Su, B. L.; Jaroniec, M. J. Phys. Chem. C 2009, 113, 14739.
    [25]Fei, J. B.; Cui, Y.; Yan, X. H.; Qi, W; Yang, Y.; Wang, K. W; He, Q.; Li, J. B. Adv. Mater. 2008, 20, 452.
    [26]Cheng, B.; Le, Y.; Cai, W. Q.; Yu, J. G. J. Hazard. Mater. 2011, 185, 889.
    [27]Huang, Z. H.; Zheng, X. Y.; Lv, W.; Wang, M.; Yang, Q. H.; Kang, F. Y. Langmuir 2011, 27, 7558.
    [28]Zhu, T.; Chen, J. S.; (David) Lou, X. W. J. Phys. Chem. C 2012, 776, 6873.
    [1]Poizot,P.;Laruelle,S.;Grugeon,S.;Dupont,L.;Tarascon,J.M.Nature 2000, 407.496.
    [2]Zhou,L.;Zhao,D.Y.;Lou,X.W.Adv.Mater.2012,6,745.
    [3]Zhou, L.; Wu, H. B.; Zhu, T.; (David) Lou, X. W. J. Mater. Chem. 2012, 22, 827;
    [4]Wang, B.; Chen, J. S.; Wu, H. B.; Wang, Z. Y.; Lou, X. W. J. Am. Chem. Soc. 2011, 133, 17146.
    [5]Ding, S. J.; Lou, X. W. Nanoscale 2011, 3, 3586.
    [6]Wang, Z. Y.; Luan, D. Y; Madhavi, S.; Li, C. M.; Lou, X. W. Chem. Commun. 2011,47,8061.
    [7]Qiu, Y. C.; Yang, S. H.; Deng, H.; Jin, L. M.; Li, W. S. J. Mater. Chem. 2010, 20, 4439.
    [8]Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Adv. Mater. 2008, 20, 258.
    [9]Tian, L.; Zou, H. L.; Fu, J. X.; Yang, X. F.; Wang, Y.; Guo, H. L.; Fu, X. H.; Liang, C. L.; Wu, M. M.; Shen, P. K.; Gao, Q. M. Adv. Funct. Mater. 2010, 20, 617.
    [10]Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M; Li, F.; Cheng, H. M. ACS Nano 2010, 4, 3187.
    [11]Liu, J.; Xia, H.; Lu, L.; Xue, D. F.; J. Mater. Chem. 2010, 20, 1506.
    [12]Wang, H. L.; Cui, L. F.; Yang,Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. J. Am. Chem. Soc. 2010,132, 13978.
    [13]Gao, J.; Lowe, M. A.; Abruna, H. D. Chem. Mater. 2011, 23, 3223.
    [14]Jiang, H.; Zhao, T.; Yan, C.; Ma, J.; Li, C. Z. Nanoscale 2010, 2, 2195.
    [15]Cheng, F.; Tao, Z.; Liang, J.; Chen, J. Chem. Mater. 2008, 20, 667.
    [16]Stobhe, E. R.; Boer, B. A. D.; Geus, J. W. Catal. Today 1999, 47, 161.
    [17]Courtel, F. M.; Duncan, H.; Abu-Lebdeh, Y.; Davidson, I. J. J. Mater. Chem. 2011, 21, 10206.
    [18]Fang, X. P.; Lu, X.; Guo,X. W.; Mao, Y.; Hu,Y. S.; Wang, J. Z.; Wang, Z. X.; Wu, F.; Liu, H. K.; Chen, L. Q. Electrochem. Commun. 2010,12, 1520.
    [19]Wu, H. B.; Chen, J. S.; Hng, H. H.; Lou, X. W. Nanoscale 10.1039/c2nrll966h.
    [20]Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. Nat. Mater. 2010, 9, 353.
    [21]Qiu,Y. C.; Xu, G. L.; Yan, K. Y.; Sun, H.; Xiao, J. W.; Yang, S. H.; Sun, S. G.; Jin, L. M.; Deng, H. J. Mater. Chem. 2011, 21, 6346.
    [22]Zhan, F. M.; Geng, B. Y.; Guo, Y. J. Chem. Eur. J. 2009, 15, 6169.
    [23]Fan,Y. Q.; Shao, H. B.; Wang, J. M.; Liu, L.; Zhang, J. Q.; Cao, C. N. Chem. Commun. 2011, 47, 3469.
    [24]Xu, M. W.; Wang, F.; Zhao, M. S.; Yang, S.; Song, X. P. Electrochim Acta. 2011, 56, 4876.
    [25]Wang,Y.; Xia, H.; Lu, L.; Lin, J. Y. ACS Nano 2010, 4, 1425.
    [26]Chen, J. S.; Zhu, T.; Hu, Q. H.; Gao, J. J.; Su, F. B.; Qiao, S. Z.; Lou, X. W. Appli. Mater. Interface. 2010,12, 3628.
    [27]Chen,Y. C.; Hu, L.; Wang, M.; Min, Y. L.; Zhao, Y. G. Colloids Surf. A 2009, 336, 64.
    [28]Larcher, D.; Sudant, G.; Patrice, R.; Tarascon, J. M. Chem. Mater. 2003, 75, 3543.
    [29]Wang, B.; Wu, H. B.; Yu, L.; Xu, R.; Lim, T. T.; (David) Lou, X. W. Adv. Mater. 2012,24, 1111.
    [30]Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D. Angew. Chem. Int. Ed. 2005, 44, 2782.
    [31]Peng, Q.; Dong, Y. J.; Li, Y. D. Angew. Chem. 2003,775, 3135.
    [32]Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Science 2006, 312, 885.
    [33]Zhou, G. M.; Wang, D. W; Li, F.; Zhang, L. L.; Li, N.; Wu, Z. S.; Wen, L.; (Max) Lu, G. Q.; Cheng, H. M. Chem. Mater. 2010, 22, 5306.
    [34]Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; Rao, G V. S.; Chowdari, B. V. R. Adv. Funct. Mater. 2007, 7 7, 2792.
    [35]Lee, S. H.; Kim, Y. H.; Philip, R. D.; Parilla, A.; Whitney, E.; Gillaspie, D. T.; Jones, K. M.; Mahan, A. H.; Zhang, S. B.; Dillon, A. C. Adv. Mater. 2008, 20, 3627.
    [36]Paek, S. M.; Yoo, E. J.; Honma, I. Nano Lett. 2009, 9, 72.
    [37]Rong, A.; Gao, X. P.; Li, G. R.; Yan, T. Y; Zhu, H. Y; Qu, J. Q.; Song, D. Y. J. Phys. Chem. B 2006, 770, 14754.
    [38]Sharma, Y.; Sharma, N.; Subba Rao, G. V.; Chowdari, B. V. R. Adv. Funct. Mater. 2007, 17,2855.
    [39]Cao,S.W.;Zhu,Y.J.;Ma,M.Y.;Li,L.;Zhang,L.J.Phys.Chem.C 2008,112, 1851.
    [40]Kim,S.W.Lee,H.W.Muralidharan,P.Seo,D.H.Yoon,W.S. Kim,D.K.Kang,K.Nano Res.2011,4,505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700