用户名: 密码: 验证码:
WEPP模型(坡面版)在东北黑土区的适用性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤侵蚀预报模型是分析土壤侵蚀状况、制定水土保持方案和资源调查等工作的有效工具。水蚀预报模型WEPP(Water Erosion Prediction Project)建立之初就受到了各国学者的关注,关于WEPP在我国的应用,主要集中在长江中上游紫色土区和黄土高原地区;在东北黑土区的应用及其适用性评价研究还是一个空白。本文利用东北黑土区宾县宾州镇二龙山孙家沟小流域和海伦市西南前进小流域径流小区监测的次降雨产流和产沙数据,评价WEPP模型在东北黑土区的适用性。本论文主要的研究结论如下:
     1)采用敏感性分析方法分析了模型土壤和气候参数对WEPP模型模拟结果的影响。在次降雨模拟条件下,WEPP模型六个土壤参数中,土壤反照率、细沟土壤可蚀性、细沟间土壤可蚀性和临界剪切力四个参数对次降雨径流量的模拟结果没有影响,仅有初始饱和度和有效水力传导系数对径流量的模拟结果有影响。而初始饱和度、细沟间土壤可蚀性、细沟土壤可蚀性、临界剪切力和有效水力传导系数对WEPP模型次降雨土壤侵蚀量的模拟结果有重要影响。CLIGEN气候模型的四个参数中(降雨量、持续时间、最大雨强和峰值出现时间),径流量和土壤侵蚀量模拟值随着降雨量的增大而增大;WEPP模型对径流量模拟值随降雨持续时间的延长而变小;径流量和土壤侵蚀量的模拟值先随最大雨强的增大而增大,但峰值出现后,径流量和土壤侵蚀量的模拟值逐渐减小;峰值出现时间对径流量和土壤侵蚀量模拟值的影响较复杂。
     2)利用WEPP模型模拟了不同坡度条件下次降雨的径流量和土壤侵蚀量。WEPP模型对次降雨模拟值随坡度增加而增大,且增加的幅度变大,表明在当前条件下WEPP模型对径流量和侵蚀量模拟随坡度的变化较敏感。土壤侵蚀量的实测值和模拟值具有相同的变化规律,都随着坡度的增大而增大。与径流量的变化规律相比,WEPP模型对土壤侵蚀量模拟值随坡度变化比径流量模拟值随坡度变化更明显。在不同坡度(3°、5°和8°)条件下,模型对土壤侵蚀量模拟结果的模型有效性系数ME均大于0.5,表明模型对土壤侵蚀量模拟结果较好。通过对比不同坡度条件下模型模拟结果的有效性系数ME发现,模型对较小坡度的模拟效果较好,且土壤侵蚀量的模拟结果要明显好于径流量的模拟结果。
     3)利用WEPP模型模拟了不同植被条件下次降雨的径流量和土壤侵蚀量。WEPP模型模拟值的模型有效性系数ME均大于0.5,这说明模型模拟结果较好。在四种植物径流小区中,WEPP模型对于种植大豆和苜蓿草的径流小区模拟结果要好于稗草、苗期榆树的模拟结果。在四种植物的径流小区中,模型对径流量的模拟结果偏大,对土壤侵蚀量的模拟结果偏小。
     4)利用WEPP模型模拟了不同耕作措施条件下次降雨的径流量和土壤侵蚀量。WEPP模型对径流量的模拟结果基本可以接受,而模型对土壤侵蚀量的模拟值出现了一定偏差。WEPP模型对次降雨径流量模拟值的模型有效性系数ME中,少耕、传统耕作和裸地径流量模拟值的模型有效性系数ME分别为0.65、0.53和0.75,表明WEPP模型对少耕、传统耕作和裸地的径流量模拟结果可以接受;对免耕、少耕、传统耕作、裸地、黄坡垄地面处理,坡面侵蚀量模拟值的Nash-Sutcliffe有效性系数ME分别为-31.26、0.10、0.40、0.34和-1.02,表明模型对不同耕作措施土壤侵蚀量的模拟结果均不理想。WEPP模型对少耕、免耕和裸地径流量的模拟结果整体上好于其他耕作措施。
     5)利用黑龙江海伦试验站的气象资料和裸地径流小区的产流产沙资料,对比研究CLIGEN和BPCDG两种模型的模拟效果。结果表明,WEPP模型应用BPCDG模拟结果优于应用CLIGEN的模拟结果。
Soil erison prediction model was an effective tool to assess soil erosion, design soil and water conservation scheme and resource survey. WEPP was concerned in soil and water conservation field since it was issued. WEPP application to China were mainly concentrated in the purple soil region of the middle and upper reaches of Yangzhe River basin and the Loess Plateau, but there is no WEPP application and assessment in the black soil region of Northeast China. This thesis used field observed data of runoff and soil loss from small watershed in Binxian and Hailun city, to predict runoff and soil loss under rain events at different slope gradients, different plants and different tillage measures, and then assessed the applicability of WEPP in northeast black soil region. The main research results were as follows:
     1)The sensitive analysis of WEPP soil parameters and climatic parematers showed that four soil parameters of albedo, interrill erodibility, rill erodibility, and critical shear in six parameters had no effect on predicted runoff result, but initial saturation and effective hydraulic conductivity affected the predicted runoff results. There was no effect of albedo on the hillslope soil loss; other five soil parameters affected simulated results. Among the four parameters related to climate under event prediction, hillslope runoff and soil loss increased with rainfall and decreased with duration time. They increased as maximum rainfall intensity, but after the peak occurrence, they gradually decreased. The impats of the peak occurrence on hilslope runoff and soil loss were relative complex.
     2)Hillslope runoff and soil loss at different slope degrees under single rain event were simulated by WEPP. The results showed that predicted hillslope runoff increased as slope degree increased, and its increasing scope tended to increase, which indicated WEPP simulated values were sensitive to the gradient change. Measured soil loss had the same trend. Compared with runoff change with slope degree, soil loss change was much more obvious. Model efficiency of soil loss prediction under different gradient slopes (3°, 5°and 8°) was larger than 0.5, which meaned that WEPP simulated results were accepted. WEPP simulated soil loss was better than simulated runoff. Compared model efficency at different gradient slopes, it was found that the simulated value for low slope was better than for steep slope.
     3)Hillslope runoff and soil loss at different vegetation under single rain event were simulated by WEPP. The result showed that model efficency of runoff and soil loss was larger than 0.5, which meaned that the WEPP simulated results were accepted. Compared with grass and elm at seedling stage, the simulated results of soybean and alfalfa were better. The predicted runoff values were larger than measured values and the simulated values of soil loss were smaller than measured values.
     4)Hillslope runoff and soil loss at different tilliage measures under single rain event were simulated by WEPP. Predicted runoff by WEPP was accepted, but predicted soil loss was a little far from the measured values. Model efficiency of runoff prediction for mini- tillage, conventional tillage, and bare land were respectively 0.65, 0.53, and 0.75, which meaned that the prediction result was accepted. Model efficiency of soil loss prediction for non-tillage, mini-tillage, conventional tillage, bare land, and Contour farming were -31.26, 0.10, 0.40, 0.34 and -1.02, respectively, which meaned that the prediction result was not good. WEPP simulated results for mini tillage, conventional tillage, and bare land were better than the other tillages.
     5)Compared the predicted results of runoff and soil loss using CLIGEN and BPCDGN, the result showed that WEPP simulated results using BPCDG were better than that using CLIGEN。
引文
陈晓燕,何丙辉,缪驰远. 2003. WEPP模型在紫色土坡面侵蚀预测中的应用研究.水土保持学报, 17(3): 42~46
    代华龙,曹叔尤,刘兴年. 2008.基于WEPP模型的紫色土坡面水蚀预报.中国水土保持科学6(2):60~65
    何丙辉,缪驰远,陈晓燕,徐霞. 2007. CLIGEN气候生成器模型在紫色土地区的适应性研究.水土保持学报, 21(03):183~187
    景卫华,贾忠华,罗纨,赵健,席伟彦. 2006. WEPP模型在黄土地区的适用性分析.水资源与水工程学报, 17(02): 28~31
    雷廷武,邵明安,李占斌,王全九. 1999.土壤侵蚀预报模型及其在中国发展的考虑.水土保持研究.1999, 6(2):162~167
    雷廷武,张晴雯,姚春梅,闫丽娟,刘汗,杨超. 2005. WEPP模型中细沟可蚀性参数估计方法误差的理论分析.农业工程学报, 21(1)9~12
    李勉,李占斌,刘普灵. 2003中国土壤侵蚀定量研究进展.水土保持研究, 9(03):243~248
    林忠辉,莫兴国. 2008. CLIGEN生成干旱半干旱地区降水相关参数的验证.自然资源学报, 23(3):514~527
    刘鸿雁,张海涛,石鑫. 2005.黑土区水土流失及水土保持研究概述.水利科技与经济, 11(3):167~170
    刘淑燕,秦富仓,项元和,雷凤燕. 2006基于WEPP模型进行坡度因子与侵蚀量关系研究.干旱区资源与环境, 20(04):98~100
    吕喜玺,沈荣明.土壤可蚀性因子K值的初步研究.水土保持学报, 1992,(01)
    缪驰远,何丙辉,陈晓燕. 2006.水蚀模型USLE与WEPP在紫色土水蚀预测中的应用对比研究.农业工程学报, 21(1):13~16
    缪驰远,何丙辉,陈晓燕,魏朝富. 2004. USLE与WEPP土壤可蚀性因子的关联性分析.中国水土保持, (06):23-25
    缪驰远,何丙辉,陈晓燕,吴咏. 2004. WEPP模型中的CLIGEN与BPCDG应用对比研究.中国农学通报, 20(06):321~324
    莫放,贾忠华,罗纨,李怀恩. 2005.基于水蚀模型WEPP和GIS的高原小流域侵蚀模拟——以延安地区向阳沟小流域为例.水资源与水工程学报, 16(04):41~45
    莫春华,李新建,陈媛媛. 2008. WEPP模型在湿地系统的应用.南水北调与水利科技, 6(5):90~97
    牛志明,解明曙.新一代土壤水蚀预测模型.WEPP[J].中国水土保持, 2001, (1)20~23
    刘淑燕,秦富仓,项元和,雷凤燕. 2006.基于WEPP模型进行坡度因子与侵蚀量关系研究.干旱区资源与环境,20(04):97~100
    林忠辉,莫兴国. 2008. CLIGEN生成干旱半干旱地区降水相关参数的验证.自然资源学报, 23(03):514~526
    史志文,徐俊荣,潘锋,陈忠升. 2009. CLIGEN随机气候生成器在天山西部中山带的适用性评价.干旱区地理, 32(04):499~504
    孙传生,黄长海,朱大为. 2006.东北黑土区水土保持保护性耕作措施探讨. 12(5):132~136
    汪东川,卢玉东. 2009.国外土壤侵蚀模型发展概述.中国水土保持科学, 2(2):35~40
    王建勋,郑粉莉,江忠善. 2008. WEPP模型坡面版在黄土丘陵沟壑区的适用性评价—以坡度因子为例.泥沙研究, 12(6):52~58
    肖培青,姚文. 2005. WEPP模型的侵蚀模块理论基础. 6(2)40~47
    谢春燕,陈晓燕,何炳辉,魏朝富. 2003.土壤可蚀性在WEPP模型中的应用.水土保持科技情报(4):6~8,
    幸定武,高建恩. 2008. WEPP在黄土高原坡面径流调控中的适用性研究.人民黄河. 30(4):66~68
    严冬春,文安邦,张忠启,郑进军. 2007坡面版WEPP模型在川中丘陵区的应用研究,水土保持学报21(5):41~45
    杨勤科,李锐. 1998.中国水土流失和水土保持定量研究进展.土壤保持通报, 18 (5):13~18
    杨文文,张学培,王洪英. 2005.东北黑土区坡耕地水土流失及防治技术研究进展.水土保持研究, 12(5):232~236
    张晴雯,雷廷武,姚春梅,潘英华,王辉. 2004. WEPP细沟剥蚀率模型正确性的理论分析与实验验证.20(1):35-39
    张少良. 2009.典型黑土侵蚀区不同耕作措施的水土保持功效研究.水土保持学报, 23(3):11~15
    郑粉粒,王占礼,杨勤科. 2004.土壤侵蚀学科发展战略.水土保持研究, 2004, 11(4):1~10
    郑粉莉,杨勤科,王占礼. 2004.水蚀预报模型研究.水土保持研究. 11(4):13~22
    郑进军,张信宝,贺秀斌. 2007.川中丘陵区坡耕地侵蚀空间分布的WEPP模型和(137)Cs法研究.水土保持学报, 21(02):19~23
    张玉斌,郑粉莉,贾媛媛. WEPP模型概述[J].水土保持研究,2004, 11(4):13-24.
    Bacchi O O S, Reichardt K, Sparovek G. 2003. Sediment spatial distribution evaluated by three methods and its relation to some soil properties. Soil and Tillage Research, 69(1-2):117~125
    Baets S D, Poesen J, Gyssels G, Knapen A.2006. Effects of grass roots on the erodibility of topsoils during concentrated flow. Geomorphology, 76(1-2):54~67
    Bjorneberg D L, Trout T J, Sojka R E et al. 1999. Evaluating WEPP-Predicted Infiltration, Runoff and Soil Erosion for Furrow Irrigation. 42 (6) :1733-1741
    Brazier R E, Beven K J, Freer J Rowan J S. Equifinality and uncertainty in physically based soil erosion models:application of the GLUE methodology to WEPP the Water Erosion Prediction Project,for sites in the UK and USA. Earth Surf. Process. Landforms 25, 825–845
    Brunner A C, Park S J, Ruecker G R, Dikau R. 2004. Vlek Catenary soil development influencing erosionsusceptibility along a hillslope in Uganda CATENA, 58(1): 1~22.
    Consuelo C Romero, Leo Stroosnijder, Guillermo A Baigorria. 2007. Interrill and rill erodibility in the northern Andean Highlands. CATENA, 70(2):105~113
    Covert S A, Robichaud P R, Elliot W J et al. 2005. Evaluation of Runoff Prediction from WEPP-Based Erosion Models for Harvested and Burned Forest Watersheds. American Society of Agricultural Engineers, 2005, 48 (3):1091~1100
    Damien Raclot, Jean Albergel. 2006. Runoff and water erosion modelling using WEPP on a Mediterranean cultivated catchment. Physics and Chemistry of the Earth, 31(17):1038~1047
    De Roo, Offermans, Cremers. 1996. LISEM: a single event physically-based hydrologic and soil erosion model for drainage basins: II. Sensitivity analysis, validation and application. Hydrological Processes 108:1119~1126
    Dun Shuhui, Wu Joan Q, Elliot William J. 2009. Adapting the Water Erosion Prediction Project (WEPP) model for forest applications. Journal of Hydrology, 366(1-4):46~54
    Elena Amore, Carlo Modica, Mark A. Nearing, Vincenza C. 2004. Santoro Scale effect in USLE and WEPP application for soil erosion computation from three Sicilian basins. Journal of Hydrology, 293(1-4):100~114
    Flanagan D C, Ascough J C, Nicks A D, Nearing M A and Laflen J M. 1995. Overview of the WEPP erosion prediction model USDA-Water Erosion Prediction Project User Summary
    Flanagan D C, Livingston S J. 1995. USDA-Water Erosion Prediction Project User Summary. NSERL Rep. No. 11, National Soil Erosion Research Laboratory, USDA ARS, West Lafayette, INP.139
    Flanagan D C, Nearing, M A. 1995. USDA-Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation. NSERL Rep. No.10, National Soil Erosion Research Laboratory, USDAARS, WestLafayette
    Forsyth A R, Bubb K A, Cox M E. 2006. Runoff sediment loss and water quality from forest roads in a southeast Queensland coastal plain Pinus plantation. Forest Ecology and Management, 221(1-3): 194~206
    Foster G R, Lane L J.1987. User requirements, USDA-Water Erosion Prediction Project (WEPP) .NSERL Report No.1. West Lafayette: USDA-ARS National Soil Erosion Laboratory
    Gronsten H A, Lundekvam H. 2006. Prediction of surface runoff and soil loss in southeastern Norway using the WEPP Hillslope Model. Soil Tilliage Resource. 85(1-2):186~199
    Guillermo A Baigorria, Consuelo C Romero. 2007. Assessment of erosion hotspots in a watershed: Integrating the WEPP model and GIS in a case study in the Peruvian Andes Environmental. Modelling & Software, 22(8):1175~1183
    Hunt Allen G, Wu Joan Q. 2004. Climatic influences on Holocene variations in soil erosion rates on a small hill in the Mojave Desert. Geomorphology, 58(1-4): 263~289.
    Howell T, Evett S R, Tolk J A, Schneider A D, Steiner J L. 1996. Evapotranspiration of corn, southern high plains.In:Camp C R, Sadler, E J, Yoder,R.(Eds.),Evapotranspirationand Irrigation Scheduling. Am.Soc. Agric. Eng., St. Joseph, MI, pp. 158–166.
    Jacky Croke, Mathew Nethery. 2006. Modelling runoff and soil erosion in logged forests: Scope and application of some existing models. CATENA, 67(15):35~49
    Laflen, J M, Lane L J, Foster, G R. 1991. WEPP—a next generation of erosion prediction technology. Soil Water Conservation, 46:34~38
    Laflen J M, Flanagan D C, Engel B A. 2004. Soil erosion and sediment yield prediction accuracy using WEPP. Am. Water Res. Assoc. 40, 289~297.
    Lei T W, Zhang Q W, Yan L J. 2008. A rational method for estimating erodibility and critical shear stress of an eroding rill. Geoderma, 144(3-4):628~633
    Meyer L D. 1984. Evolution of the Universal Soil Loss Equation.Soil and Water Conservation, 32 (2):99-104.
    Morgan R P C, Quinton J N, Rickson, R J. 1993. EUROSEM user guide version 3.1. Silsoe College, Cranfield University, Silsoe, UK.
    M R Savabi, J R Williams. 1995. Water Balance and Percolation. USDA-Water Erosion Prediction Project Hillslope Profile and Watershed Model Documentation Chapter 5.NSERL Report 10. 1995:1~2
    Nash J E, Sutcliffe J V. 1970. River flow forecasting through conceptual models, Part I. A discussion of principles. Hydrol.10:282~290
    Nearing M A, Foster G R, Lane L J. 1989. A process-based soilerosion model for USDA-Water Erosion Prediction Project Technology .Trans.ASAE, 32(5) :1587~1593.
    Oropeza-Mota J L, Larose M, Norton, L D. 2004. Testing the Applicability of the WEPP model for predicting soil loss in tropical hillside lands in the Tuxtlas, Veracruz, Mexico. ASA-CSSA-SSSA Proceedings, Seattle, WA
    Pandey Ashish, Chowdary V M, Mal B C, Billib M. 2008. Runoff and sediment yield modeling from a small agricultural watershed in India using the WEPP model. Journal of Hydrology, 348(3-4): 305~319
    Pieria Linda, Bittelli Marco, Wu Joan Q, Dun Shuhui, Flanagan Dennis C, Pisa Paola Rossi, Ventura Francesca, Salvatorelli Fiorenzo. 2007. Using the Water Erosion Prediction Project (WEPP) model to simulate field-observed runoff and erosion in the Apennines mountain range, Italy. Journal of Hydrology, 336:84-97
    Quirijn de Jong van Lier, Gerd Sparovek, Flanagan Dennis C, Elke M. Bloem, Schnug Ewald.2005. Runoff mapping using WEPP erosion model and GIS tools. Computers & Geosciences, 31(10):1270~1276
    Renard K D, Forste G D, Weesies G A. 1997. Predict ion rainfall erosion by water: a guild to conservation planning with the revised universal soil loss equation.USDA Agricultural handbook No.703
    Renard. 1991.RUSLE. Revised Universal Soil Loss Equation. Soil Water Conservation. 46:30~33
    Risse LM, Nearing M A, Zhang X C. 1995. Variability in Green-Ampt effective hydraulic conductivity under fallow conditions. Journal of Hydrology, 169(1-4):1-24
    Rosewell C J. 2001. Evaluation of WEPP for runoff and soil loss prediction in Gunnedah, NSW, Australia. Austr. Soil Resource, 9:230~243
    Samar J. Bhuyan, Prasanta K K, Keith A J Philip L B. 2002. Soil loss predictions with three erosion simulation models. Environmental Modelling & Software, 17(2):135~144
    Savabi M R. 1993. Modeling subsurface drainage and surface runoff with WEPP. Irrig. Drain. Eng. 119: 801~813
    Shen Z Y, Gong Y W, Li Y H. 2009. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area. Agricultural Water Management, 96(10):1435-1442
    Shen Zhenyao, Gong Yongwei, Li Yanhong. 2010. Analysis and modeling of soil conservation measures in the Three Gorges Reservoir Area in China. CATENA, In Press, Corrected Proof, Available online 19 February 2010
    USDA, Soil Conservation Service, 1992 USDA, Soil Conservation Service, 1992. Ephemeral gully erosion model EGEM, Version 2.0 DOS User Manual.
    Wischmeier W H, Smith D D. 1978 Prediction rainfall erosion losses a guide to conservation planning. Agriculture Handbook. 537
    Young R A, Onstad, C A, Bosch, D D, Anderson, W P. 1987. AGNPS, Agaicultural Non-Point-Source Pollution Model. A Watershod Analysis Tool. In: Cons. Res. Rep. 35, U.S. Dep. of Agric., p 80
    Yu B, Rosewell C J. 2001. Evaluation of WEPP for runoff and soil loss prediction at Gunnedah, NSW Australia, Aust. J. Soil Res. 39:1131~1145.
    Yu B, Ciesiolka C A A, Rose C W, Coughlan K J.2000. A validation test of WEPP to predict runoff and soil loss from a pineapple farm on a sandy soil in subtropical Queensland Australia. Soil Resource 38:537~554.
    Yu Bofu. 2005. Adjustment of CLIGEN parameters to generate precipitation change scenarios in southeastern Australia. CATENA, 61(2-3): 196~209
    Zhang X C. 2004. Calibration, refinement, and application of the WEPP model for simulation climatic impact on wheat production. ASAE, 47(4):1075-1085
    Zhang X C, Liu W Z. 2005. Simulating potential response of hydrology,soil erosion,and crop productivity to climate change in Changwu tableland region on the Loess Plateau of China. Agricultural and Forest Meteorology, 131 (3-4):127-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700