用户名: 密码: 验证码:
多波段激光发射方向直接监测与校正方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国内外广泛应用的大型激光发射系统具有结构响应速度快,瞄准精确,抗干扰能力强等特点,且正朝着高能量、多波段的方向发展。由于外界环境和内部构造等诸多原因,激光发射系统所发出的光束与预定方向相比会有一定偏差,为了保证激光发射系统的准直精度,需要对激光光束方向进行监测,并对其产生的指向误差进行校正。
     在系统方案设计方面,运用齐次坐标变换,分析了光束从激光器出光口到进入监测系统前这一段传播光路中可能引入的误差,并建立了相应的数学模型和灵敏度矩阵,为进行光束方向的监测与校正提供了理论依据;对比以往对光束方向间接监测方法的不足,提出了新的直接监测方案。
     在光束方向监测方面,基于所提直接监测方案,提出了一种分时监测的研究方法,拟通过同一监测机构,实现对中、长波激光束发射方向的直接监测。针对四象限探测器对光斑的采集要求,设计了一组光学镜头,保证长波、中波两种波段的红外激光束经过透镜组后,均能以合适的尺寸和位置成像在探测器靶面上;提出了一种基于椭圆模型的光斑中心定位算法,并采用正交微动算法获得椭圆光斑的长短轴参数。
     在光束校正方面,设计了一种新型快速反射镜结构,应用于校正系统中。在现有结构的基础上,首次将柔性铰链应用于两轴系快速反射镜中,采用序列二次规划法对铰链的关键尺寸进行优化,并对系统的运动传递精度进行了理论计算及仿真分析。
     分别以长波监测校正光路和中波监测校正光路为研究对象,建立了四象限探测器接收光斑中心位置与快速反射镜旋转角度之间的对应关系,为光束监测校正系统的闭环调节提供了理论依据。
     通过监测系统的指向精度实验,验证了光束监测精度可达2″;快速反射镜性能实验验证了校正系统对发射光束方向的控制精度能达到0.95″,计算出了快速反射镜的闭环传递函数,通过实验验证了系统的一阶谐振频率在工作频率之外。以长波激光器光束方向监测与校正系统为例进行实验,实验结果表明了所设计的光束方向监测校正系统对激光光束方向漂移的监测与校正精度可达2″。综合各项实验结果,证明了所提出的将光束方向监测与快速反射镜相结合的监测校正系统,能够对激光发射方向实现快速检测和调整,设计方案可行,校正精度可靠。
State-of-the-art laser transmitter systems at home and abroad arecharacterized by fast structural response, accurate pointing, and strong resistanceand so on, further presently developing in the direction of high-energy andmulti-band. Compared with the predictable directions, the lasers emitted from thelaser transmitter systems have some certain deviations due to many factors likeexternal environments and internal structures for example. For the sureness ofalignment accuracy of laser transmitter systems the directions of laser beams arenecessary to be monitored and then the generated pointing errors are necessary tobe corrected.
     In the design of system scheme, the errors of which laser beams travels fromthe light outlet of lasers through before the monitor system are to be analyzed byemploying the homogeneous coordinate transformations. Furthermore, themathematical model and sensitivity matrix both established provide theories forconducting the monitor and correction of beam directions. In comparison of theshortcomings in previously indirect monitor approaches, a novel scheme of directmonitor is proposed and the research plan is designed.
     In the monitor of laser beams, the time division monitor, a scheme of directmonitor, is designed to realize the direct monitor of emitted directions of long andmiddle laser beam waves by the same monitor system. A set of optical lenses is devised, according to the collection requirements the four quadrant detector putson light spots, to make sure to image on the target surface in suitable dimensionsand positions after two sorts of infrared laser beams travel from the lenses. Also,based on ellipse light spot model a spot center positing algorithm is proposed. Thelong and short axes parameters of ellipse spots are obtained through employingthe orthogonal tiny motion algorithm.
     In the correction of laser beams, a new kind of fast steering mirror isdesigned to apply into the correction system. Upon the present structures it is thefirst time to use flexible hinges in two-axis fast steering mirror. After adopting thesequence of two quadratic programming methods, critical dimensions of hingesare optimized. Then, theoretical calculations and simulation analyses are carriedout in the transmission accuracy of system motions.
     With researching respectively on the monitor and correction of long andmiddle wavelength paths, the relations established between the center positions ofspots received by the four quadrant detector and the rotating angles of fast steeringmirror provide theoretical guidance for the closed-loop control of monitor andcorrection systems of laser beams.
     Through the pointing accuracy experiment in monitor system, the accuracy ofmonitoring laser beams is testified as2’’. And then, the feature experiment of faststeering mirror verifies the accuracy in which the correction system controls thedirections of emitted laser beams as0.95’’. The research work also gives theclosed-loop transfer function of fast steering mirror, making sure that the firstnatural frequency of system is out of the working frequency by experiment. Takethe experiment of the monitor and correction system of long wavelength laserbeam directions as the example, the experimental results show that the designedsystem can monitor and correct the accuracy of direction shift of laser beams to2’’.The synthesis of every experimental result validates the monitor and correctionsystems in which it combines the monitor of laser beam directions and the faststeering mirror is capable of achieving fast detections and adjustments of laser beam directions in the multi-band laser transmitter system. Finally the designedscheme is feasible and the correction accuracy is reliable.
引文
[1] Paul H. Merritt, John R. Albertine. Beam control for high-energy laserdevices [J]. Optical Engineering,2013,52(2):021005.
    [2] Y S Kim, H S Kim, Y C Park, et al. Laser beam director system moniteringthe alignment state with a null reflector [C]. Pro. of SPIE,2007,656909:1~9.
    [3] Z-l Chen, J-j Yan. Impact of pointing errors on performance of aground-to-satellite laser uplink communication system based on M-ary pulseposition modulation [J]. The Journal of China Universities of Posts andTelecommunications,2009,16, Supplement1:20-23.
    [4] R M Hofstra, M J Zwegers, F A van Goor, et al. On the beam pointingvariation of a long pulse XeCl excimer laser fitted with unstable resonators[J]. Optics Communications,1998,157(1-6):121-127.
    [5] W Liu, W Shi, J Cao, et al. Bit error rate analysis with real-time pointingerrors correction in free space optical communication systems [J]. Optik-International Journal for Light and Electron Optics,2014,125(1):324-328.
    [6] J D Medbery, L M Germann. Specification of precision optical pointingsystems [C]. SPIE,1991:163-176.
    [7]吕明春,梁红卫.高能激光武器及其技术发展[J].激光杂志,2008,01:1-3.
    [8] S Grafstr m, U Harbarth, J Kowalski, et al. Fast laser beam position controlwith submicroradian precision [J]. Optics Communications,1988,65(2):121-126.
    [9] M Romano, B N Agrawal. Acquisition, Tracking and pointing control of theBifocal Relay Mirror spacecraft [J]. Acta Astronautica,2003,53(4–10):509-519.
    [10] E S Boege Steven J, Clifford J, et al. NIF pointing and centering system andtarget alignment using a351nm laser source [J]. SPIE,1997,3047:248-258.
    [11] T A Shibata, Y Sakemi, H Kobayashi, et al. A high precision laser alignmentmonitoring system for HERMES tracking detectors [J]. Nuclear Instrumentsand Methods in Physics Research Section A: Accelerators, Spectrometers,Detectors and Associated Equipment,1998,411(1):75-80.
    [12]史亚莉,高云国,邓伟杰.高能激光发射系统光束监测与装调的新方法[J].光电工程,2008(02):29-33.
    [13]陈尚武.高能激光系统光束质量评价相关问题研究[D]:[硕士学位论文].杭州:浙江大学;2007.
    [14] S-J Jeong, S-K Lee, S-H Jeong. Beam alignment with the axis of a rotationstage for laser fabrication of microcircular structures [J]. Optics&LaserTechnology,2004,36(5):401-408.
    [15] Y Miyahara. Precise alignment of laser and electron beams in a periodicfocusing system for multiple Compton backscattering [J]. NuclearInstruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment,2004,524(1-3):68-79.
    [16] K Wilhelmsen, A Awwal, G Brunton, et al.2011Status of the automaticalignment system for the National Ignition Facility [J]. Fusion Engineeringand Design,2012,87(12):1989-1993.
    [17]张东来,李小将,杨成伟.美军激光反导关键技术及作战样式探讨[J].激光与红外,2013,02:121-127.
    [18]李朝荣,李永,乐洪宇.战术激光武器技术的发展动向与分析[J].舰船电子工程,2013,02:13-16.
    [19]刘超,陈永革,王刚,等.美国激光反导武器装备研究[J].飞航导弹,2011,05:70-72.
    [20]刘志春,苏震,袁文,等.激光反导武器的最新发展动向与分析[J].激光与红外,2009,09(09):914-917
    [21]贾利,张弓胤,武文军,等.21世纪美空军的反导先锋——机载激光武器[J].飞航导弹,2006,07:35-38.
    [22] S L Chen. In-process high power CO2laser beam position sensing [J]. Optics&Laser Technology,1996,28(3):193-201.
    [23]周红锋,宫爱玲.小角度测量的光学方法[J].计量技术,2006,07:17-19.
    [24]李金阳,吴简彤,韩慧群.小角度测量的光学方法及应用[J].应用科技,2006,07:15-18.
    [25]浦昭邦,陶卫,张琢.角度测量的光学方法[J].光学技术,2002,02:168-171.
    [26] G W Saito Yusuke, Kiyono Satoshi. A micro-angle sensor based on laserautocollimation [J]. SPIE,2005,60520:60529.
    [27]廉孟冬,金伟锋,居冰峰.二维光学自准直微角度传感器[J].机电工程,2010,12:23-26.
    [28] L G C. Design of a high bandwidth steering mirror for space-based opticalcommunications [J]. SPIE,1991(1543):225-235.
    [29] H J C. Overview of the ABL-firepond active-tracking and compensationfacility [J]. SPIE,1998,3381:14-18.
    [30] U K. Two-axis Beam Steering Mirror Control system for Precision Pointingand Tracking Applications [D]: Lawrence Livermore National Laboratory,2006.
    [31] P B-T Qingkun Zhou, Dapeng Fan, Andrew A. Goldenberg. Design of FastSteering Mirror for Precision Laser Beams Steering [J]. IEEE,2008,978-1-4244-2595-2.
    [32] A E Hatheway, I Moon, S Lee, et al. Opto-mechanical design of a beamlaunch telescope [J]. SPIE,2005,587701:58710.
    [33] S Mecherle, J N Tanzillo, C B Dunbar, et al. Development of a lasercomtestbed for the pointing, acquisition, and tracking subsystem ofsatellite-to-satellite laser communications [J].2008,6877:687704-687712.
    [34] K R L Jean-Noel Aubrun*, E P Gregory J. Feher, Paul J. ReshatoffJr., andDonald F. Zacharie. Design of the infrared fast steering mirror choppingcontrol system for the Keck II telescope [J]. SPIE Conference on AdvancedTechnology Ontical/IR Telescones VI1998:687-698.
    [35]鲁亚飞.快速反射镜机械结构特性设计问题研究[D]:[硕士学位论文].长沙:国防科学技术大学,2009.
    [36]黑沫,鲁亚飞,张智勇.基于动力学模型的快速反射镜设计[J].光学精密工程,2013,21(1):53-61.
    [37]王恒坤,张国玉,郭立红.高精度动载体激光发射系统光束控制反射镜[J].光学精密工程,2012,20(12):336-341.
    [38]徐新行,王兵,庄昕宇,等.音圈电机驱动型快速控制反射镜机械结构研究[J].长春理工大学学报(自然科学版),2011,01:49-52.
    [39]徐新行,王兵,韩旭东,等.音圈电机驱动的球面副支撑式快速控制反射镜设计[J].光学精密工程,2011,06:1320-1326.
    [40]邵帅,高云国,郭劲,等.二维快速控制水冷反射镜装置设计[J].光学精密工程,2009,03:493-498.
    [41] W Zhao, L Qiu, Z Feng, et al. Laser beam alignment by fast feedback controlof both linear and angular drifts [J]. Optik-International Journal for Lightand Electron Optics,2006,117(11):505-510.
    [42]张文博.多光束智能耦合技术研究[D]:[硕士学位论文].长春:长春理工大学,2011.
    [43]马葡.中红外激光跟踪发射系统研究[D]:[硕士学位论文].长春:长春理工大学,2010.
    [44]苏毅,万敏.高能激光系统[M].北京:国防工业出版社;2004.
    [45]赵天卓,樊仲维,余锦,等.大尺寸平顶激光光束的监测补偿[J].光学学报,2011,31(4):0412004.
    [46]李刚,周冰,孙新华,等.激光制导装置出射激光束散角和光轴平行性的简易检测方法[J].光学技术,2004,30(5):628-636.
    [47]吕百达:强激光的传输与控制[M].北京:国防工业出版社;1999.
    [48]郭汝海,孙涛,王兵.中波红外激光器的光束指向红外图像检测法[J].激光与光电子学进展,2012,08:127-130.
    [49]费杰.激光方向稳定系统中的若干关键技术的研究[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [50]赵新宇,乔彦峰,郭汝海,等.中波红外激光器的近场远场测试方法及应用[J].红外与激光工程,2012,01:49-52.
    [51]邵明振,邵春雷.高功率脉冲TEA CO_2激光器主机结构设计与流场优化[J].红外与激光工程,2012,06:1508-1513.
    [52]邵帅,高云国,郭劲.高功率激光发射系统的一级扩束设计[J].激光与红外,2010,40(7):744-747.
    [53]马骁宇,王俊,刘素平.国内大功率半导体激光器研究及应用现状[J].红外与激光工程,2008,02(02):189-194.
    [54]辛国锋,瞿荣辉,方祖捷,等.大功率半导体激光器的最新进展[J].激光与光电子学进展,2006,02:3-8.
    [55]王家骐,金光,颜昌翔.机载光电跟踪测量设备的目标定位误差分析[J].光学精密工程,2005,02:105-116.
    [56]党丽萍,唐树刚,周州.动基座激光束定向偏差测量新方法[J].光子学报,2010,06:1143-1147.
    [57]金光.机载光电跟踪测量的目标定位误差分析和研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2001.
    [58] M Chen, J Yuan, X Long, et al. General beam position controlling method for3D optical systems based on the method of solving ray matrix equations [J].Optics&Laser Technology,2013,54:343-346.
    [59]刘廷霞,王伟国,李博,等.水平式经纬仪静态指向修正模型的比较与改进[J].光学精密工程,2010,06:1374-1380.
    [60]薛向尧,高云国,韩光宇,等.水平式经纬仪指向误差的统一补偿技术[J].光学精密工程,2011,07:1524-1530.
    [61]朱时雨,张新,李威.计算机辅助装调与传统基准传递技术相结合实现三镜消像散系统的装调[J].中国光学,2011,06:571-575.
    [62]张庭成,王涌天,常军,等.反射变焦系统的计算机辅助装调[J].光学学报,2010,06:1688-1692.
    [63]罗淼,朱永田.计算机辅助装调方法在离轴卡塞格林系统中的应用[J].光学技术,2008,04:514-517.
    [64]杨晓飞.三反射镜光学系统的计算机辅助装调技术研究[D]:[博士学位论文].中国科学院研究生院长春光学精密机械与物理研究所,2005.
    [65]史亚莉,高云国,邓伟杰.反射光路的计算机辅助装调模型[J].激光与红外,2009,04:427-430.
    [66]王家琪.光学仪器总体设计[M].中国科学院长春光学精密机械与物理研究所;1998.
    [67]薛向尧,高云国,韩光宇,等.水平式激光发射系统指向误差的修正[J].光学精密工程,2011,03:536-544.
    [68]李岩,范大鹏.光电稳定机构指向误差建模与敏感度分析[J].国防科技大学学报,2008,01:104-109.
    [69] S Aguado, D Samper, J Santolaria, et al. Identification strategy of errorparameter in volumetric error compensation of machine tool based on lasertracker measurements [J]. International Journal of Machine Tools andManufacture,2012,53(1):160-169.
    [70] S Iqbal, M M S Gualini, A Asundi. Measurement accuracy of lateral-effectposition-sensitive devices in presence of stray illumination noise [J]. Sensorsand Actuators A: Physical,2008,143(2):286-292.
    [71] J C Barrière, H Blumenfeld, M Bourdinaud, et al. Two transparent opticalsensors for the positioning of detectors using a reference laser beam [J].Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2001,461(1-3):233-246.
    [72]王凯,王巾.基于PSD的快速反射镜系统设计与仿真[J].光电技术应用,2013,02:76-79.
    [73] Q Feng, B Zhang, C Kuang. A straightness measurement system using asingle-mode fiber-coupled laser module [J]. Optics&Laser Technology,2004,36(4):279-283.
    [74]石倩.漂移量靶标反馈激光自准直系统关键技术[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2008.
    [75]尚鸿雁.激光自准直测角系统安装误差分析[J].应用激光,2008,04:318-322.
    [76]尚鸿雁.激光自准直角度测量系统建模方法研究[J].测试技术学报,2007,01:6-12.
    [77]赵维谦,谭久彬,马洪文,等.漂移量反馈控制式激光准直方法[J].光学学报,2004,03:373-377.
    [78]黄忠伦.基于He-Ne激光光束漂移的误差检测[D]:[硕士学位论文].长春:中国科学院研究生院长春光学精密机械与物理研究所;2005.
    [79] P Barbari, S M Manojlovi, B P Bond uli, et al. New relationship ofdisplacement signal at quadrant photodiode: Control signal analysis andsimulation of a laser tracker [J]. Optik-International Journal for Light andElectron Optics,2014,125(4):1550-1557.
    [80]匡萃方,冯其波,刘斌,等.一种共路补偿激光漂移的直线度测量方法[J].光电工程,2005,04:32-34.
    [81]郁道银,谈恒英.工程光学[M].北京:机械工业出版社;2008:1~53.
    [82] Paul R. Yoder, Jr. Opto-Mechanical Systems Design[M].北京:机械工业出版社;2010:145~279.
    [83]黄银国.激光自准直微小角度测量基础技术研究[D]:[博士学位论文].天津:天津大学,2010.
    [84]史亚莉,高云国,张磊,等.提高CCD激光自准直测角精度的硬件方法[J].光学精密工程,2008,04:726-732.
    [85]张东梅,尚春民,乔彦峰.提高CCD激光自准直测量系统精度的一种方法[J].电光与控制,2006,02:38-40.
    [86]张尧禹,张明慧,乔彦峰.一种高精度CCD激光自准直测量系统的研究[J].光电子2激光,2003,02:168-170.
    [87]徐秀芳,胡晓东,陈良益.高精度激光自准直经纬仪CCD电子测量技术[J].电子测量技术,2001,01:1-3.
    [88]余峰,何烨,李松,等.四象限光电检测系统的定位算法研究及改进[J].应用光学,2008,04:493-497.
    [89]夏江涛.光电探测系统中的自动准直控制技术[D]:[硕士学位论文].南京:南京信息工程大学,2008.
    [90]田铁印,孙世维.激光精密跟踪测角误差分析与计算[J].光学精密工程,1996,03:68-74.
    [91]王秀青,徐德.一种基于四象限光电探测器的对准新方法[J].传感器与微系统,2006,25(7):11-14.
    [92]徐代升,何志平,舒嵘,等.激光制导目标方位探测系统的光学设计[J].光学与光电技术,2004,05:1-4.
    [93]王新影.激光靠泊测角系统研究[D]:[硕士学位论文].大连:大连海事大学,2010.
    [94]黄诗丰.基于四象限探测器的光纤定位技术研究[D]:[硕士学位论文].南京:南京理工大学,2013.
    [95]杜春雷,林祥棣,周礼书,等.微透镜列阵提高红外探测器探测能力的方法研究[J].光学学报,2001,02:246-249.
    [96]文晶娅.激光测距仪光学系统设计及目标漫反射特性研究[D]:[硕士学位论文].武汉:华中科技大学,2007.
    [97]梁彪.二氧化碳探测仪光谱仪系统光机结构设计及分析[D]:[硕士学位论文].长春:中国科学院研究生院长春光学精密机械与物理研究所,2011.
    [98]恒盛杰资讯. UG NX4中文版从入门到精通[M].北京:中国青年出版社;2007.
    [99]林志琦,李会杰,郎永辉,等.用四象限光电探测器获得光斑参数[J].光学精密工程,2009,04:764-770.
    [100]孙晓林.基于四象限探测器的高精度定位算法研究[D]:[硕士学位论文].大连:大连海事大学,2012.
    [101]赵馨,佟首峰,刘云清,等.基于四像限探测器的光斑检测跟踪技术[J].中国激光,2010,07:1756-1761.
    [102]汤晓君,李玉军,刘君华,等.基于系统建模的四像限光电探测器对准与微位移测量系统[J].中国激光,2009,03:746-751.
    [103]顾黎明,孙葆根,申超波,等.基于四象限光位置检测器的同步光位置测量系统[J].强激光与粒子束,2010,12:2964-2968.
    [104]那红旭.基于QD的位移测量系统误差校正方法研究[D]:[硕士学位论文].大连:大连海事大学,2012.
    [105]刘宁,柴金华.四象限激光制导的双光斑探测算法[J].红外与激光工程,2010,04:627-633.
    [106]汤晓君,刘君华,陈剑,等.四像限光电探测器的光路数学模型[J].中国激光,2004,04:421-426.
    [107]杨翠,邹建,刘得志.四象限光电探测器定位误差分析[J].传感器与微系统,2009,28(5):49-51.
    [108]冯龙龄,邓仁亮.四象限光电跟踪技术中的若干问题的探讨[J].红外与激光工程,1996,25(1):16-21.
    [109]吴翔.半导体激光光束的特性及其耦合技术[D]:[博士学位论文].杭州:浙江大学,2004.
    [110]李宾中,曾林泽,薛晋惠.半导体激光光束质量与像散特性的研究[J].贵州大学学报(自然科学版),2004,03:268-278.
    [111]徐飞飞,纪明,赵创社.快速偏转反射镜研究现状及关键技术[J].应用光学,2010,31(5):0847-0850.
    [112]谭进国,何欣,付亮亮.小型反射镜中心支撑技术[J].红外与激光工程,2010,39(6):1070-1074.
    [113]潘高峰,张景旭,陈娟.一种共光路自动对准系统[J].中国激光,2008,35(10):1500-1504.
    [114]聂晓倩.新型高精度二维微调平台结构研究[D]:[硕士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2010.
    [115]吴松涛.导弹预警系统二维摆镜结构及其控制系统研究[D]:[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [116]刘万里,王占奎,曲兴华.激光跟踪测量系统跟踪转镜的误差分析[J].光学精密工程,2008,16(4):585-590.
    [117]韩旭东,徐新行,王兵,王恒坤.快速反射镜系统用光栅测微仪[J].光电工程,2011,38(10):115-119.
    [118] Y Qin, B Shirinzadeh, D Zhang, et al. Compliance modeling and analysis ofstatically indeterminate symmetric flexure structures [J]. PrecisionEngineering,2013,37(2):415-424.
    [119] D Kang, D Gweon. Analysis and design of a cartwheel-type flexure hinge [J].Precision Engineering,2013,37(1):33-43.
    [120]杨春辉.直梁形柔性铰链结构参数对其刚度性能影响的分析[J].机械传动,2010,34(9):17-19.
    [121]刘庆玲,翁海珊,邱丽芳.新型单边直圆椭圆混合柔性铰链的柔度计算及其性能分析[J].工程力学,2010,27(10):52-56.
    [122]敖磊.基于靶标反馈的自准直光束漂移抑制技术研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,2008.
    [123]周拥军.基于未检校CCD相机的三维测量方法及其在结构变形监测中的应用[D]:[博士学位论文].上海:上海交通大学,2007.
    [124]马洪,王金波.仪器精度理论[M].北京:北京航空航天大学出版社;2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700