用户名: 密码: 验证码:
复杂数据的现场处理关键技术研究及实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数据处理包括对数据的采集、存储、检索、加工、变换和传输。随着信息科学技术的飞速发展,计算机已经从初期的计算工具发展成集接收、存储、发布于一体、与人类社会发展密不可分的工具。随着对物质世界及自身探索的逐步深入,人类对信息处理系统的需求也逐步提高。在数据接收平台中,探测物理量动态范围要求越来越大,时间测量精度要求越来越高;在数据存储平台中,存储能力要求越来越高,处理方式要求越来越灵活;在数据处理平台中,人们希望更小的系统能实现以往复杂系统才能实现的功能。
     真实世界的物理量经过采集过程转化为模拟信号,模拟信号是在幅度和相位上都连续的电信号。为了利用数字计算机处理模拟信号中承载的信息,必须将模拟信号数字化。由于模拟信号易受干扰,当前数据采集系统尽可能地保证信号的数字化靠近采集事件的发生处,即数据采集及数字化的过程在空间上是靠近的。本论文将数据采集及数字化发生的场所定义为现场。
     从空间分布来讲,数据处理单元与数据采集单元可以位于同一块芯片内、同一块PCB板中或相同的机箱内,它们之间通过总线或其它简单的数据传输协议实现通信;它们也可能相距甚远,需要通过网络协议等方式进行通信。从时间分布来讲,数据处理单元所处理的数据可以是实时采集得到的;也可以是从存储单元读取、在较远的过去采集的。本论文将空间分布较小、时间分布较近的数据采集和处理过程定义为数据的现场处理。
     为了实现高效能的现场数据处理,需要对系统的各个单元进行优化,包括数据采集单元、电子学系统及计算系统。本文中所针对的复杂数据,就是指处理它的系统必须经过上述优化才能高效工作的数据。
     本论文系统地研究了复杂数据的现场处理阶段中接收、存储、发布技术的前沿理论和实现的关键技术,提出了大动态范围光电转换器(光电倍增管)的标定、高精度时间-数字转换器(TDC)的设计、分布式海量数据采集系统的数据存储转发平台设计和现场图形处理加速平台解决方案。
     本论文的主要研究工作和创新点包括:
     (1)研究了PMT(光电倍增管)的原理及读出方法,针对大动态范围BGO(锗酸铋)量能器读出电子学的标定和线性度分析展开深入研究。BGO量能器中单根晶体希望探测的粒子能量达到2TeV量级,且动态范围可达105倍量级,用地面加速器不能实现完全的标定。因此设计了一种大动态范围荧光粒子模拟器,该模拟器可以真实地模拟BGO晶体发光,且动态范围达4.11×105倍,已用于暗物质粒子探测卫星PMT地面检测及标定。
     (2)研究了时间-数字转换的原理及实现方法,针对现有TDC(时间-数字转换器)精度-资源占用量的矛盾,采用Multi-Phase Clock架构,利用FPGA(现场可编辑逻辑门阵列)IO逻辑中的ISERDES模块,设计了时间精度达56ps的高精度TDC。被测信号通过IO管脚输入到Xilinx FPGA,通过IO逻辑中的IBUFDS_DIFF_OUT模块,产生2路互补输出,并作为输入连接到相邻的2个ISERDES模块。ISERDES模块被配置为oversample模式,相当于4相位的串并转换器,两个ISERDES形成8相位采样器,相当于采用8倍采样时钟来采样被测信号。由于专用器件设计紧凑,以达到高时钟速率。在Xilinx Artix-7XC7A100T-1型号FPGA中,采样时钟高达800MHz。且该结构占用逻辑极少,适于集成大量测量通道。
     (3)针对分布式数据采集节点的数据存储转发需求,提出了现场数据传输原型设计。某型高能粒子探测器阵列中安置了3600个PMT,由400个FEE(前端电子学)平台负责读出数据。由于采用了分布式数字化和无触发架构,FEE需要将全部信号数字化,并将数据传输到主控系统。本原型设计提出了SoC系统架构模型、数据存储模型,以及基于无操作系统的软件传输模型,设计调试了适用于现场数据处理的原型验证板。
     (4)研究了计算机系统发展的规律,提出计算机系统沿着数据处理位置由远端向现场、信息交互能力从松散到紧密的发展规律。提出可穿戴设备为数据处理现场化的未来发展方向。总结了处理器和图形处理器的技术发展路线,针对增强现实技术在现场数据处理系统的需求,提出了处理器系统的解决方案,并针对图形任务提出了实现案例。针对国家专用集成电路设设计了支持2维图形加速的图形处理引擎(GPE)原型。
The data processing includes data reception, storage, conversion and dis-tribution. With the rapid development of information science and technology, computers have evolved from the early days computing tools into an inseparable partner of the human and society. With the deepening of exploration of the ma-terial world and the human themselves, the demand for information processing system is also gradually increased. On the data acquisition platform, the require-ment of dynamic range of the charge measurement and the accuracy of the time measurement continue to increase; On the data storage platform, requiring higher storage capacity, and more flexible ways to store data are required; On the data processing platform, people want a smaller system which can achieve the similar performance comparing with the complex systems in old ways.
     The real physical world through the acquisition process into analog signals, analog signals are continuous on both the amplitude and phase of the electrical signal. To take advantage of computer processing analog signals carrying in-formation, the analog signals must be digitized. Since the analog signal is easily interfered, the data acquisition system will now digitized signal as close as possible the occurrence of the event acquisition, data acquisition and digitization process is spatially close. This paper defines On-Site as the place of data collection and digitalization.
     In terms of the spatial distribution of the data processing unit and the data acquisition unit may be located within a same chip, a same PCB board or block within the same chassis, the communication between them via a bus or other simple data transfer protocol; They may also be far from each other, the commu-nication between them via network protocols. In terms of the time distribution, the data processed by the data processing unit may be obtained in real-time ac- quisition, or read from the storage unit, in the distant past collection. In this paper, we define on-site data processing as the data acquisition and processing procedure within small spatial distribution and close time distribution.
     To achieve high performance on-site data processing, the system needs to be optimized for each cell, including the data acquisition unit, the electronic system and the computing system. In this thesis, the complex data refers to the data which its processing system must be optimized in order to work efficiently.
     This thesis systematically studied the on-site processing of frontier theory and key technology implementation of complex data in the stage of receiving, s-toring, transforming, publishing, proposed large dynamic range media converter (photomultiplier tube) calibration, precision time to digital convertor (TDC) de-sign, data store and forward platform design in the distributed data acquisition system, and on-site graphics acceleration platform solution.
     The main research work and innovation of this thesis include:
     (1)This thesis studied the principle and the reading method of the PMT (pho-tomultiplier tube), focus on the large dynamic range BGO calorimeter calibration and linearity analysis of readout electronics system. Since BGO calorimeter in a single crystal particle energy exploration hope to reach2TeV magnitude with dynamic range up to105times, which is difficult of calibration by the artificial accelerator. Therefore a large dynamic range fluorescent particle simulator had been designed, the simulator can simulate real BGO crystal fluorescent, and the dynamic range of up to4.11x105times, where has been used for ground testing and calibration of PMT.
     (2)This thesis studied the principle and implementation method of time to digital convertor with the Multi-Phase Clock architecture, using the ISERDES module of the IO logic in the FPGA(Field programmable logic gate array), which archives a56-ps accuracy. The signal input through the IO pin to the Xilinx FPGA, through the IO logic IBUFDS_DIFF_OUT modules produce two com-plementary outputs, and as an input connected to an adjacent two ISERDES mod-ules. ISERDES module is configured to oversample mode, equivalent to4-phase serial-parallel convertor, while2-ISERDES equivalent to8-phase serial-parallel convertor. Dedicated devices such as ISERDES can achieve high clock rates. In the Xilinx Artix-7XC7A100T-1model FPGA, the sampling clock up to800MHz. The structure and logic rarely occupied, suitable for a large number of measuring channels integrated.
     (3)Forwarding demand for data storage nodes in distributed data acquisition, on-site data transmission prototype was proposed. A certain type of detector array places3600PMT, and400FEE(front-end electronics) platform for reading data. Hance distributed digitalization and non-trigger architecture has been used, FEE needs to digitalize all the signals and transfer them to the host system. I proposed SoC prototyping system architecture model, data storage model, and software-based transmission model no operating system, and design prototyping board.
     (4)This thesis studied the laws of computer systems development, proposed with the development of computer systems, data processing position from remote location to on-site, information exchange capability from loose to tight, and pro-posed that the future direction of development of on-site of data processing is the wearable device. This thesis summarizes the technology roadmap for proces-sors and graphics processors. For the requirements of applying augmented reality technology in the on-site data processing system, this thesis proposed processor system solution, and a implementation scheme for graphic application.
引文
[1]BOWER B. Talking back in time; prehistoric origins of language attract new data and de-bate-language evolution[J]. Science News on Bnet (Technology Industry).
    [2]李思孟,宋子良.科学技术史[M]华中科技大学出版社,2000.
    [3]石云里.科学简史[M]首都经济贸易大学出版社,2010.
    [4]傅祖芸.信息论——基础理论与应用[M]电子工业出版社,2007.
    [5]崔林,吴鹤龄IEEE计算机先驱奖:计算机科学技术中的发明史[M]机械工业出版社,2009.
    [6]黄俊民,顾浩.计算机史话[M]机械工业出版社,2009.
    [7]李念强,魏长智,潘建军,张羽.数据采集技术与系统设计[M]机械工业出版社,2008.
    [8]马明建.数据采集与处理技术[M]西安交通大学出版社,2012.
    [9]昊功宜.计算机网络[M]清华大学出版社,2007.
    [10]刘衍衍,康辉,魏达,苏伟,梅芳.计算机网络[M]科学出版社,2007.
    [11]SUTHERLAND I E. Sketch pad a man-machine graphical communication system[C]//Proceedings of the SHARE design automation workshop.1964:6-329.
    [12]张彩明,杨兴强,李学庆.计算机图形学[M]科学出版社,2008.
    [13]王作省,邹少芳,王章野.高动态图像色调映射技术新进展倡[J].计算机应用研究,2010,27(7).
    [14]张云龙.空间暗物质探测电磁量能器的研究[D]中国科学技术大学,2011.
    [15]KRASNER N F. Method and apparatus for satellite positioning system based time Google Patents. US Patent 5,812,087.
    [16]FRIES M D, WILLIAMS J J. High-precision TDC in an FPGA using a 192 MHz quadrature clock[C]//Nuclear Science Symposium Conference Record,2002 IEEE.2002,1:580-584.
    [17]QIN X, FENG C, ZHANG D, et al. Development of a High Resolution TDC for Implementa-tion in Flash-Based and Anti-Fuse FPGAs for Aerospace Application[J]. Nuclear Science, IEEE Transactions on,2013,60(5):3550-3556.
    [18]WU J, SHI Z. The 10-ps wave union TDC:Improving FPGA TDC resolution beyond its cell delay[C]//Nuclear Science Symposium Conference Record,2008. NSS'08. IEEE.2008:3440-3446.
    [19]WU J, HANSEN S, SHI Z. ADC and TDC implemented using FPGA[C]//Nuclear Science Sym-posium Conference Record,2007. NSS'07. IEEE.2007,1:281-286.
    [20]ATZORI L, IERA A, MORABITO G. The internet of things:A survey [J]. Computer networks, 2010,54(15):2787-2805.
    [21]LIU S, FENG C, AN Q, et al. BES III time-of-flight readout system[J]. Nuclear Science, IEEE Transactions on,2010,57(2):419-427.
    [22]苗新,张恺,田世明,et al.支撑智能电网的信息通信体系[J].电网技术,2009,33(17):8-13.
    [23]LYNCH C. Big data:How do your data grow?[J]. Nature,2008,455(7209):28-29.
    [24]BILLINGHURST M, STARNER T. Wearable devices:new ways to manage information [J]. Com-puter,1999,32(1):57-64.
    [25]KIM G D, YOON C, KYE S B, et al. A single FPGA-based portable ultrasound imaging system for point-of-care applications [J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2012,59(7):1386-1394.
    [26]MARTINOLI C, PRETOLESI F, CRESPI G, et al. Power Doppler sonography:clinical applica-tions[J]. European journal of radiology,1998,27:S133-S140.
    [27]BOESEN M I, TORP-PEDERSEN S, KOENIG M J, et al. Ultrasound guided electrocoagulation in patients with chronic non-insertional Achilles tendinopathy:a pilot study [J]. British journal of sports medicine,2006,40(9):761-766.
    [28]VAN DE VEIRE N R.YU C M, AJMONE-MARSAN N, et al. Triplane tissue Doppler imaging: a novel three-dimensional imaging modality that predicts reverse left ventricular remodelling after cardiac resynchronisation therapy[J]. Heart,2008,94(3):e9-e9.
    [29]杨娅,韩吉晶,李治安.正常胎儿心脏实时和全容积三维超声成像的方法学研究[C]//第十届全国超声心动图学术会议论文.2010.
    [30]WYGANT I O, ZHUANG X, YEH D T, et al. Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2008,55(2):327-342.
    [31]贺承浩,金西,郑琳琳,刘子恒,王浩原.基于时变数据的实时体绘制加速算法研究[J].计算机辅助设计与图形学学报,2010,26(2).
    [32]贺承浩.实时超声可视化关键技术研究[D]中国科学技术大学,2013.
    [33]VAITHILINGAM S, MA T J, FURUKAWA Y, et al. Three-dimensional photoacoustic imaging using a two-dimensional CMUT array[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2009,56(11):2411-2419.
    [34]SUN Y, WU D, DU Z, et al. Force-driven robotic drag control for freehand 3D ultrasound-guided robot-assisted percutaneous surgery[C]//Robotics and Biomimetics (ROBIO),2009 IEEE International Conference on.2009:1953-1956.
    [35]H Z, G S, S J, et al. Optimization Design of the Electrode Parameters in Capacitive Micromachined Ultrasonic Transducer [J]. CHINESE JOURNAL OF SENSORS AND ACTUATORS,2010,23.
    [36]TOBY S, JEFF H.数据之美[M]机械工业出版社,2010.
    [1]常进.暗物质粒子探测:意义,方法,进展及展望[J].工程研究:跨学科视野中的工程,2010,2(2):95-99.
    [2]ZWICKY F. Die rotverschiebung von extragalaktischen nebeln[J]. Helvetica Physica Acta,1933, 6:110-127.
    [3]封常青.空间暗物质探测卫星量能器读出电子学方法研究[D]中国科学技术大学,2011.
    [4]RUBIN V C, FORD JR W K. Rotation of the andromeda nebula from a spectroscopic survey of emission regions[J]. The Astrophysical Journal,1970,159:379.
    [5]CLOWE D, BRAD AC M, GONZALEZ A H, et al. A direct empirical proof of the existence of dark matter[J]. The Astrophysical Journal Letters,2006,648(2):L109.
    [6]CHANG J, WU J. High energy electron and gamma-ray observation by TANSUO mission[J]. Proceedings of the 31 st ICRC,2009,1.
    [7]项天,金西,董家宁,et al.大动态范围闪烁晶体荧光模拟器的设计[J].光学精密工程,2014,22(2):304-310.
    [8]肖刚.宇宙线τ中微子望远镜设计及光电倍增管的标定[D]西南交通大学,2005.
    [9]LUBSANDORZHIEV B, LUBSANDORZHIEV N, POLESHUK R, et al. Calibration system of the TUNKA-133 EAS Cherenkov Array[C]//International Cosmic Ray Conference.2011,3:239.
    [10]刘洪兴,孙景旭,刘则洵,et al.氙灯和发光二极管作光源的积分球太阳光谱模拟器[J].光学精密工程,2012,20(7):1447-1454.
    [11]王淑荣,邢进,李福田,et al.利用积分球光源定标空间紫外遥感光谱辐射计[J].光学精密工程,2006,14(2):185.
    [12]陈风,袁银麟,郑小兵,et al. LED的光谱分布可调光源的设计[J].光学精密工程,2008,16(11):2060-2064.
    [13]GUO J, CAI M, HU Y, et al. Readout Electronics Design of prototype of BGO Calorimeter in Chinese Space Detector for Dark Matter Particle[J]. Acta Astronomica Sinica,2012,53:72-79.
    [14]徐克尊.粒子探测技术[M]上海科学技术出版社,1981.
    [1]KRASNER N F. Method and apparatus for satellite positioning system based time Google Patents. US Patent 5,812,087.
    [2]FRIES M D, WILLIAMS J J. High-precision TDC in an FPGA using a 192 MHz quadrature clock[C]//Nuclear Science Symposium Conference Record,2002 IEEE.2002,1:580-584.
    [3J QIN X, FENG C, ZHANG D, et al. Development of a High Resolution TDC for Implementa-tion in Flash-Based and Anti-Fuse FPGAs for Aerospace Application [J]. Nuclear Science, IEEE Transactions on,2013,60(5):3550-3556.
    [4]WU J, SHI Z. The 10-ps wave union TDC:Improving FPGA TDC resolution beyond its cell delay[C]//Nuclear Science Symposium Conference Record,2008. NSS'08. IEEE.2008:3440-3446.
    [5]WU J, HANSEN S, SHI Z. ADC and TDC implemented using FPGA[C]//Nuclear Science Sym-posium Conference Record,2007. NSS'07. IEEE.2007,1:281-286.
    [6]商林峰LAWCA读出电子学时钟分发与数据传输研究[D]中国科学技术大学,2013.
    [7]王洪喆,辛德胜,张剑家,et al.脉冲激光测距时间间隔测量技术[J].强激光与粒子束,2010,22(8):1751-1754.
    [8]霍玉晶,潘志文,et al.脉冲激光雷达的时间间隔测量综述[J].激光与红外,2001,31(3):136-139.
    [9]高速运动下高精度激光测距关键技术研究[D]南京理工大学,2013.
    [10]基于FPGA时间内插技术的TDC设计[D]华中师范大学,2013.
    [11]电子测量原理[M]机械工业出版社,2004.
    [12]房永强,董晓盈,李琳,et al.基于游标内插原理的多脉冲测距方法[J].2009.
    [13]张金,王伯雄,崔园园,et al.高精度回波飞行时间测量方法及实现[J].兵工学报,2011,32(8):970-974.
    [14]XILINX.7 Series FPGAs SelectIO Resources User
    [15]SHEN Q, LIAO S, LIU S, et al. An FPGA-Based TDC for Free Space Quantum Key Distribution [J]. 2013.
    [16], CERN Digital Microelectronics Group.
    [17]SONG J, AN Q, LIU S. A high-resolution time-to-digital converter implemented in field-programmable-gate-arrays [J]. Nuclear Science, IEEE Transactions on,2006,53(1):236-241.
    [18]MOTA M, CHRISTIANSEN J, DEBIEUX S, et al. A flexible multi-channel high-resolution time-to-digital converter ASIC[C]//Nuclear Science Symposium Conference Record,2000 IEEE.2000, 2:9-155.
    [19]SZPLET R, KALISZ J, SZYMANOWSKI R. Interpolating time counter with 100 ps resolution on a single FPGA device[J]. Instrumentation and Measurement, IEEE Transactions on,2000, 49(4):879-883.
    [20]SHUBIN L, CHANGQING F, HAN Y, et al. LUT-based non-linearity compensation for BES III TOF's time measurement [J]. Nuclear Science and Techniques,2010,21(1):49-49.
    [21]BARONTI F, FANUCCI L, LUNARDINI D, et al. On the differential nonlinearity of time-to-digital converters based on delay-locked-loop delay lines[J]. Nuclear Science, IEEE Transactions on,2001,48(6):2424-2431.
    [22]MA C, LIU Z, MA X. Design and implementation of APB bridge based on AMBA 4.0[C]//Consumer Electronics, Communications and Networks (CECNet),2011 International Con-ference on.2011:193-196.
    [23]DIGILENT. Nexys 4 Artix-7 FPGA https://digilentinc.com/Products/Detail.cfm?NavPath=2,400, 1184&Prod=NEXYS4.
    [24]XILINX. Artix-7 FPGAs Data Sheet:DC and Switching
    [25]YIN Z, LIU S, HAO X, et al. A high-resolution time-to-digital converter based on multi-phase clock implement in field-programmable-gate-array[C]//Real Time Conference (RT),201218th IEEE-NPSS.2012:1-1.
    [1]HESS V F. Penetrating Radiation in Seven Free Ballon Flights. [J]. Z. Phys,1912,13:1084.
    [2]曹臻,刘加丽,白云翔.物理学中的世纪难题:高能宇宙线的起源之“谜”[J].自然杂志,2009,31(6):342-347.
    [3]HARRISON R, STEPHENSON D. Detection of a galactic cosmic ray influence on cloud-s[C]//Geophysical Research Abstracts.2006,8:1.
    [4]KOLHORSTER W. Messungen der durchdringenden Strahlung im Freiballon in grosseren Hohen[J]. Phys. Z,1913,14:1153-1155.
    [5]RAO M, SREEKANTAN B V. Extensive air showers[M]World Scientific,1998.
    [6]李良.“冰立方”:南极冰层下的巨型中微子望远镜[J].现代物理知识,2010,22(5):33-37.
    [7]ATKINS R, BENBOW W, BERLEY D, et al. Milagrito, a TeV air-shower array[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2000,449(3):478-499.
    [8]COLLABORATION L, et al. LBNE Conceptual design report [J]. LBNE docdb,2010,2339.
    [9]STOKSTAD R. Design and performance of the IceCube electronics [J].2005.
    [10]PAGE R, ANDREYEV A, APPELBE D, et al. The GREAT spectrometer[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003, 204:634-637.
    [11]姚麟LAWCA宇宙线实验触发电子学研究[D]中国科学技术大学,2013.
    [12]ZUMBERGE J, WATKINS M, WEBB F. Characteristics and applications of precise GPS clock solutions every 30 seconds[J]. NAVIGATION-LOS ANGELES AND WASHINGTON-,1997, 44:449-456.
    [13]FERRANT J L, GILSON M, JOBERT S, et al. Synchronous Ethernet:A method to transport synchronization[J]. Communications Magazine, IEEE,2008,46(9):126-134.
    [14]LEE K, EIDSON J C, WEIBEL H, et al. IEEE 1588-Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems[C]//Conference on IEEE.2005,1588.
    [15]SERRANO J, FLECK T, ALVAREZ P, et al. The white rabbit project[R].[S.l.]:[s.n.],2009.
    [16]UKAIH, NAKAMURA K, MATSUI N. DSP-and GPS-based synchronized measurement system of harmonics in wide-area distribution system[J]. Industrial Electronics, IEEE Transactions on,2003, 50(6):1159-1164.
    [17]MOREIRA P, SERRANO J, WLOSTOWSKI T, et al. White rabbit:Sub-nanosecond timing dis-tribution over ethernet[C]//Precision Clock Synchronization for Measurement, Control and Com-munication,2009. ISPCS 2009. International Symposium on.2009:1-5.
    [18]ANIRUDHA S, STEPHEN M. Light Weight IP (lwIP) Application
    [19]KESHLEAR W M, WHITTINGTON C L, ZOLNOWSKY J E. Memory management Google Patents. US Patent 4,473,878.
    [20]GOODMAN J R. Using cache memory to reduce processor-memory traffic[C]//ACM SIGARCH Computer Architecture News.1983,11:124-131.
    [21]SMITH J E. A study of branch prediction strategies[C]//Proceedings of the 8th annual symposium on Computer Architecture.1981:135-148.
    [22]XILINX. MicroBlaze软核处理器http://china.xilinx.com/tools/microblaze.htm.
    [23]严蔚敏,吴伟民.数据结构[M]清华大学出版社,1992.
    [l]冯·诺伊曼结构http://zh.wikipedia.org/wiki/%E5%86%AF%C2%B7%E8%AF%BA%E4%BC%8A% E6%9B%BC%E7%BB%93%E6%9E%84.
    [2]EIN-DOR P. Grosch's law re-revisited:CPU power and the cost of computation[J]. Communica-tions of the ACM,1985,28(2):142-151.
    [3]KRIZ J. A queueing analysis of a symmetric multiprocessor with shared memories and buses [J]. IEE Proceedings E (Computers and Digital Techniques),1983,130(3):83-89.
    [4]JOUPPI N P, WALL D W. Available instruction-level parallelism for superscalar and superpipelined machines[M]. Vol.17ACM,1989.
    [5]SMITH J E. A study of branch prediction strategies[C]//Proceedings of the 8th annual symposium on Computer Architecture.1981:135-148.
    [6]HWU W M W, PATT Y N. Checkpoint repair for out-of-order execution machines[C]//Proceedings of the 14th annual international symposium on Computer architecture.1987:18-26.
    [7]BAL H E, HAINES M. Approaches for integrating task and data parallelism[J]. IEEE concurrency, 1998,6(3):74-84.
    [8]SCHALLER R R. Moore's law:past, present and future[J]. Spectrum, IEEE,1997,34(6):52-59.
    [9]PATTERSON D A, SEQUIN C H. A VLSI RISC.[J]. IEEE computer,1982,15(9):8-21.
    [10]SHIMAZU Y, YASUI I. Microprocessor with Harvard Google Patents. US Patent 5,034,887.
    [11]KURODA T. CMOS design challenges to power wall[C]//Microprocesses and Nanotechnology Conference,2001 International.2001:6-7.
    [12]WILKES M V. The memory wall and the CMOS end-point [J]. ACM SIGARCH Computer Archi-tecture News,1995,23(4):4-6.
    [13]GREENHALGH P. Big. little processing with arm cortex-a15 & cortex-a7[J]. ARM White Paper, 2011.
    [14]BROOKWOOD N. AMD fusion family of APUs:Enabling a superior, immersive PC experience[J]. Insight,2010,64(1):1-8.
    [15]Number of mobile phones to exceed world population by http://www.digitaltrends.com/mobile/ mobile-phone-world-population-2014/.
    [16]BALDWIN D R. Bit BLT with multiple graphics Google Patents. US Patent 6,377,266.
    [17]GREENE N, KASS M, MILLER G. Hierarchical Z-buffer visibility[C]//Proceedings of the 20th annual conference on Computer graphics and interactive techniques.1993:231-238.
    [18]MAMMEN A. Transparency and antialiasing algorithms implemented with the virtual pixel maps technique[J]. Computer Graphics and Applications, IEEE,1989,9(4):43-55.
    [19]PORTER T, DUFF T. Compositing digital images[C]//ACM Siggraph Computer Graphics.1984, 18:253-259.
    [20]CROW F C. Summed-area tables for texture mapping[C]//ACM SIGGRAPH Computer Graphics. 1984,18:207-212.
    [21]黄志奇.可穿戴计算机可用性的关键问题研究[D]电子科技大学,2009.
    [22]陈东义,et al.可穿戴计算与系统仿真[J].系统仿真学报,2004,16(2):210-213.
    [23]YOO H J, WOO J H, SOHN J H, et al. Mobile 3D graphics SoC:From algorithm to chip[M]John Wiley & Sons,2010.
    [24]WOO J H, SOHN J H, KIM H, et al. A 152mW Mobille Multimedia SoC with Fully Pro-grammable 3D Graphics and MPEG4/H.264/JPEG[C]//VLSI Circuits,2007 IEEE Symposium on.2007:220-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700