射洪县不同尺度土壤有机碳密度特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据射洪县表面土壤有机碳密度资料,结合该区域内地貌特征,基于SPSS13.0及ArcGIS9.2平台,运用常规统计及地统计学方法研究了射洪县内小、中、大3种尺度下土壤有机碳密度基本统计特征、空间变异特征和相关影响因素分析。研究结果分述如下。
     小尺度下低丘、中丘和高丘三种样区的土壤有机碳密度均值分别为4.26 kg m-2、4.03 kg m-2和3.56 kg m-2,且两两间呈显著差异(P=0.011);但同种地貌不同地貌单元间土壤有机碳密度差异不显著(P>0.05)。各地貌单元空间变异最优拟合模型以高斯及指数模型为主。块金值与基台值比值介于0.211-0.915之间,其中除Ls1、Ls2、Hs4、Hs5地貌单元空间变异以结构性变异为主(0.211-0.471)外,其余地貌单元均以随机性变异为主(0.535-0.915)。各地貌单元分维值在1.769-1.99995之间,其中低丘各地貌单元样本间变异程度总体大于中丘及高丘,后两种地貌间差别不大。低丘个地貌单元土壤有机碳密度主要集中在3.5-4.5 kg m-2密度级,高丘主要集中在3.0-4.0kg m-2密度级,而中丘主要密度级介于两者之间。
     中尺度下低丘、中丘和高丘三种样区的土壤有机碳密度均值分别为3.61 kg m-2,3.56kg m-2和3.30kg m-2,且两两间呈极显著差异(P=0.000)。进一步对同种地貌下不同样区间进行比较,结果为低丘区各样区间差异显著(P=0.050),高丘区各样区间差异极显著(P=0.000)。中尺度各地貌样区空间变异最优拟合模型以高斯及指数模型为主。块金值与基台值比值介于0.499-0.971之间,其中除低丘Lm3区以结构性变异为主外,其余样区以随机性变异为主。各样区分维值在1.740-1.996之间,样区间所体现的变异程度差别不大。各地貌样区间土壤有机碳密度均主要集中在相对中低级别(<4.0 kg m-2)
     大尺度土壤有机碳密度均值为3.37kg m-2。块基比为0.981,分维值1.9956,表明空间变异为随机变异主导。土壤有机碳密度主要集中于<4.0kg m-2密度级,所占比例为89.93%。
     三种尺度下成土母质、土壤类型、土地利用类型对土壤有机碳密度空间分布的影响程度有所不同。
     在小尺度下母质、土壤类型、土地利用方式均极显著影响土壤有机碳密度(P=0.000)。其中土壤有机碳密度表现为泥岩极显著高于砂泥岩(P=0.000),后者极显著高于粉砂岩(P=0.007);冲积物除显著高于粉砂岩外(P=0.013),与其余2种成土母质间差异不显著(P>0.05)。不同土壤类型有机碳密度比较为水稻土显著高于新积土(P=0.015),极显著高于紫色土(P=0.000),并且后两者之间差异不显著(P>0.05);黄壤分别与其余3种土壤类型间差异不显著(P>0.05)。不同土地利用方式下土壤有机碳密度为水田显著高于林地(P=0.038),后者又极显著高于旱地(P=0.000)。
     在中尺度下母质、土壤类型均极显著影响土壤有机碳密度(P=0.000),土地利用方式显著影响土壤有机碳密度(P=0.017)。其中土壤有机碳密度表现为冲积物、泥岩、砂泥岩分别极显著高于粉砂岩(P=0.000);泥岩极显著高于冲积物(P=0.000),后者又极显著高于砂泥岩(P=0.001)。不同土壤类型有机碳密度为水稻土极显著高于新积土和黄壤(P=0.000),且后二者间差异不显著(P>0.05),但它们又极显著高于紫色土(P<0.01)。不同土地利用方式下土壤有机碳密度为水田显著高于旱地(P=0.046),极显著高于林地(P=0.005),但旱地与林地差异不显著(P>0.05)。
     在大尺度下母质、土壤类型均极显著影响土壤有机碳密度(P=0.000),土地利用方式显著影响土壤有机碳密度(P=0.036)。其中不同成土母质土壤有机碳密度比较为泥岩>冲积物>砂泥岩>粉砂岩,且两两间呈极显著差异(P=0.000)。不同土壤类型有机碳密度为水稻土分别极显著高于黄壤、新积土(P=0.000),且后两者间差异不显著(P>0.05),但它们又极显著高于紫色土(P=0.000)。不同土地利用方式下土壤有机碳密度为水田、旱地分别显著高于林地(P=0.041,P=0.044),水田与旱地间差异不显著(P>0.05)。
According to the SOCD data in the surface of the soil and landform characteristices in Shehong,based on SPSS 13.0 and ArcGIS9.2,using general statistical method and geo-statistics,study on statistical,spatial variation characters and the influence factors of SOCD in microscale,mesoscale and macroscale. The results of the study are as follows.
     The mean of SOCD of low hilly,medium hilly and high hilly in microscale were 4.26 kg m-2,4.03 kg m-2,3.56 kg m-2,and there were significant differences of between different landforms(P=0.011);there were no significant differences between each region in the same landforms(P>0.05).The most fitting models were gaussian model and exponential model in different landforms.The ratio of nugget and sill were between 0.211 to 0.915;it showed that the spatial variation characters of the regions in different lanforms were most of randomness variation,but excepet Ls1,Ls2,Hs4 and Hs5.The fragmentation D was between 1.769 to 1.99995,it showed that the spatial variation extent of most regions were similar.The density classes of SOCD were centralizing in 3.5-4.5 kg m-2 in low hilly, between 3.0-4.0 kg m-2 in high hilly, and the medium was between low hilly and high hilly.
     The mean of SOCD of low hilly,medium hilly and high hilly in mesoscale was 3.61 kg m-2,3.56 kg m-2,3.30 kg m-2.and there were significant differences of between different landforms(P=0.000).There were significant differences between each region in low hilly(P=0.050),extremely significant differences between each region in high hilly(P =0.000).The most fitting models were gaussian model and exponential model in different landforms.The ratio of nugget and sill were between 0.499 to 0.971;it showed that the spatial variation characters of the regions in different lanforms were most of randomness variation,but excepet Lm3.The fragmentation D was between 1.740 to 1.966,it showed that spatial variation extent of most regions were similar. The density classes of SOCD were centralizing in<4.0 kg m-2 kg m-2 in different landforms.
     The mean of SOCD of macroscale was 3.37kg m-2.The ratio of nugget and sill was 0.981,fragmentation D wasl.9956,this showed that the spatial correlation was most of randomness variation.The density classes of SOCD were centralizing in <4.0 kg m-2 kg m-2,and the ratio was 89.93%.
     The influence degree of parent materials,soil types and land-use types for SOCD characters in microscale,mesoscale and macroscale were different.
     Parent materials,soil types and land-use types had extremely significant influence on SOCD in microscale. The comparison result of SOCD showed that mudstone was extremely significant higher than sandshale(P=0.000), and the later and siltstone had extremely significant(P=0.007);the alluvium was significant higher than siltstone(P=0.013),but had no significant difference with other parent materials(P>0.05). The comparison result of SOCD of different soil types showed that the paddy soil was significant higher than fluvo-aquie soil (P=0.015),extremely significant higher than purple soil (P=0.000),and the two laters had no significant;yellow soil and other three soil types had no significant difference(P>0.05).Comparison result of SOCD in different land-use types showed that the paddy field and forest land were separately extremely significant higher than dry land(P=0.000), paddy field was significant higher than than forest land(P=0.038),and the later was extremely significant higher than dry land(P=0.000).
     Parent materials,soil types had extremely significant influence on SOCD(P=0.000),and land-use types had significant influence on SOCD in mesoscale(P=0.017).The comparison result of SOCD showed that alluvium,mudstone, sandshale were extremely significant higher than siltstone(P=0.000);mudstone was extremely significant higher than alluvium(P=0.000),and the later was extremely significant higher than and sandshale(P=0.001).The comparison result of SOCD of different soil types showed that the paddy soil was extremely significant higher than fluvo-aquie soil and yellow soil(P=0.000),and the two laters had no significant difference(P>0.05),but they were extremely significant higher than purple soil (P<0.01).Comparison result of SOCD in different land-use types showed that the paddy field and forest land were significant higher than dry land(P=0.046),extremely higher than forest land(P=0.005),but dry land and forest had no significant difference(P>0.05).
     Parent materials,soil types had extremely significant influence on SOCD(P=0.000),and land-use types had significant influence on SOCD in mesoscale (P=0.036).The comparison result of SOCD showed that mudstone>alluvium> siltstone>sandshale,and three were extremely significant between each other(P=0.000). The comparison result of SOCD of different soil types showed that the paddy soil was extremely significant higher than fluvo-aquie soil and yellow soil(P=0.000),and the two laters had no significant difference(P>0.05),but they were extremely significant higher than purple soil (P=0.000).Comparison result of SOCD in different land-use types showed that the paddy field,dry land were seperatel significant higher than forest land,paddy field and dry land had no significant difference(P.0.05).
引文
[1]布和敖斯尔,马建文,等.多传感器不同分辨率遥感数字化图象的尺度转换.地理学报[J],2004.59(1):101-110.
    [2]杜景龙,姜俐平.基于GIS的土壤变量施肥定量计算及其应用研究.华东师范大学学报(自然科学版),2004,4:79-83.
    [3]邓良基,何鹏等.射洪县紫色土表层土壤有机碳分布及影响因素[J].山地学报,2006,24:1-5.
    [4]方华军,杨学明,张晓平等.土壤侵蚀对农田中土壤有机碳的影响[J].地理科学进展,2004,23(2):77-87.
    [5]方华军,杨学明,张晓平等.农田土壤有机碳动态研究进展[J].土壤通报,2003,34(6):562-568.
    [6]傅陈君,张世熔,杨洲等.射洪县村级景观土壤有机碳密度和储量分析[J].四川环境,2007,26(1):21-26.
    [7]郭建军,李惠卓.不同母岩母质上土壤特性的分析与研究[J].内蒙古林业科技,2003,1,21-23.
    [8]郭旭东,傅伯杰,马克明等.基于GIS和地统计学的土壤养分空间变异特征研究—以河北省遵化市为例.应用生态学报,2000,11(4):557-563.
    [9]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [10]黄金良,洪华生,张珞平,等.基于GIS和USLE的九龙江流域土壤侵蚀量预测研究.水土保持学报,2004,18(5):75-79.
    [11]侯景儒,伊镇南,李维明,等.实用地质统计学.北京:地质出版社,1998,27-50.
    [12]胡玉福,邓良基,张世熔,等.四川雨城区主要土壤母质上的耕地土壤性质变异研究[J].土壤通报,2004,35(3):246-250.
    [13]胡玉福,邓良基,张世熔等.射洪县不同利用方式的土壤养分特征研究[J].水土保持学报,2006.20(6):75-78.
    [14]胡金明.三江平原土壤质量变化评价与分析.地理科学,1999,19(5):417-421.
    [15]姜秋香,付强,王子龙,空间变异理论在土壤特性分析中的应用研究进展.水土保持研究.2007.14.4.413-415.
    [16]贾宇平,苏志珠,段建南.黄土高原沟壑区小流域土壤有机碳空间变异[J].水土保持学报,2004.18(1):31-34.
    [17]解宪丽,孙波,周慧珍,等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,41(5):687-699.
    [18]解宪丽,孙波,周慧珍等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):35-43.
    [19]焦加国,武俊喜等.华南丘陵区村级景观下土地利用/覆盖对土壤质量的影响[J].土壤学报,2007,-(2):204-211.
    [20]焦峰,温仲明,陈云明.基于GIS的黄丘区土壤水分制图及其定量化分析.水土保持研究,2005,12(3):129-131,177.
    [21]孔祥斌,张凤容,齐伟,等.集约化农区土地利用变化对土壤养分的影响—以河北省曲周县为例.地理学报,2003,58(3):333-342.
    [22]李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响[J].植物生态学报,1998,22(4):300-302.
    [23]吕一河,傅伯杰.生态学中的尺度尺度转换方法[J].生态学,2001.21(12):2096-2105.
    [24]李忠,孙波,赵其国.我国东部土壤有机碳的密度和储量[J].农业环境保护,2001,20(6):385-389.
    [25]李忠,孙波,林心雄.我国东部土壤有机碳的密度及转化的控制因素[J].地理科学,2001,21(4):301-307.
    [26]李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究,2005.24(1):11-17.
    [27]李双才,罗利芳,张科利,等.黄土沟壑丘陵区退耕对土壤侵蚀影响的模拟研究.水土保持学报,2004,18(1):74-77,81.
    [28]李首成,刘文权,程序等.基于高分辨率卫星图的射洪县村级景观格局特征研究[J].应用生态学报,2005,16(10):1830-1837.
    [29]李眉眉,丁晶,王文圣.基于混沌理论的径流降尺度分析.四川大学学报(工程科学版)[J],2004.36(3):14-19.
    [30]李晓宾,陈云浩,李霞.基于多尺度遥感测量的区域土地覆盖格局研究.植物生态学报[J],2003.27(5):557-586.
    [31]李晓燕,张树文,王宗明,等.吉林省德惠市土壤特性空间变异特征与格局.地理学报,2004,59(6):899-997.
    [32]刘庆花,于东升,史学正等.中国水稻无机碳和有机碳的空间分布特征[J].生态环境,2006,15(4):659-644.
    [33]刘敏,汤国安,王春.DEM提取坡度信息的不确定性分析.地球信息科学[J],2007.9(2):65-69.
    [34]刘付程,史学正,于东升,等.基于地统计学和GIS的太湖典型地区土壤属性制图研究—以土壤全氮制图为例.土壤学报,2004,41(1):20-27.
    [35]倪九派,魏朝富,等.土壤侵蚀定量评价的空间尺度效应.生态学报[J].2005.25(8):2061-2067.
    [36]门明新,彭正萍,刘云慧,等.基于SOTER的河北省土壤有机碳、氮密度的空间分布.土壤通报,2005,36(4):469-473.
    [37]牛灵安,郝晋珉,覃莉,等.盐渍土改造区土壤养分的时空变异性研究.土壤学报,2005,42(1):84-90.
    [38]潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通报,1999.15(5):330-332.
    [39]潘瑜春,薛绪长,等.GIS支持下的变量施肥尺度效应模拟研究.土壤[J],2004.36(1):615-620.
    [40]潘瑜春,薛绪掌,陈立平,等.基于GIS的变量施肥尺度效应模拟系统.农业工程学报,2005,21(6):77-81.
    [41]彭立,苏春江,等.水文尺度问题及转换问题研究进展[J],西北林学院学报,2007.22(3):179-184.彭晓鹃,邓孺,刘小平.遥感尺度转换研究进展.地理与地理信息科学[J],2004.20(5):6-14.
    [42]秦永胜,卡刘松,余新晓,等.华北土石山区水源保护林小流域土壤侵蚀过程的模拟研究.土壤学报,2004,41(6):864-869.
    [43]区美美,王建武.土壤空间变异研究进展[J].土壤,2003.(1):30-33.
    [44]汤国安,刘辉,等.DEM及数字化地形分析中尺度问题研究综述[J],武汉大学学报,2006.31(12):1059-1066.
    [45]陶贞,沈承德,高全洲,等.高寒草甸土壤有机碳储量及其垂直分布特征[J].地理学报,2006,61(7):720-728.
    [46]汪帮稳,杨勤科.基于DEM和GIS的修正通用土壤流失方程地形因子值的提取.中国水土保持科学[J],2007.5(2):18-23.
    [47]王康,张仁铎,王富庆,等.土壤水分运动空间变异性尺度效应的染色示踪入渗试验研究.水科学进展[J],2007.18(2):158-163.
    [48]吴凡,祝国瑞.基于小波分析的地貌多尺度表达与自动综合[J],武汉大学学报·信息科学版,2001,26(2):170-176
    [49]吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593-599.
    [50]王义祥,翁伯琦,黄毅斌.土地利用和覆被变化对土壤碳库和碳循环的影响[J].亚热带农业研究,2005,1(3):44-51.
    [51]王先拓,王玉宽,傅斌等.射洪县紫色土坡耕地产流特征试验研究[J].水土保持学报,2006,20(5):9-11
    [52]王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析[J].应用生态学报,2007,14(5):797-802.
    [53]王政权.地统计学及在生态学中的应用.北京:科学出版社,1999,86-125.
    [54]肖庆文,倪晋仁,李天宏.基于土壤水分分布的土地利用空间优化方法—以黄土高原杏子河流域为例.自然资源报,2005,20(3):317-325.
    [55]许迪.灌溉水文学尺度转换问题研究综述.水利学报[J],2006.37(2):140-149.
    [56]徐建华,岳文泽等.城市景观格局尺度效应的空间统计规律.地理学报[J],2004.59(6):1058-1067.
    [57]徐可英.国内外精确农业发展现状与对策.中国农业资源与区划,2000,2:53-56.
    [58]许信旺,潘根兴,侯鹏程.不同土地利用对表层土壤有机碳密度的影响[J].水土保持学报.2005,19(6):193-196.
    [59]于东升,史学正,孙维侠等.基于1:100万的土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报,2005,16(12):2279-2283.
    [60]于严严,郭正堂,吴海斌.1980-2000年中国耕作土壤有机碳的动态变化[J].海洋地质与第四纪地质,2006,26(6):123-130.
    [61]于淑芳,杨立,张玉兰等.长期施肥对土壤腐殖质组成的影响[J].土壤通报,2002,33(3):165-167.
    [62]岳文泽,徐建华谈文琦。城市景观格局的空间尺度分析[J].生态学报,2005,24(2):102-106.
    [63]徐建华,岳文泽等.城市景观格局尺度效应的空间统计规律.地理学报[J],2004.59(6):1058-1067.
    [64]杨子生,刘彦随,Liang L H,等.金沙江下游近40年来土壤侵蚀—以云南彝良为例.山地学报,2005,23(2):144-152.
    [65]邹建国.景观生态学—概念与理论[J].生态学杂志,2000.19(1):42-52.
    [66]邹建国.景观生态学—格局、过程、尺度与等级(M).北京:高等教育出版社,2000.62-153,181-184.
    [67]周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳储量的影响[J].地理学报,2003,58(5):727-734.
    [68]张金波,宋长春.土地利用方式对土壤碳库影响的敏感性评价指标[J].生态环境,2003,12(4):500-504.
    [69]张娜.生态学中的尺度问题:内涵及分析方法[J].生态学报,2006.26(7):2342-2355
    [70]张城,王绍强,玉贵瑞等.中国东部地区典型森林类型土壤有机碳储量分析[J].资源科学,2006,28(2):97-103.
    [71]张娜.生态学中的尺度问题:内涵及分析方法[J].生态学报,2006.26(7):2342-2355.
    [72]张世熔,黄元仿,李保国.冲积平原区土壤颗粒组成的趋势效应与异向性特征.农业工程学报,2004,20(1):56-60.
    [73]张秀英,冯学智,赵传燕.基于GIS的黄土高原小流域土壤水分时空分布模拟—以定西安家沟为例.自然资源学报,2005,20(1):132-139.
    [74]周乃健,郝久青.回归等值线图在土壤水分时空变化动态分析中的应用.农业工程学报,1997,13(1):112-115.
    [75]朱蕾,黄敬峰,李军.GIS和RS支持下的土壤侵蚀模型应用研究.浙江大学学报(农业与生命科学版),2005,31(4):413-416.
    [76]朱晓华,李加林,等.土地空间分形结构的尺度转换特征,地理科学[J],2007.27(1):58-62.
    [77]Anderson D W,Coleman D C. The dynamics of organic matter in grassland soils[J].Journal of Soil and WaterCons,1985,40:211-216.
    [78]Antoine Stevens, Basvan Wesemael, Gregoire Vandenschrick.et. Detection of Carbon Stock Change in Agricultural Soils Using Spectroscopic Techniques[J]. Soil Science Society of America Journal,2006,70(3):844-850.
    [79]Boming Yu.Garrison Sposito.Comments on "Fractal Fragmentation,Soil Porosity,and Soil Water Properties. Soil Science Society of America Journal.2007.7(2):632-633.
    [80]Bhatti J S, Apps M J, Tamocai. C. Estimates of soil organic carbon stocks in central Canada using three different approaches[J].Canadian Journal of Forest Research,2002,32(5):805-812.
    [81]David S, Jerry M, Hanqin T.et.al.Contribution of Increasing CO2 and Climate to Carbon Storage by Ecosystems in the United States[J].Science,2000,VOL287:2004-2006.
    [82]DeBusk W F, Newman S,Reddy K R.Spatial-temporal patterns of soil phosphorus enrichment in everglades water conservation area 2A. J.Environ.Qual.,2001,30:1438-1446.
    [83]Delgado J A, Follett R F. Carbon and nutrient cycles[J].Journal of Soil and Water Conservation, 2002,57(6):455-464.
    [84]Eugene K.Philip K H, You jun Qin. Estimation of Organic Carbon Blank Values and Error Structures of the Speciation Trends Intensive Pasture Systems at Varioues Scales.Journal of Environmental Quality[J],2004. 33(6):1973-1988.
    [85]Easter M, Paustian K, Killian K,et. A tool for conducting regional-scale soil carbon inventories and assessing the impacts of land use change on soil carbon[J]. Agriculture, Ecosystems and Environment,2007,122:13-25.
    [86]Fang J Y, Chen A P, Peng C H. Changes in forest biomass carbon storage in China between 1949 and 1998.Science, 2001,292:2320-2322.
    [87]Goovaerts P. Comparative performance of indicator algorithms for modeling conditional probability distribution functions. Math. Geol,1994,26:389-411.
    [88]Hook P B,Burke I C.Biogeochemistry in a shortgrass land-scape:Control by topography.soil texture,and microclimate [J].Ecology,2000,81(10):2686-2703.
    [89]Iqbal J, Thomasson J A, Jenkins J N, et al. Spatial variability analysis of soil physical properties of alluvial soils. Soil Sci. Soc. Am. J,2005,69(4):1338-1350.
    [90]Jeffrery E Herrick.Michelle M Wander.Relationships between soil organic carbon and soil quality in cropped and rangelan and soils:The importance of distribution,composition,and soil bio-logical activity[A].In:Lal R.etaleds.Soil Processesand the Carbon Cycle[C].Boca Raton:CRC Press,1997.405-425.
    [91]Jobbigy E G.Jackson R B.The vertical distribution of soil organic carbon and its relation to climate and vegetation[J].Ecological Applications,2000,10:423-436.
    [92]James A T,Randall K K. Carbon Storage Estimation in a Forested Watershed using Quantitative Soil-landscape Modeling[J]. Soil Science Society of America Journal,2005,69(4):1086-1093.
    [93]Lal R,John K.Ron F,et al. Lal R.Follett R F.Kimble J,et al. Management US cropland to sequester carbon in soi[J]. Journal of Soil and Water Cons,1999,54(1):374-381.
    [94]Levin S A.The Problem of Pattern and Scale in Ecology[J]..Ecology,1992,73(6):1943-1967.
    [95]Murty D.Kirschbaum M F,Mcmutrie R E,et al. Does conversion of forest to agricultural and land change soil carbon and nitrogen?a review of the literature[J].Global Change Biology,2002,8:105-123.
    [96]Matthews H D, Weaver A J.Meissner K J.Terrestrial Carbon Cycle Dynamics under Recent and Future Climate Change[J].Journal of Climate.,2005,18(10):1609-1627.
    [97]Patton W J.Schimel D S.Cole C V,et al.Analysis of-ctors controlling soil organic matter levels in Great Plains Grasslands [J].Soil Science Society ofAmerica Journal.1987,51:1173-1179.
    [98]Pickett S T A,Cadenasso M L.Landscape ecology:Spatial heterogeneity in ecological systems[J].Science:ProQuest Biology Journal,1995,269:331-334.
    [99]Warwick J Dougherty.Nigel K Fleming,Jim W Cox,David J Chittleborough. Phosphorus Transfer in Surface Runoff from Soil Processes and the Carbon Cycle[C].Boca Raton:CRC Press,1997,57-80.
    [100]Sombroek W G, Nachtergaele F O, Hebel A.Amounts, dynamics and sequestering of carbon in tropical and subtropical soils[J].Ambio,1993,22(7):417-426.
    [101]Silveria A M.Victoria R L.Baliester M V,et al. Simulation of the effects of land use changes in soil carbon dynamics in the Piracicaba river basin.Sao Paulo State,Brazi[J],Brasilerira,2000,35(2):389-399.
    [102]Thomas J S,David W M. Spatial variation of plant-available phosphorus in pastures with contrasting management. Soil Sci.Soc. Am. J.,2003,67:826-836.
    [103]Warwick J Dougherty,Nigel K Fleming, Jim W Cox.David J Chittleborough.Phosphorus Transfer in Surface Runoff from Intensive Pasture Systems at Varioues Scales.Journal of Environmental Quality[J],2004. 33(6):1973-1988.
    [104]Ying O Y, Peter N K, Robert S M,et al.Spatial distribution of DDT in sediments from estuarine rivers of central Florida. J.Environ.Qual.,2003,32:1710-1716.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700