用户名: 密码: 验证码:
新疆额尔齐斯河流域植被景观格局与生物多样性空间变化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流域是一个完整的地理单元,流域内景观格局是自然与人类活动共同作用的结果。流域景观格局的改变影响着流域内生态过程的发生、发展和变化,关系到流域及周边区域的生态安全。额尔齐斯河(简称额河)发源于阿尔泰山山地,途经山前荒漠平原向西流出境外,因此新疆阿尔泰林区的额河流域包括山地流域景观和平原河谷景观两部分。额河流域具有较高的生物多样性,对北疆生态环境和生态安全具有重要影响。以额河为主线,将额河流域山地和平原河谷作为一个整体,研究其景观时空格局和生物多样性的空间分布规律,有助于认识额河流域景观的整体生态功能,为额河流域的生物多样性保护、资源合理利用和景观生态规划等提供科学依据。本文以新疆阿尔泰林区额河流域典型的山地流域景观(小东沟)和平原河谷景观(北屯)为对象,通过外业调查、遥感影像解译、GIS分析和模型模拟相结合的方法,分析了额河流域植被在景观水平上的时空格局和生物多样性的空间变化规律。通过研究得出以下主要结论:
     (1)应用多个景观格局指数定量分析了额河流域北屯段和阿尔泰山小东沟林区景观的空间格局及破碎化特征。将额河流域景观划分为7大类10小类景观类型,其中包括5大类8小类植被类型。景观中5大类植被类型占总面积的比例分别为耕地16.5%、河漫滩林地2.6%、湿地1.6%、草地10.5%、荒漠52.2%。格局分析表明,河漫滩林地在景观中呈小斑块分布,其斑块最大周长、最大面积及平均面积均小于其它植被类型。河漫滩林地的斑块形状比较复杂,其平均斑块形状指数、平均斑块分维数和类型边界密度指数均高于其它植被类型。多个景观指数都表明河漫滩林地在景观中破碎化程度最高。将阿尔泰山小东沟林区景观划分成针叶林、阔叶林、针阔混交林、灌木和草本5个类型。景观格局分析表明,林地是阿尔泰山小东沟林区的景观基质,阔叶林是景观中斑块形状最复杂的。
     (2)利用MSS、TM和ETM+三期影像,选取斑块数、平均斑块面积、平均斑块形状指数、平均斑块分维数、多样性指数和均匀度指数,定量分析了额河流域北屯段1972~2000年景观格局的动态变化。28年间,景观内耕地面积增加了9.62%,荒漠减少了11.75%,居民地增加了0.15%,河漫滩林地和湿地则分别减少了0.44%和1.06%。28年间,景观的斑块数增加而平均斑块面积减少了,整个景观变得零散、破碎。平均斑块形状指数和平均斑块分维数的增加,揭示景观斑块形状的复杂化趋势。景观多样性和均匀度指数的增加,表明景观类型异质性程度减弱,各景观类型分布变得均匀化。不同时期各类型转移概率表明河漫滩林地的转化率最高,其主要转化方向是草地,其次是耕地。
     (3)以外业调查数据为基础,选取气象、地形因子和样地点距河道远近等指标作为预测变量,通过构建回归方程,预测了额河流域北屯段乔木群落特征因子的空间分布。利用残差图评价各群落特征因子预测精度。克郎河是位于额河主河道北面的一个重要的支流。分别比较了额河及其支流克郎河上、中、下游不同景观单元之间、河流两岸不同河岸带(近、中、远河岸带)之间群落特征因子的差异。额河林分的平均胸径中游>下游>上游,林分蓄积量和郁闭度中游>上游>下游,林分平均高度、物种丰富度及Fisher多样性指数上游>中游>下游,各群落特征因子在上、中、下游之间差异显著。克郎河林分平均树高上游>中游>下游,其余5个群落特征因子上游<中游<下游,除物种丰富度在中游与下游差异不显著外,其余各群落特征因子在上、中、下游之间均差异显著。随与河道距离的增加,仅额河南岸Fisher多样性在近河岸带与中河岸带之间差异显著,其余河岸带内各群落特征因子差异均不显著。对额河与克郎河群落特征因子进行比较,除平均树高额河<克郎河外,其余5个群落特征因子均为额河>克郎河。6个群落特征因子的变化规律主要受额河与克郎河河流形态和地形特征的影响。
     (4)为分析环境因子对植被分布的影响,在野外样地调查和主要环境因子测定的基础上,利用聚类和排序对额河流域阿尔泰山小东沟林区的森林植被进行了类型划分,分析了植被与环境因子的关系。利用聚类分析将阿尔泰小东沟林区的木本植物群落划分为6个类型(灌丛、欧洲山杨(Populus tremula)林、苦杨(Populus laurifolia)林、疣枝桦(Betula pendula)林、西伯利亚落叶松(Larix sibirica)林和西伯利亚落叶松与西伯利亚冷杉(Abies sibirica)、云杉(Picea obovata)的针叶混交林)。DCCA排序表明,海拔和坡向等地形因子以及土壤类型、土壤全氮、土壤全磷、土壤水分含量和大石砾含量等土壤因子是影响阿尔泰林区植被分布的主要因子,林区不同群落类型的分布格局主要是由地形和土壤因子的共同作用所控制的。
     (5)为探讨地形对额河流域阿尔泰山小东沟植被类型分布的影响,借助于GIS将阿尔泰山小东沟影像分类图分别与坡度、坡向、剖面曲率和海拔图叠加,定量分析了各植被类型分布与地形的关系。根据遥感解译把研究区植被斑块类型划分为针叶林、阔叶林、针阔混交林、灌木和草地。各植被类型的最佳生境(地形)因子组合如下:针叶林分布最多的地形条件是斜/陡坡(15~35°)、西北坡、剖面曲率0~3°、海拔1 800~2 000m;阔叶林分布最多的地形条件是斜/陡坡、西北坡、剖面曲率5~10°、海拔1 400~1 600m;针阔混交林分布最多的地形条件是斜/陡坡、北坡、剖面曲率5~10°、海拔1 600~1 800m;灌木分布最多的地形条件是斜/陡坡、西坡、剖面曲率5~10°、海拔1 400~1 600m;草本分布最多的地形条件是斜/陡坡、南坡、剖面曲率5~10°、海拔1 200~1 400m。
     (6)利用野外样方调查数据,选取两个物种多样性指数,分析了小东沟北坡物种多样性随海拔梯度的变化规律。小东沟林区物种丰富度指数和Shannon-Wiener多样性指数均为乔木层<灌木层<草本层。不同生活型的物种两个多样性指数沿海拔梯度乔木层和灌木层都表现为先升高再降低的单峰趋势,多样性的峰值均出现在海拔1 600~1 800m。草本层两个多样性指数沿海拔升高,略微有所上升,变化不明显。乔、灌、草总的物种多样性指数均呈现先升高后降低的单峰趋势。海拔1 600~1 700m范围内的针阔群落交错带具有较高物种多样性,从而出现乔木层、灌木层及群落总的物种多样性峰值。
     (7)通过选取气象、地形和NDVI植被指数作为预测变量,构建了阿尔泰山小东沟乔木物种丰富度预测模型,利用残差图评价预测精度。将乔木物种丰富度预测图分别与坡度、坡向和海拔图叠加,分析不同地形条件影响乔木物种丰富度空间分布的规律。小东沟乔木物种丰富度主要集中在3~4,占研究区总面积的70.28%。坡度0~5°乔木物种丰富度出现频率最高的数值是3,其余坡度条件下,乔木物种丰富度出现频率最高的数值是4;乔木物种丰富度在西坡和西北坡出现频率最高的数值是3,其余坡向乔木物种丰富度出现频率最高的数值均是4;海拔梯度上,小东沟乔木物种丰富度出现频率最高的数值呈现先增加后减少的单峰型趋势。残差类型统计表明,较强和中等预测水平面积占总面积的94.62%,表明预测效果较好。
     (8)以ETM+遥感影像和乔木样地生物量抽样调查数据为基础,选取RVI、NDVI、SAVI、DVI和IPVI等植被指数,分析了植被指数与乔木地上生物量之间的相关性,并构建了基于植被指数的生物量回归模型,利用残差图评价预测精度。在所选取的植被指数中,生物量与NDVI植被指数关系最显著。生物量残差图中较强和中等预测面积分别为66.60%和30.31%。将生物量空间分布预测图分别与坡度、坡向和海拔图叠加分析表明:小东沟林区乔木地上部分的生物量以斜/陡坡(15~35°)最高,平/缓坡(0~15°)次之,急/险坡(>35°)最低。小东沟林区东南、南坡的生物量较低,其余坡向的生物量较高。海拔梯度上,生物量空间分布呈现先增加后减少的单峰型趋势,不同海拔段之间生物量以低海拔的生物量最低,中海拔的最高,高海拔生物量居中。
A basin is an integrated geographical unit, and the landscape patterns within the basin have usually been formed by the interactions of natural and anthropogenic processess. The changes in landscape patterns within the basin can directly affect the ecological processes of the basin, influencing the ecological integrity and safety of the basin and the areas near the basin.
     The Irtysh River originates from the Altai Mountains in Xinjiang of northwest China, it flows down via the desert plains on the south foot of the Altai Mountains, goes to the west and out of the border of China, finally flows into the arctic sea through Kazakstan and Russia. Irtysh River Basin in the Altai forest region is composed of two parts: the mountain watershed landscape and the riparian plain landscape, which are connected as an integrative system by the river. The Irtysh River basin nourishes rich biodiversities in Xinjiang, playing important roles in maintaining the ecological integrity and safety of north Xinjiang. Analyzing the landscape pattern and spatial distribution of biodiversity both in mountain watershed and in the riparian plain could help us in understanding the ecological functions of the whole basin landscape, which can provide scientific basis for future reasonable resources use, biodiversity conservation and ecological landscape planning. In this thesis, we selected two typical landscape types in the Irtysh River basin of Xinjiang as the study area, Xiaodonggou representing the mountain watershed landscape and Beitun representing the riparian plain landscape, By combining methods of field investigations, remote sensing image interpretation, GIS analyses and simulation models, the pattern and dynamics of the landscape and spatial distribution of biodiversity in the Irtysh River basin of Xinjiang were explored. The main conclusions are as follows:
     (1)The landscape pattern and fragmentation in Beitun of Irtysh River Basin and Xiaodongou of Altai Mountains in Xingjian was analyzed. Quantitative indices of landscape pattern were chosen to examine landscape pattern and fragmentation. The landscape in Beitun was classified into 7 types and 10 subtypes, including 5 vegetation types and 8 sub vegetation types. The area percentage of the five vegetation types (farmland, riparian forest, wetland, grassland and desert vegetation ) in the landscape was 16.5%, 2.6%, 1.6%, 10.5%, and 52.2% respectively. The patch maximal perimeter, patch maximal area and mean area indices of riparian forest were lower than the other vegetation types, implying that the riparian forest distributed in smaller patches in the whole landscape. The value of mean patch shape, fractal dimension index, and edge density index of the riparian forest were higher than those of the other vegetation types, indicating that the riparian forest had more complex patch shape. All the pattern indices demonstrated that the riparian forest was the most fragmented type in the Irtysh River Basin. The landscape in Xiaodonggou of Altai Mountains was classified into coniferous forest, broadleaved forest, conifer-broadleaf mixed forest, shrub, grassland. The landscape pattern analysis results showed that forest was the matrix in Xiaodonggou of Altai Mountains, and the broadleaved forest had most patch shape.
     (2)The landscape pattern and dynamics in Beitun of Irtysh River Basin from 1972 to 2000 were analyzed by using remote sensing image of MSS, TM, and ETM+. Quantitative indices of landscape pattern included patch numbers, mean patch size, mean patch shape index, mean patch fractal dimension, Shannon diversity index, and Shannon evenness index. The results showed that desert was the matrix of the landscape. In the 28 years, the farmland area percent increased 9.62%, the desert area percent decreased 11.75%, residence area increased 0.15%, while the areas of riparian forest and wetland decreased 0.44% and 1.06% respectively. The patch number increased and the mean patch size decreased in the landscape, which indicated that landscape in 2000 was more fragmentized than the landscape in 1972. Both the mean patch shape index and mean patch fractal dimension index had increased from 1972 to 2000, which showed that landscape patch shape were becoming more complex. The Shannon diversity index and Shannon evenness both had a trend of increase from 1972 to 2000, indicating that the landscape heterogeneity decreased and landscape types distributed more evenly.Transition matrix of landscape types from 1972 to 2000 indicated that the riparian forest was the most unstable type, which was usually conversed into grassland or farmland.
     (3)Predicting the spatial distribution maps of forest stand factors were done in Beitun of Irtysh River based on the field investigation data and GIS. The predicting environmental factors included climate, topography and the distance to river. Residual maps were used to evaluate the accuracy of predicting. Keyran River was one of an important tributaries which located in the north of Irtysh River. The differences of forest communities characteristics were compared between upper, central, and lower part in the Irtysh River and the Keyran River of Beitun respectively. The difference of forest community characteristicss between near, middle, and far riparian zones were also compared in the south vs. north banks of the Irtysh River, and south vs. north banks of the Keyran River of Beitun respectively. The results showed that in the Irtysh River, the order for the mean DBH of the riparian stands was central reach >lower reach >upper reach. The standing volume and canopy density order was central reach >upper reach >lower reach. Tree mean height, species richness, and Fisher diversity index order was upper reach >central reach >lower reach. In the Keyran River, the tree mean height order was upper reach >central reach >lower reach, the order for the other five stand factors was upper reach Keyran River. The changes of the stand factors were affected by the shape and topography of the Irthsh River and the Keyran River in Beitun.
     (4)Based on the field investigation plots data and environmental factors, cluster analysis and ordination were used to analyze forest vegetations in Xiaodonggou. The cluster analysis identified 6 woody community types, including 5 tree communities and 1 shrub community. The 6 community types included: shrub, Populus tremula,, Populus laurifolia, Betula pendula, Larix sibirica, and Abies sibirica + Larix sibirica+ Picea obovata dominated plant communities, which had different distribution patterns along the major environmental gradients in the Altai mountains. The DCCA ordination showed that the topographical factors and soil factors were the dominant environmental factors affecting plant species distribution in the Xiaodonggou area. The distribution of the vegetations in the area was mainly controlled by the interactions of topographical and soil factors.
     (5)Relationship between the vegetation distribution and topographic factors were explored based on overlays of remote sensing classification map with the maps of slope, aspect, profile curvature and altitude which derived from DEM. The imagery interpreted vegetation types included coniferous forest, broadleaved forest, conifer-broadleaf mixed forest, shrub, and grassland in Xiaodonggou. The optimal habitat combination of topography for these vegetation types in Xiaodonggou were as follows: coniferous forest was mainly distributed in slope from 15°to 35°, west-north aspect, the profile curvature ranged from 0°to 3°and altitude ranged from 1 800m to 2 000m. Broadleaved forest was mainly distributed in slope from 15°to 35°, west-north aspect, the profile curvature ranged from 5°to 10°and altitude ranged from 1 400m to 1600m. Conifer-broadleaf mixed forest was mainly distributed in slope from 15°to 35°, north aspect, the profile curvature ranged from 5°to 10°and altitude ranged from 1 600m to 1 800m. Shrub was mainly distributed in slope from 15°to 35°, west aspect, the profile curvature ranged from 5°to 10°and altitude ranged from 1 400m to 1 600m. Grassland was mainly distributed in slope from 15°to 35°, south aspect, the profile curvature ranged from 5°to 10°and altitude ranged from 1 200m to 1 400m.
     (6)Patterns of species diversity along altitude in northern slope of Altai Mountain were studied based on the data of vegetation plots in Xiaodonggou. Species richness and Shannon-Wiener diversity index were chosen for the analysis. Diversity order of the three life forms was: trees < shrubs < herbaceous. Diversity indices along altitudinal gradient of the three life forms exhibited different trends. Tree diversity index exhibited an unimodal pattern with the increase of elevation, peaking at the altitude range of 1 600 m to 1 700 m; The shrubs showed a similar altitudinal gradient pattern. The herbaceous plant diversity index exhibited a different trend, which increased slightly with increasing elevation, but the change was not significant. The total diversity of trees, shrubs, and herbaceous showed an unimodal pattern with the increase of elevation. Altitude from 1 600m to 1 700m was an ecotone between conifer and broad-leaved stands, where maximum diversities occurred.
     (7)The predicting model for tree species richness was constructed on basis of field plot investigation and environmental variables in Xiaodonggou. The environmental predictor variables included climate, topography, and NDVI. The residual map was used to evaluate the validity of the model. The predicted spatial distribution map of species richness was overlaid with the slope, aspect and elevation maps respectively. The tree species richness of most areas in Xiodonggou ranged between 3 and 4, which occupied 70.28% of the total study area. In slopes from 0°to 5°, tree species richness value of 3 had the highest presence frequency, while in other range of slopes, the species richness value of 4 had the highest presence frequency. In aspects of west and west-north, the tree species richness of 3 had the highest presence frequency, while in the others aspect the tree species richness value of 4 had the highest presence frequency. Along the altitudinal gradient, the tree species richness showed an unimodal pattern of distribution. The residual type results showed that strongly predicting area and moderately predicting area reached 94.62% of the total area, which implied that the predicting model was accurate enough.
     (8)Using ETM+ data and the biomass by typical sample investigation plots, the Pearson correlation between RVI、NDVI、SAVI、DVI、IPVI and plots biomass was made respectively, the linear regression models for aboveground biomass in Xiaodonggou were constructed. Residual map was used to evaluate the accuracy of predicting accuracy. The correlation between NDVI and biomass was much better among the chosen vegetation indices. The residual type results showed that strongly predicting area and moderately predicting area reached 66.60% and 30.31% respectively, which implied the predicting model was accurate. The map of tree aboveground biomass spatial distribution was overlaid with the slope, aspect and elevation maps respectively. The results showed that the tree aboveground biomass order was inclined/steep slope >flat/gentle slope> rapid/dangerous slope. In aspect, the east-south and south aspect had the lower biomass than the other aspects. In elevation, the biomass order was mid elevation > high elevation > low elevation, from low elevation to high elevation, the biomass exhibited an unimodal pattern.
引文
[1]蒋有绪.国际森林可持续经营问题的进展.资源科学, 2000, 22(6): 77-82
    [2] Jim C Y. Management urban trees and their soil envelopes in a contiguously developed city environment. Environmental Management, 2001, 28(6): 819-832
    [3]中野秀章.森林水文学.北京:中国林业出版社, 1983
    [4] Gentry A H. Tropical forest biodiversity: distributional patterns and their conservational significance Oikos, 1992, 63(1): 19-28
    [5] Douglass R W. Forest recreation. Pergamon press, third edition, 1982
    [6] Ceulemans R, Janssens I A , Jach M E. Effects of CO2 enrichment on trees and forests : lessons to be learned in view of future ecosystem studies. Annals of Botany, 1999, 84: 577-590
    [7] Phillips O L, Malhi Y, Higuchi N, et al. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science, 1998, 282: 439-442
    [8] Jastrow J D, Michael Miller R, Matamala R, et al. Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biology, 2005, 11: 2057-2064
    [9] Noble I R, Dirzo R. Forests as human-dominated ecosystems. Science, 1997, 277: 522-525
    [10] State of the world's forests (FAO, United Nations, Rome, Italy, 1997). Food and Agriculture Organization (FAO)
    [11] Bélanger L, Grenier M. Agriculture intensification and forest fragmentation in the St. Lawrence valley, Québec, Canada. Landscape Ecology, 2002, 17(6): 495-507
    [12] Tilman D, May R M, Lehman C, et al. Habitat destruction and the extinction debt. Nature, 1994, 371: 65-66
    [13] Fahrig L. Relative affects of habitat loss and fragmentation on population extinction. Journal of Wildlife Management, 1997, 61: 603-610
    [14] Rochelle J A, Lehmann L A, Wisniewski J. Forest fragmentation: wildlife and management implications. Leiden, The Netherlands: Brill, 1999
    [15] CBD S. Handbook of the convention on biological diversity, 3rd edn. London: Earthscan Publications, 2001
    [16] Sala O E. Price put on biodiversity. Nature, 2001, 412: 34-36
    [17] Sala O E, III F S C, Armesto J J, et al. Global biodiversity scenarios for the year 2100. Science, 2000, 287(5459): 1770-1774
    [18] Reich P B, Knops J, Tilman D, et al. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature, 2001, 410(6830): 809-812
    [19]傅伯杰,陈利顶,马克明等.景观生态学原理及应用.北京:科学出版社, 2001
    [20] Mikk M, Manderü. Species diversity of forest islands in agricultural landscape of southern Finland, Estonia and Lithuania. Landscape and Urban Planning, 1995, 31: 153-169
    [21] Savard J P L, Clergeaub P , Mennechechez G. Biodiversity concepts and urban ecosystems. Landscape Urban Plan, 2000, 48: 131-142
    [22] Forman R T T. Land mosaics: the ecology of landscape and region. New York: Cambridge University Press, 1995
    [23] Bastian O. Landscape classification in Saxony. Landscape Urban Plan, 2000, 50: 145-155
    [24] McIntyre N E, Wiens J A. How does habitat patch size affect animal movement? An experiment with darkling beetles. Ecology, 1999, 80: 2261-2270
    [25] McIntyre N E, Wiens J A. Interactions between landscape structure and animal behavior: the roles of heterogeneously distributed resources and food deprivation on movement patterns. Landscape Ecology, 1999, 14: 437-447
    [26] de Blois S, Domon G, Bouchard A. Landscape issues in plant ecology. Ecography, 2002, 25: 244-256
    [27]张志东.以功能群为基础的海南岛热带天然林景观生态研究,中国林业科学研究院博士学位论文, 2007
    [28] Li S Y. Vegetation of Xinjiang and its uses. Beijing: Science Press, 1978
    [29]时旭辉,周林生.新疆天山北坡及阿尔泰山两大林区森林资源动态的研究.八一农学院学报, 1995, 18(2): 9-15
    [30]陈文俐,杨昌友.中国阿尔泰山种子植物区系研究.云南植物研究, 2000, 22(4): 371-378
    [31]曾东,李行斌,于恒.新疆落叶、新疆云杉迹地天然更新特点与规律的辨析.干旱区研究, 2000, 17(3): 46-52
    [32]臧润国,成克武,李俊清等.天然林生物多样性保育与恢复.北京:中国科学技术出版社, 2005
    [33]刘平,王健.新疆额尔齐斯河河谷林经营现状及保护对策.林业资源管理, 2002(1): 35-37
    [34]黄锡欢,刘萍.新疆额尔齐斯河流域河谷林资源承载力的研究.西南林学院学报, 2005, 25(3): 39-42
    [35]成克武,臧润国,周晓芳等.洪水对额尔齐斯河河岸天然林植被的影响研究.北京林业大学学报, 2006, 28(2): 46-51
    [36]白志强,张毓涛,郭仲军等.新疆额尔齐斯河河谷景观现状与生态保护策略.福建林学院学报, 2004, 24(2): 188-192
    [37] Naveh Z, Lieberman A S. Landscape ecology: theory and application(first edition). New York: Springer-Verlag, 1984
    [38] Tansley A G. The use and abuse of vegetational conceptness and terms. Ecology, 1935, 16: 284-307
    [39] Zonneveld I S. 1979. Land evaluation and land (scape) science. The International Training Center Enshede, the Netherlands.
    [40]肖笃宁,苏文贵,贺红士.景观生态学的发展和应用.生态学杂志, 1988, 7(6): 43-48
    [41] Risser P G, Karr J R, Forman R T T. 1984. Landscape ecology: directions and approaches. In. A workshop held at Allerton Park, Piatt Illinois.
    [42] Forman R T T , Godron M. Landscape ecology. New York: John Wiley and Sons, 1986
    [43]肖笃宁.从自然地理学到景观生态学.地球科学进展, 1992, 7(6): 18-23
    [44]黄锡畴.德意志联帮共和国景观生态现状及保护.地理科学, 1981(2)
    [45]刘安国.捷克斯洛伐克的景观生态研究.地理科学, 1981(2)
    [46]特罗尔(林超译) C.景观生态学.地理译报, 1983, 2(1)
    [47]纳夫(林超译) E.景观生态学的发展阶段.地理译报, 1983(3)
    [48]陈昌笃.译介Z.纳维等著的《景观生态学》.植物生态学与地植物学丛刊, 1985, 9(3): 243-244
    [49]景贵和.土地生态评价与土地生态设计.地理学报, 1986, 41(1): 1-7
    [50]陈昌笃.论地生态学.生态学报, 1986, 6(4): 289-294
    [51]李哈滨, Franklin J F.景观生态学-生态学领域的新概念构架.生态学进展, 1988, 5(1): 23-33
    [52]金维根.土壤资源研究与景观生态学.生态学杂志, 1988, 7(4): 51-54
    [53]肖笃宁,赵羿.沈阳西郊景观格局变化的研究.应用生态学报, 1990, 1(1): 75-84
    [54]徐化成.景观生态学.北京:中国林业出版社, 1996
    [55]邬建国.景观生态学:格局、过程、尺度与等级.北京:高等教育出版社, 2000
    [56]肖笃宁,李秀珍,高峻等.景观生态学.北京:科学出版社, 2003
    [57]郭晋平.森林景观生态研究.北京:北京大学出版社, 2001
    [58]尚宗波,高琼.流域生态学——生态学研究的一个新领域.生态学报, 2001, 21(3): 468-473
    [59]甘淑,何大明,冯彦.纵向岭谷流域景观变化与现代地表过程的关联分析.科学通报, 2006, 51: 27-31
    [60]王娟,崔保山,姚华荣.云南澜沧江流域景观格局时空动态研究.水土保持学报, 2007, 21(4): 85-97
    [61]阎水玉,王祥荣.流域生态学与太湖流域防洪、治污及可持续发展.湖泊科学, 2001, 13(1): 1-8
    [62]万荣荣,杨桂山.太湖流域土地利用与景观格局演变研究.应用生态学报, 2005, 16(3): 475-480
    [63]卢玲,李新,程国栋等.黑河流域景观结构分析.生态学报, 2001, 21(8): 1217-1224
    [64]丁圣彦,钱乐祥,曹新向等.伊洛河流域典型地区森林景观格局动态.地理学报, 2003, 58(3): 354-362
    [65]郭跃东,何岩,张明祥等.洮儿河中下游流域湿地景观演变及驱动力分析.水土保持学报, 2004, 18(2): 118-121
    [66]温仲明,焦峰,张晓萍等.纸坊沟流域近60年来土地利用景观变化的环境效应.生态学报, 2004, 24(9): 1903-1909
    [67]毕晓丽,周睿,刘丽娟等.泾河沿岸景观格局梯度变化及驱动力分析.生态学报, 2005, 25(5): 1041-1048
    [68]刘红玉,吕宪国,张世奎等.三江平原流域湿地景观破碎化过程研究.应用生态学报, 2005, 16(2): 289-295
    [69]程国栋,肖笃宁.论干旱区景观生态特征与景观生态建设.地球科学进展, 1999, 14(1): 11-15
    [70]郭宗锋,马友鑫,李红梅等.人类活动对流域森林景观的影响.水土保持研究, 2007, 14(1): 38-42
    [71]彭茹燕,刘连友,张宏.人类活动对干旱区内陆河流域景观格局的影响分析—以新疆和田河中游地区为例.自然资源学报, 2007, 18(4): 492-498
    [72]陈利顶,张淑荣,傅伯杰等.流域尺度土地利用与土壤类型空间分布的相关性研究.生态学报,2003, 23(12): 2497-2505
    [73]索安宁,洪军,林勇等.黄土高原景观格局与水土流失关系研究.应用生态学报, 2005, 16(9): 1719-1723
    [74]黄凯,郭怀成,刘永等.河岸带生态系统退化机制及其恢复研究进展.应用生态学报, 2007, 18(6): 1373-1382
    [75] Nagasaka A, Nakamura F. The influences of land-ues changes on hydrology and riparian environment in a northern Japanese landscape. Landscape Ecology, 1999, 14: 543-556
    [76] Nakamura F, Yamada H. Effects of pasture development on the ecological functions of riparian forests in Hokkaido in northern Japan. Ecological Engineering, 2005, 24: 539-550
    [77] Hawkins C P, Bartz K L, Neale C M U. Vulnerability of riparian vegetation to catastrophic flooding: implications for riparian restoration. Restoration Ecology, 1997, 5(4s): 75-84
    [78] Renofalt B M, Nilsson C, Jansson R. Spatial and temporal patterns of species richness in a riparian landscape. Journal of Biogeography, 2005, 32: 2025-2037
    [79] Rood S B, Gourley C R, Ammon E M, et al. Flows for floodplain forests: a successful riparian restoration. BioScience, 2003, 53: 647-656
    [80] Planty-Tabacchi A, Tabacchi E, Naiman R J, et al. Invasibility of species-rich communities in riparian zones. Conservation Biology, 1996, 10: 598-607
    [81] Khawlie M, Shaban A, Abdallah C, et al. Watershed characteristics, land use and fabric: the application of remote sensing and geographical information systems. Lakes and Reservoirs: Research and Management, 2005, 10: 85-92
    [82]曹宇,陈辉,欧阳华等.基于多项植被指数的景观生态类型遥感解译与分类-以额济纳天然绿洲景观为例.自然资源学报, 2006, 21(3): 481-488
    [83]查勇,倪绍祥,杨山.一种利用TM图像自动提取城镇用地信息的有效方法.遥感学报, 2003(1): 38-39
    [84] Nate C. Development of a remotely sensed, historical land- cover change database for rural Chihuahua, Mexico. International Journal of Applied Earth Observation and Geoinformation, 2005, 7(3): 232-247
    [85] Turner M G, Pearson S M, Bolstad P, et al. Effects of land- cover change on spatial pattern of forest communities in the Southern Appalachian Mountains (USA). Landscape Ecology, 2003, 18(5): 449-464
    [86] Currit N. Development of a remotely sensed, historical land-cover change database for rural Chihuahua, Mexico. International Journal of Applied Earth Observation and Geoinformation, 2005, 7: 232-247
    [87] Metzger J P. Landscape dynamics and equilibrium in areas of slash-and-burn agriculture with short and long fallow period(Bragantina region, NW Brazilian Amazon). Landscape Ecology, 2002, 17: 419-431
    [88] Shalaby A, Tateishi R. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Applied Geography, 2007, 27: 28-41
    [89] Chust G, Galparsoro I, Borja A, et al. Coastal and estuarine habitat mapping, using LIDAR height and intensity and multi-spectral imagery. Estuarine, Coastal and Shelf Science, 2008inpress: 1-11
    [90] Anderson J R, Hardy E E, Roach J T, et al. A land use and land cover classification system for use with remote sensor data. United States government printing office, Washington: Geological surveyprofessional paper, 1976
    [91] Hietel E, Waldhardt R , Otte A. Analysing land- cover changes in relation to environment variables in Hesse, Germany. Landscape Ecology, 2004, 19(5): 473-489
    [92] Ding H, Wang R C, Wu J P, et al. Quantifying Land Use Change in Zhejiang Coastal Region, China Using Multi-Temporal Landsat TM/ETM+ Images. Pedosphere, 2007, 17(6): 712-720
    [93] Spies T A, Ripple W J. Dynamics and pattern of a managed coniferous forest landscape in Oregon. Ecological Applications, 1994, 4(3): 555-568
    [94] Sivanpillai R, Smithm C T, Srinivasan R, et al. Estimating regional forest cover in East Texas using Enhanced Thematic Mapper (ETM+) data. Forest Ecology and Management, 2005, 218: 342-352
    [95] Hernandez-Stefanoni J L. Relationships between landscape patterns and species richness of trees, shrubs and vines in a tropical forest. Plant Ecology, 2005, 179(11): 53-65
    [96] Kuplich T M. Classifying regenerating forest stages in Amazonia using remotely sensed images and a neural network. Forest Ecology and Management, 2006, 234: 1-9
    [97] Whitmore T C. Tropical rain forest of the far east. 2nd edition. Oxford: Clarendon Press, 1984
    [98] Wagner H H. Direct multi-scale ordination with canonical correspondence analysis. Ecology, 2004, 85(2): 342-351
    [99] Basnet K. Effects of topography on the pattern of trees in Tabonuco (Dacryodes excelsa) dominated rain forest of Puerto Rico. Biotropica, 1992, 24(1): 31-42
    [100] Myklestad A , Birks H J B. A numerical analysis of the distribution patterns of Salix L. species in Europe. Journal of Biogeography, 1993, 20(1): 1-32
    [101]阳含熙,卢泽愚.植物生态学的数量分类方法.北京:科学出版社, 1981
    [102] Jongman R H G, ter Braak C F J , Tongeren O F R. Data analysis in community and landscape ecology. second edition. Cambridge, UK.: Cambridge University Press, 1995
    [103] Legendre P, Legendre L. Numerical ecology. Second English edition. The Netherlands: Elsevier, Amsterdam, 1998
    [104] Wagner H H. Spatial covariance in plant communities: integrating ordination, geostatistics, and variance testing. Ecology, 2003, 84(4): 1045-1057
    [105] Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation. Ecology, 1992, 73(3): 1045-1055
    [106] Palmer M W. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology, 1993, 74(8): 2215-2230
    [107] ter Braak C J F , Prentice I C. A theory of gradient analysis. London, UK: Academic Press, 1988
    [108] ter Braak C F J. CANOCO-an extension of DECORANA to analyze species-envrionment relationships. Vegetatio, 1988, 75: 159-160
    [109] ter Braak C F J. The analysis of vegetation- envrionment relationships by canonical correspondence analysis. Vegetatio, 1987, 69: 69-77
    [110]张金屯.植被数量生态学方法.北京:中国科学技术出版社, 1995
    [111] Thomas R L, Anderson R C. Influence of topography on stand composition in a Midwestern ravine forest. American Midland Naturalist, 1993, 130(1): 1-12
    [112]江洪,黄建辉,陈灵芝等.东灵山植物群落的排序、数量分类与环境解释.植物学报, 1994, 36(7): 539-551
    [113]沈泽昊,张新时.中国亚热带地区植物区系地理成分及其空间格局的数量分析.植物分类学报, 2000, 38(4): 366-380
    [114]刘秋锋,康慕谊,刘全儒.中条山混沟地区森林乔木种的数量分类与环境解释.植物生态学报, 2006, 30(3): 383-391
    [115]宋创业,郭柯.浑善达克沙地中部丘间低地植物群落分布与土壤环境关系.植物生态学报, 2007, 31(1): 40-49
    [116]张桂莲,张金屯,程林美.山西南部山地白羊草群落的数量分类和排序.草业学报, 2003, 12(3): 63-69
    [117]张峰.山西吕梁地区湿地植被数量分类研究.木本植物研究, 2000, 20(3): 355-360
    [118] Turner M G. Spatial and temporal analysis of landscape patterns. Landscape Ecology, 1990, 4(1): 21-30
    [119] Zhang S, Zhang J, Li F, et al. Vector analysis theory on landscape pattern (VATLP). Ecological Modelling, 2006, 193: 492-502
    [120] O' Neill R V, Krummel J R, Gardner R H, et al. Indices of landscape pattern. Landscape Ecology, 1988, 1(3): 153-162
    [121] McGarigal K, Marks B. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Portland(OR): USDA Forest Service, Pacific Northwest Research Station; Gereral Technical Report PNW- GTR- 351, 1995
    [122] Olsen L M, Dale V H , Foster T. Landscape patterns as indicators of ecological change at Fort Benning, Georgia, USA. Landscape and Urban Planning, 2007, 79(2):137-149
    [123] Coppedge B R, Engle D M, Fuhlendorf S D, et al. Landscape cover type and pattern dynamics in fragmented southern Great Plains grasslands, USA. Landscape Ecology, 2001, 16(8): 677-690
    [124] Gustafson E J. Quantifying landscape spatial pattern Ecosystems, 1998, 1: 143-156
    [125] Riitters K H, O' Neill R V, Hunsaker C T, et al. A factor analysis of landscape pattern and structure metrics. Landscape Ecology, 1995, 10(1): 23-39
    [126] McGarigal K, McComb W C. Relationships Between Landscape Structure and Breeding Birds in the Oregon Coast Range Ecological Monographs, 1995, 65(3): 235-260
    [127] Baldwin D J B, Weaver K, Schnekenburger F, et al. Sensitivity of landscape pattern indices to input data characteristics on real landscapes: implications for their use in natural disturbance emulation. Landscape Ecology, 2004, 19: 255-271
    [128]傅伯杰.景观多样性分析及其制图研究.生态学报, 1995, 15(4): 345-350
    [129]常学礼,邬建国.科尔沁沙地景观格局特征分析.生态学报, 1998, 18(3): 225-232
    [130] Pan D, Domon G, de Blois S, et al. Temporal(1958-1993)and spatial patterns of land use changes in Haut-Saint-Laurent(Quebec, Canada)and their relation to landscape physical attributes. Landscape Ecology, 1999, 14: 35-52
    [131] Olsson E G A, Austrheim G , Grenne S N. Landscape change patterns in mountains, land use andenvironmental diversity, Mid- Norway 1960-1993. Landscape Ecology, 2000, 15(2): 155-170
    [132] Reid R S, Kruska R L, Muthui N, et al. Land-use and land-cover dynamics in response to changes in climatic, biological and socio-political forces: the case of southwestern Ethiopia Landscape Ecology, 2000, 15(4): 339-355
    [133] Coppedge B R, Engle D M, Fuhlendorf S D. Markov models of land cover dynamics in a southern Great Plains grassland region. Landscape Ecology, 2007, 22(9): 1383-1393
    [134] Muller M R, Middleton J. A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landscape Ecology, 1994, 9: 151-157
    [135] Lambin E F, Geist H J. Land-use and land-cover change: local processes and global impacts. Berlin: Springer, 2006
    [136] Falcucci A, Maiorano L , Boitani L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 2007, 22(4): 617-631
    [137] Domon G, Bouchard A. The landscape history of Godmanchester (Quebec, Canada): two centuries of shifting relationships between anthropic and biophysical factors. Landscape Ecology, 2007, 22(8): 1201-1214
    [138] Turner M G. Landscape ecology in North America: past, present, and future. Ecology, 2005, 86: 1967-1974
    [139] Bresee M K, Moine J L, Mather S, et al. Disturbance and landscape dynamics in the Chequamegon National Forest Wisconsin, USA, from 1972 to 2001. Landscape Ecology, 2004, 19(3): 291-309
    [140]陆元昌,洪玲霞,雷相东.基于森林资源二类调查数据的森林景观分类研究.林业科学, 2005, 41(2): 21-29
    [141]孙玉军,王雪军,张志等.基于GIS的森林景观定量分类.生态学报, 2003, 23(12): 2540-2544
    [142]彭月,魏虹,朱韦等.鼎湖山自然保护区森林景观时空格局变化研究.西南师范大学学报(自然科学版), 2007, 32(2): 65-69
    [143]郭泺,刘蔚秋,江学顶等.广州市森林景观格局时空变化的研究.中山大学学报(自然科学版), 2006, 45(5): 76-80
    [144]郭晋平,阳含熙,张云香.关帝山林区景观要素空间分布及其动态研究.生态学报, 1999, 19(4): 468-473
    [145]李月辉,胡远满,常禹等.大兴安岭呼中林业局森林景观格局变化及其驱动力.生态学报, 2006, 26(10): 3347-3357
    [146]陈文波,肖笃宁,郑蕉等.内蒙古毕拉河林区近十年森林景观变化及驱动力浅析.应用生态学报, 2004, 15(5): 741-747
    [147]何东进,洪滔,胡海清等.武夷山风景名胜区不同森林景观物种多样性特征研究.中国生态农业学报, 2007, 15(2): 9-13
    [148]王天明,王晓春,国庆喜等.黑龙江省森林景观多样性动态生物多样性, 2004, 12(4): 396-402
    [149]王清春,张向辉,张林艳等.北京喇叭沟门自然保护区森林景观多样性研究.北京林业大学学报, 2002, 24(3): 54-60
    [150]曾辉,孔宁宁,李书娟.基于边界特征的山地森林景观碎裂化研究.生态学报, 2002, 22(11): 1803-1810
    [151]王绪高,李秀珍,贺红士.大兴安岭森林景观在不同火干扰及人工更新下的演替动态.北京林业大学学报, 2006, 28(1): 14-22
    [152]李月辉,常禹,胡远满等.人类活动对森林景观影响研究进展.林业科学, 2006, 42(9): 119-126
    [153]常禹,布仁仓,胡远满等.长白山森林景观边界动态变化研究.应用生态学报, 2004, 15(1): 15-20
    [154]郭晋平,阳含熙,薛俊杰等.关帝山森林景观异质性及其动态的研究.应用生态学报, 1999, 10(2): 167-171
    [155] Eigenbrod F, Hecnar S J, Fahrig L. Accessible habitat: an improved measure of the effects of habitat loss and roads on wildlife populations. Landscape Ecology, 2008, 23: 159-168
    [156] Sorrell J P. Using geographic information systems to evaluate forest fragmentation and identify wildlife corridor opportunities in the Cataraqui Watershed. Faculty of Environmental Studies, York University, Ontario, Canada, 1997
    [157] Saunders D A, Hobbs R J, Margules C R. Biological consequences of ecosystem fragmentation: a review. Conservation Biology, 1991, 5(1): 18-32
    [158] Andren H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos, 1994, 71: 355-366
    [159] Reed R A, Johnson-Barnard J, Baker W L. Fragmentation of a forested Rocky Mountain landscape, 1950–1993. Biological Conservation, 1996, 75: 267-277
    [160] Franklin S E. Remote sensing for sustainable forest management. Boca Raton, FL: Lewis Publishers, 2001
    [161] Lindenmayer D B, Cunningham R B, Donnelly C F, et al. Effects of forest fragmentation on bird assemblages in a novel landscape context. Ecological Monographs, 2002, 72(1): 1-18
    [162] da Silva J M C, Tabarelli M. Tree species impoverishment and the future flora of the Atlantic forest of northeast Brazil. Nature, 2000, 404: 72-74
    [163] Ranta P, Blom T, Niemela J, et al. The fragmented Altantic rain forest of Brazil: size, shape and distribution of forest fragments. Biodiversity and Conservation, 1998, 7(3): 385-403
    [164] Brook B W, Sodhi N S, Ng P K L. Catastrophic extinctions follow deforestation in Singapore. Nature, 2003, 424: 420-423
    [165] Ferrari J R, Lookingbill T R, Neel M C. Two measures of landscape-graph connectivity: assessment across gradients in area and configuration. Landscape Ecology, 2007, 22: 1315-1323
    [166] Davis J D, Debinski D M , Danielson B J. Local and landscape effects on the butterfly community in fragmented Midwest USA prairie habitats. Landscape Ecology, 2007, 22: 1341-1354
    [167] Hargis C D, Bissonette J A , Turner D L. The influence of forest fragmentation and landscape pattern on American martens. Journal of Applied Ecology, 1999, 36: 157-172
    [168] Davies K F, Margules C R. Effects of Habitat Fragmentation on Carabid Beetles: Experimental Evidence. The Journal of Animal Ecology, 1998, 67(3): 460-471
    [169] Saunders D A, Ingram J. 1995. Birds of southwestern Australia. Surrey Beatty and Sons, ChippingNorton, Australia
    [170] Carlson A, Hartman G. Tropical forest fragmentation and nest predation– an experimental study in an Eastern Arc montane forest, Tanzania Biodiversity and Conservation, 2001, 10(7): 1077-1085
    [171] Paton P W C. The Effect of Edge on Avian Nest Success: How Strong Is the Evidence? Conservation Biology, 1994, 8(1): 17-26
    [172] Wilcove D S. Nest predation in forest tracts and the decline of migratory songbirds. Ecology, 1985, 66: 1211-1214
    [173] Andren H , Angelstam P. Elevated predation rates as an edge effect in habitat islands: Experimental evidence. Ecology, 1988, 69(2): 544-547
    [174] Laurance W F, Nascimento H E M, Laurance S G, et al. Rain forest fragmentation and the proliperation of successional trees. Ecology, 2006, 87(2): 469-482
    [175] Guevara S, Meave J, Moreno-Casasola P, et al. Floristic Composition and Structure of Vegetation under Isolated Trees in Neotropical Pastures Journal of Vegetation Science, 1992, 3(5): 655-664
    [176] Fahrig L, Merriam G. Conservation of fragmented populations. Conservation Biology, 1994, 8(1): 50-59
    [177] Bierregaard R O, Gascon C, Lovejoy T E, et al. Lessons from Amazonia: the ecology and conservation of a fragmented forest. New Haven, Connecticut, USA: Yale University Press, 2001
    [178] Laurance W F, Bierregaard J, R. O. Tropical forest remnants: ecology, management and conservation of fragmented communities. Chicago, Illinois, USA: University of Chicago Press, 1997
    [179] Benitez-Malvido J. Impact of forest fragmentation on seedling abundance in a tropical rain forest. Conservation Biology, 1998, 12: 380-389
    [180] Hoover J P, Brittingham M C , Goodrich L J. Effect of forest patch size on nesting success of wood thrushes. The Auk, 1995, 112(1): 146-155
    [181] Stockwell D R B , Peterson A T. Effects of sample size on accuracy of species distribution models Ecological Modelling 2002, 148(1): 1-13
    [182] Fielding A H, Bell J F. A review methods for the assessment of prediction errors in conservation presence/ absence models. Environmental Conservation, 1997, 24: 38-49
    [183] Guisan A, Lehmann A, Ferrier S, et al. Making better biogeographical predictions of species' distributions. Journal of Applied Ecology, 2006, 43: 386-392
    [184] Ashcroft M B, Chisholm L A , French K O. The effect of exposure on landscape scale soil surface temperatures and species distribution models. Landscape Ecology, 2008, 23: 211-225
    [185] Liu C, Berry P M, Dawson T P, et al. Selecting thresholds of occurrence in the prediction of species distribution. Ecography, 2005, 28: 385-393
    [186] Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecology Letters, 2005, 8(9): 993-1009
    [187] Glenn DE'ATH. Multivariate regression trees: a new technique for modelling species-environment relationships. Ecology, 2002, 83(4): 1105-1117
    [188] Stephenson N. Actual evapotranspiration and deficit: biological meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography, 1998, 25: 855-870
    [189] Broennimann O, Thuiller W, Hughes G, et al. Do geographic distribution, niche property and life form explain plants' vulnerability to global change? Global Change Biology, 2006, 12: 1079-1093
    [190] Anderson R P, Mart?′nez-Meyer E. Modeling species' geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biological Conservation, 2004, 116: 167-179
    [191] Reichard S H, White P. Invasion biology: an emerging field of study. Annals of the Missouri Botanical Garden, 2003, 90: 64-66
    [192] Wilcove D S, Rothstein D, Dubow J, et al. Quantifying threats to imperiled species in the United States: assessing the relative importance of habitat destruction, alien species, pollution, overexploitation, and disease. Bioscience, 1998, 48: 607-615
    [193] Franklin J, Syphard A D, Mladenoff D J, et al. Simulating the effects of different fire regimes on plant functional groups in Southern California. Ecological Modelling, 2001, 142: 261-283
    [194] L?bel S, Sn?ll T, Rydin H. Species richness patterns and metapopulation processes-evidence from epiphyte communities in boreo-nemoral forests. Ecography, 2006, 29: 169-182
    [195] Schr?ter D, Cramer W, Leemans R, et al. Ecosystem service supply and vulnerability to global change in Europe. Science, 2005, 310: 1333-1337
    [196] Stockwell D, Peterson A T. Comparison of resolution of methods used in mapping biodiversity patterns from point- occurrence data. Ecological Indicators, 2003, 3(3): 213-221
    [197] Coblentz D D, Riitters K H. Topograhic controls on the regional-scale biodiversity of the south-western USA. Journal of Biogeography, 2004, 31(7): 1125-1138
    [198] Dogan H M, Dogan M. A new approach to diversity indices-modeling and mapping plant biodiveristy of Nallihan (A3-Ankara/Turkey) forest ecosystem in frame of geographic information systems. Biodiversity and Conservation, 2006, 15: 855-878
    [199] Moisen G G, Freeman E A, Blackard J A, et al. Predicting tree species presence and basal area in Utah: A comparison of stochastic gradient boosting, generalized additive models, and tree-based methods. Ecological Modelling, 2006, 199: 176-187
    [200] Romme W H. Fire and landscape diversity in sub-alpine forests of Yellowstone National Park. Ecological Monographs, 1982, 52(2): 199-221
    [201] Krummel J, Gardner R, Sugihara G, et al. Landscape patterns in a disturbed environment. Oikos, 1987, 48(3): 321-324
    [202] Alados C L, Pueyo Y, Barrantes O, et al. Variations in landscape patterns and vegetation cover between 1957 and 1994 in a semiarid Mediterranean ecosystem. Landscape Ecology, 2004, 19(5): 543-559
    [203] Wimberly M C, Ohmann J L. A multi- scale assessment of human and environmental constraints on forest land cover change on the Oregon (USA) coast range. Landscape Ecology, 2004, 19(6): 631-646
    [204] Boulinier T, Nichols J D, Hines J E, et al. Forest fragmentation and bird community dynamics. Ecology, 2001, 82(4): 1159-1169
    [205]肖寒,欧阳志云,赵景柱等.海南岛景观空间结构分析.生态学报, 2001, 21(1): 20-27
    [206]张世熔,龚国淑,邓良基等.川西丘陵区景观空间格局分析.生态学报, 2003, 23(2): 380-386
    [207]马明国,王雪梅,角媛梅等.基于RS与GIS的干旱区绿洲景观格局变化研究-以金塔绿洲为例.中国沙漠, 2003, 23(1): 53-58
    [208]宋冬梅,肖笃宁,张志城等.甘肃民勤绿洲的景观格局变化及驱动力分析.应用生态学报, 2003, 14(4): 535-539
    [209]贾宝全,慈龙骏,杨晓晖等.石河子莫索湾垦区绿洲景观格局变化分析.生态学报, 2001, 21(1): 34-40
    [210]刘新春,张远东,任光耀等.新疆阜康荒漠绿洲景观格局动态及其影响因子分析.应用生态学报, 2004, 15(7): 1197-1202
    [211]王兮之, Helge B , Michael等.基于遥感数据的塔南策勒荒漠-绿洲景观格局定量分析.生态学报, 2002, 22(9): 1491-1499
    [212] Schowengerdt R A. Techniques for image processing and classification in remote sensing. 1983
    [213] Jianwen M, Bagan H. Land-use classification using ASTER data and self- organized neutral networks. International Journal of Applied Earth Observation and Geoinformation, 2005(7): 183-188
    [214]马克明,傅伯杰.北京东灵山地区景观格局及破碎化评价.植物生态学报, 2000, 24(3): 320-326
    [215] Jobin B, Beaulieu J, Grenier M, et al. Landscape changes and ecological studies in agricultural regions, Québec, Canada. Landscape Ecology, 2003, 18(6): 575-590
    [216] Donald P F, Green R E , Heath M F. Agricultural intensification and the collapse of Europe's farmland bird population. Proceedings of the Royal Society B: Biological Sciences, 2001, 268(1462): 25-29
    [217] Saha A K, Arora M K, Csaplovics E, et al. Land cover classification using IRS LISSⅢimage and DEM in a rugged terrain: a case study in Himalayas. Geocarto International 2005, 20(2): 33-40
    [218] Steele B M, Winne J C , Redmond R L. Estimation and mapping of misclassification probabilities for thematic land cover maps. Remote Sensing of Environment, 1998, 66(2): 192-202
    [219] Turner M G, Wear D N , Flamm R O. Land ownership and land- cover change in the Southern Appalachian Highlands and the Olympic Peninsula. Ecological Applications, 1996, 6(4): 1150-1172
    [220] Wickham J D, O' Neill R V, Jones K B. Forest fragmentation as an economic indicator. Landscape Ecology, 2000, 15(2): 171-179
    [221] Hobbs R J. Effects of landscape fragmentation on ecosystem processes in the Western Australian wheat belt. Biological Conservation, 1993, 64: 193-201
    [222] Soranno P A, Hubler S L, Carpenter S R, et al. Phosphorus loads to surface waters: a simple model to account for spatial pattern of land use. Ecological Applications, 1996, 6(3): 865-878
    [223] Wear D N, Turner M G, Naiman R J. Institutional imprints on a developing forested landscape: implications for water quality. Ecological Applications, 1998, 8: 619-630
    [224] With K A, Crist T O. Critical thresholds in species' response to landscape structure. Ecology, 1995, 76(8): 2446-2459
    [225] Wu J, Vankat J L, Barlas Y. Effects of patch connectivity and arrangement on animal metapopulation dynamics. Ecological Modelling, 1993, 65: 221-254
    [226] Matlack G R. Land use and forest distribution in the hinterland of a large city. Journal of Biogeography, 1997, 24(3): 297-307
    [227] Malanson G P, Cramer B E. Landscape heterogeneity, connectivity, and critical landscape for conservation. Diversity and Distributions, 1999, 5(1): 27-39
    [228] Edwards P J, May R M , Webb N R. Large- scale ecology and conservation biology. Oxford, UK: Blackwell Scientific Publications, 1994
    [229] Warren A, Sud Y C, Rozanov B. The future of deserts. Journal of Arid Environments, 1996, 32(1): 75-89
    [230] Naveh Z, Lieberman A. Landscape Ecology. New York: Springer- Verlag, 1994
    [231] Fujihara M, Kikuchi T. Changes in the landscape structure of the Nagara River Basin, central Japan. Landscape and Urban Planning, 2005, 70: 271-281
    [232] Bender O, Boehmer H J, Jens D, et al. Analysis of land- use change in a sector of Upper Franconia (Bavaria, Germany) since 1850 using land register records. Landscape Ecology, 2005, 20: 149-163
    [233] Thomlinson J R, Serrano M I, Lopez T del M, et al. Land- use dynamics in a post- agricultural Puerto Rican landscape (1936-1988). Biotropica, 1996, 28(4): 525-536
    [234] Viedma O, MeliáJ. Monitoring temporal changes in the spatial patterns of a Mediterranean shrubland using LandsatTm Images. Diversity and Distributions, 1999, 5(6): 275-293
    [235]汪爱华,张树清,张柏.三江平原沼泽湿地景观空间格局变化.生态学报, 2003, 23(2): 237-243
    [236]包慧娟,姚云峰,张学林等.科尔沁沙地景观格局变化的研究.干旱区资源与环境, 2003, 17(2): 83-88
    [237]匡文慧,张树文,张养贞等.吉林省东部山区近50年森林景观变化及驱动机制研究.北京林业大学学报, 2006, 28(3): 38-45
    [238] Hrkal Z, Gadalia A, Rigaudiere P. Will the river Irtysh survive the year 2030? Impact of long- term unsuitable land use and water management of the upper stretch of the river catchment (North Kazakhstan). Environmental Geology, 2006, 50(5): 717-723
    [239] Erdas I. Erdas Field Guide- 3rd edition. 1994
    [240] Turner M G, Ruscher C L. Changes in landscape patterns in Georgia, USA. Landscape Ecology, 1988, 1(4): 241-251
    [241] Mc Garigal K, A. C S, C. N M, et al. Fragstats: Spatial pattern analysis program for categorical maps. 2002
    [242] Dunn C P, Sharpe D M, Guntenspergen G R, et al. Methods for analyzing temporal changes in landscape pattern. New York: Springer-Verlag, 1991
    [243] Daiyuan P, G. D, De B S. Temporal(1958-1993)and spatial patterns of land use changes in Haut-Saint-Laurent (Quebec, Canada) and their relation to landscape physical attributes. Landscape Ecology, 1999, 14(1): 35-52
    [244] TurnerⅡB L, Meyer W B, Skole D L. Global land use/land cover change: towards an integrated study. Ambio, 1994, 23(1): 91-95
    [245] Liu A J, Cameron G N. Analysis of landscape patterns in coastal wetlands of Galveston Bay, Texas (USA). Landscape Ecology, 2001, 16(7): 581-595
    [246] Lam N S N, Quattrochi D A. On the issues of scale, resolution, and fractal analysis in the mappingsciences. Professional Geographer, 1992, 44(1): 88-98
    [247]阿勒泰市计划统计委员会编.阿勒泰市领导干部手册. 2000
    [248] Turner M G, Gardner R H. Quantitative methods in landscape ecology. New York: Springer Verlag, 1991
    [249] Frohn R C. Remote sensing for landscape ecology: new metric indicators for monitoring, modeling, and assessment ecosystems. Boca Raton, Florida: Lewis Publishers, 1998
    [250] Cushman S A, McGarigal K. Hierarchical, multiscale decomposition of species-environment relationships. Landscape Ecology, 2002, 17: 637-646
    [251] Schweiger O, Dormann C F, Bailey D, et al. Occurrence pattern of Pararge aegeria (Lepidoptera: Nymphalidae) with respect to local habitat suitability, climate and landscape structure. Landscape Ecology, 2006, 21: 989-1001
    [252] Bisigato A J, Bertiller M B, Ares J O, et al. Effect of grazing on plant patterns in arid ecosystems of Patagonian Monte. Ecography, 2005, 28: 561-572
    [253] Tsoar A, Allouche O, Steinitz O, et al. A comparative evaluation of presence-only methods for modelling species distribution. Diversity and Distributions, 2007, 13(4): 397-405
    [254] Ottaviani D, Lasinio G J , Boitani L. Two statistical methods to validate habitat suitability models using presence- only data. Ecological Modelling, 2004, 179: 417-443
    [255] Miller J. Incorporating spatial dependence in predictive vegetation models: residual interpolation methods. The Professional Geographer, 2005, 57(2): 169-184
    [256] Garzón M B, de Dios R S , Ollero H S. Predictive modelling of tree species distributions on the Iberian Peninsula during the Last Glacial Maximum and Mid-Holocene. Ecography, 2007, 30: 120-134
    [257] Guisan A, Zimmermann N E. Predictive habitat distribution models in ecology. Ecological Modelling, 2000, 135: 147-186
    [258] Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 2006, 190: 231-259
    [259] Rhodes J R, Wiegand T, McAlpine C A, et al. Modeling Species' Distributions to Improve Conservation in Semiurban Landscapes: Koala Case Study. Conservation Biology 2006, 20(2): 449-459
    [260] Anderson R P, Gómez- Laverde M , Peterson A T. Geographical distributions of spiny pocket mice in South America: insights from predictive models. Global Ecology and Biogeography, 2002, 11: 131-141
    [261] Feria A. T P, Peterson A T. Prediction of bird community composition based on point-occurrence data and inferential algorithms: a valuable tool in biodiversity assessments. Diversity and Distributions, 2002, 8: 49-56
    [262]李红梅,韩红香,薛大勇.利用GARP生态位模型预测日本松干蚧在中国的地理分布.昆虫学报, 2005, 48(1): 95-100
    [263] Leathwick J R, Elith J, Hastiec T. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological Modelling, 2006, 199: 188-196
    [264] Zhu L, Sun O J, Sang W, et al. Predicting the spatial distribution of an invasive plant species(Eupatorium adenophorum) in China. Landscape Ecology, 2007, 22: 1143-1154
    [265] Cayuela L, Benayas J M R, Justel A, et al. Modelling tree diversity in a highly fragmented tropical montane landscape. Global Ecology and Biogeography, 2006, 15: 602-613
    [266] Thuiller W, Midgley G F, Rouget M, et al. Predicting patterns of plant species richness in megadiverse South Africa. Ecography, 2006, 29: 733-744
    [267] Kiffney P M, Richardson J S, Bull J P. Responses of periphyton and insects to experimental manipulation of riparian buffer width along forest streams. Journal of Applied Ecology, 2003, 40: 1060-1076
    [268] Jansen A, Robertson A I. Relationships between livestock management and the ecological condition of riparian habitats along an Australian floodplain river. Journal of Applied Ecology, 2001, 38(1): 63-75
    [269] Richardson D M, Holmes P M, Esler K J, et al. Riparian vegetation: degradation, alien plant invasions, and restoration prospects. Diversity and Distributions, 2007, 13: 126-139
    [270] Collingham Y C, Wadsworth R A, Huntley B, et al. Predicting the spatial distribution of non-indigenous riparian weeds: issues of spatial scale and extent. Journal of Applied Ecology, 2000, 37: 13-27
    [271] An S, Cheng X, Sun S, et al. Composition change and vegetation degradation of riparian forests in the altai plain, NW China. Plant Ecology, 2002, 164: 75-84
    [272] Benito Garzon M, Sanchez de Dios R, Sainz Ollero H. Predictive modelling of tree species distributions on the Iberian Peninsula during the Last Glacial Maximum and Mid-Holocene. Ecography, 2007, 30(1): 120-134
    [273]阎洪.薄板光顺样条插值与中国气候空间模拟.地理科学, 2004, 24(2): 163-169
    [274] Vargas J H, Consiglio T, J?rgensen P M, et al. Modelling distribution patterns in a species-rich plant genus, Anthurium ( Araceae), in Ecuador. Diversity and Distributions, 2004, 10: 211-216
    [275] Bolstad P V, Swank W, Vose J. Predicting southern appalachian overstory vegetation with digital terrain data. Landscape ecology, 1998, 13(5): 271-283
    [276] Heikkinen R K. Species richness of vascular plants in the subarctic landscape of northern Finland: modelling relationships to the environment. Biodiversity and Conservation, 1997, 6: 1181-1201
    [277] Prendergast J R, Quinn R M, Lawton J H, et al. Rare species, the coincidence of diversity hotspots and conservation strategies. Nature, 1993, 365(6444): 335-337
    [278] Van Niel K P, Laffan S W, Lees B G. Effect of error in the DEM on environmental variables for predictive vegetation modelling. Journal of Vegetation Science, 2004, 15(6): 747-756
    [279] Miller J, Franklin J. Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence. Ecological Modelling, 2002, 157(2): 227-247
    [280] Thuiller W, Arajujo M B, Lavorel S. Generalised models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. Journal of Vegetation Science, 2003, 14(5): 669-680
    [281] Villers-Ruiz L, Trejo-Vázquez I, López-Blanco J. Dry vegetation in relation to the physical environment in the Baja California Peninsula, Mexico. Journal of Vegetation Science, 2003, 14(4): 517-524
    [282] Frescino T S, Edwards T C, Jr., Moisen G G. Modeling spatially explicit forest structural attributes using Generalized Additive Models. Journal of Vegetation Science, 2001, 12(1): 15-26
    [283]张志东,臧润国.海南岛霸王岭热带天然林景观中主要木本植物关键种的潜在分布.植物生态学报, 2007, 31(6): 1079-1091
    [284] Barton A M. Factors controlling plant distributions: drought, competition, and fire in montane pines in Arizona. Ecological Monographs, 1993, 63(4): 367-397
    [285] Whittaker R H. Vegetation of the great smoky mountains. Ecological Monographs, 1956, 26(1): 1-80
    [286] Webb C, Peart D. Habitat associations of trees and seedings in a Bornean rain forests. Journal of Ecology, 2000, 88: 464-478
    [287] Schoener T W. Field experiments on interspecific competition. American Naturalist, 1983, 122(2): 240-285
    [288] Daubenmire R F. Vegetation zonation in the rocky mountains. Botanical Review, 1943, 9: 325-393
    [289] MünzbergováZ. Effect of spatial scale on factors limiting species distributions in dry grassland fragments. Journal of Ecology, 2004, 92: 854-867
    [290] Wimberly M C, Spies T A. Influences of environment and disturbance on forest patterns in coastal oregon watersheds. Ecology, 2001, 82(5): 1443-1459
    [291] Callaway R M, Clebsch E E C, White P S. A multivariate analysis of forest communities in the western great smoky mountains national park American Midland Naturalist, 1987, 118(1): 107-120
    [292] Johnston M H. Soil-vegetation relationships in a Tabonuco forest community in the Luquillo mountains of Puerto Rico. Journal of Tropical Ecology, 1992, 8(3): 253-263
    [293] Clark D B, Palmer M W , Clark D A. Edaphic factors and the landscape- scale distributions of tropical rain forest trees. Ecology, 1999, 80(8): 2662-2675
    [294] Chen Z S, Hsieh C F, Jiang F Y, et al. Relation of soil properties to topography and vegetation in a subtropical rain forest in southern Taiwan. Plant Ecology, 1997, 132: 229- 241
    [295] John R, Dalling J W, Harms K E, et al. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences 2007, 104(3): 864-869
    [296] Bigelow S W, Canham C D. Community organization of tree species along soil gradients in a north-eastern USA forest. The Journal of Ecology, 2002, 90(1): 188-200
    [297] Nelson D C, Anderson R C. Factors related to the distribution of prairie plants along a moisture gradient. American Midland Naturalist, 1983, 109(2): 367-375
    [298] Xu L, Liu H, Chu X, et al. Desert vegetation patterns at the northern foot of Tianshan Mountains: the role of soil conditons. Flora, 2006, 201: 44-50
    [299] Lenssen J P M, De Kroon H. Abiotic constraints at the upper boundaries of two Rumex spacies on a freshwater flooding gradient. Journal of Ecology, 2005, 93: 138-147
    [300] Hill M O, Gauch H G. Detrended correspondence analysis: an improved ordination technique. Vegetatio, 1980, 42: 47-58
    [301] Allen R B, Peet R K. Gradient analysis of forests of the Sangre de Cristo Range, Colorado. Canadian Journal of Botany, 1990, 68(1): 193-201
    [302] Odland A, Birks H J B, Line J M. Quantitative vegetation-environment relationships in westNorwegian tall-fern vegetation. Nordic Journal of Botany, 1990, 10(5): 511-533
    [303]邱扬,张金屯. DCCA排序轴分类及其在关帝山八水沟植物群落生态梯度分析中的应用.生态学报, 2000, 20(2): 199-206
    [304]沈泽昊.山地森林样带植被-环境关系的多尺度研究.生态学报, 2002, 22(4): 461-470
    [305] Zhang J T, Oxley E R B. A comparison of three methods of multivariate analysis of upland grasslands in north Wales. Journal of Vegetation Science, 1994, 5(1): 71-76
    [306] Mucina L. Classification of vegetation: past, present and future. Journal of Vegetation Science, 1997, 8(6): 751-760
    [307] Fensham R J. Floristics and environmental relations of inland dry rainforest in North Queensland, Australia. Journal of Biogeography, 1995, 22(6): 1047-1063
    [308] Ase M, Birks H J B. A numerical analysis of the distribution patterns of Salix L. species in Europe. Journal of Biogeography, 1993, 20(1): 1-32
    [309]刘世粱,马克明,傅伯杰等.北京东灵山地区地形土壤因子与植物群落关系研究.植物生态学报, 2003, 27(4): 496-502
    [310]张峰,张金屯,张峰.历山自然保护区猪尾沟森林群落植被格局及环境解释.生态学报, 2003, 23(3): 421-427
    [311] Zhao C M, Chen W L, Tian Z Q, et al. Altitudinal pattern of plants species diversity in Shennongjia mountains, central China. Journal of Integrative Plant Biology, 2005, 47(12): 1431-1449
    [312] Woodward F I, Mckoo I F. Vegetation and climate. Environment International, 1991, 17: 535-546
    [313] Henriques R, Hay J. The plant communities of a foredune in southeastern Brazil. Canadian Journal of Botany, 1998, 76: 1323-1330
    [314] del Moral R, Watson A E. Gradient structure of forest vegetation in the Central Washington Cascades. Vegetatio, 1978, 38(1): 29-48
    [315] Johnson M, Mason L, Raven P. Ecological parameters and plant species diversity. American Naturalist, 1968, 102: 297-306
    [316] Oliveira- Filho A T, Curi N, Vilela E A, et al. Effects of canopy gaps, topography, and soils o the distribution of woody species in a central Brazilian deciduous dry forest. Biotropica, 1998, 30(3): 362-375
    [317]张金屯.历山自然保护区森林群落的典范主分量分析.生物数学学报, 2005, 20(2): 213-218
    [318] Allen R B, Peet R K, Baker W L. Gradient analysis of latitudinal variation in southern rocky mountain forests. Journal of Biogeography, 1991, 18(2): 123-139
    [319] Hadley K S. The role of disturbance, topography, and forest structure in the development of a montane forest landscape. Bulletin of the Torrey Botanical Club, 1994, 121(1): 47-61
    [320] Thompson J, Brokaw N, Zimmerman J K, et al. Land use history, environment, and tree composition in a tropical forest. Ecological Applications, 2002, 12(5): 1344-1363
    [321]宋永昌.植被生态学.上海:华东师范大学出版社, 2001
    [322] Levin S A. The problem of pattern and scale in ecology. Ecology, 1992, 73(6): 1943-1967
    [323] Turner M G, Gardner R H, O'Neill R V. Landscape ecology in theory and practice. Pattern and process.New York, USA: Springer, 2001
    [324] Gerhardt F, Foster D R. Physiographical and historical effects on forest vegetation in central New England, USA. Journal of Biogeography, 2002, 29: 1421-1437
    [325] Muster S, Elsenbeer H, Conedera M. Small-scale effects of historical land use and topography on post-cultural tree species composition in an Alpine valley in southern Switzerland. Landscape Ecology, 2007, 22(8): 1187-1199
    [326] Richards P W. The tropical rain forest. Cambridge, England.: Cambridge University Press, 1952
    [327] Franklin J. Predictive vegetation mapping: geographic modelling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography, 1995, 19(4): 474-499
    [328] Costa F R, Magnusson W E , Luizao R C. Mesoscale distribution patterns of Amazonian understorey herbs in relation to topography, soil and watersheds Journal of Ecology 2005, 93(5): 863-878
    [329] Miyamoto K, Suzuki E, Kohyama T, et al. Habitat differentiation among tree species with small-scale variation of humus depth and topography in a tropical heath forest of Central Kalimantan, Indonesia. Journal of Tropical Ecology, 2003, 19(1): 43-54
    [330] Potts M D, Ashton P S, Kaufman L S, et al. Habitat patterns in tropical rain forests: a comparison of 105 plots in northwest Borneo. Ecology, 2002, 83: 2782-2797
    [331] Hara M, Hirata K, Oono K. Relationship between microlandform and vegetation structure in an evergreen broad-leaved forest on Okinawa Island, S-W, Japan. Natural History Research, 1996, 4(1): 27-35
    [332] Pinder J E. The relationship between vegetation types and topography in Lassen Vocalnic National Park. Plant Ecology, 1997, 131: 17-29
    [333] ?str?m M, Dynesius M, Hylander K, et al. Slope aspect modifies community responses to clear-cutting in boreal forests. Ecology, 2007, 88(3): 749-758
    [334] Holland P G, Steyn D G. Vegetation responses to latitudinal variations in slope angle and aspect. Journal of Biogeography, 1975, 2: 179-183
    [335] Fonda R W, Bliss L C. Forest vegetation of the montane and subalpine zones, Olympic Mountains, Washington. Ecological Monographs, 1969, 39: 271-301
    [336] Whittaker R H. A consideration of climax theory: the climax as a population and pattern. Ecological Monographs, 1953, 23: 41-78
    [337]王国宏,杨利民.祈连山北坡中段森林植被梯度分析及环境解释.植物生态学报, 2001, 25(6): 733-740
    [338]郭泺,余世孝,夏北成等.地形对山地森林景观格局多尺度效应.山地学报, 2006, 24(2): 150-155
    [339]郭晋平,王俊田,李世光.关帝山林区景观要素沿环境梯度分布趋势的研究.植物生态学报, 2000, 24(2): 135-140
    [340] Gergel S E. Assessing cumulative inpacts of levees and dams on floodplain ponds: a neutral- terrain model approach. Ecological Applications, 2002, 12(6): 1740-1754
    [341]朱红春,汤国安,张友顺等.基于DEM提取黄土丘陵区沟沿线.水土保持通报, 2003, 23(5): 43-45
    [342]杨昕,汤国安,刘咏梅等.基于计曲线的DEM生成与地形分析———以在黄土高原的试验为例.水土保持通报, 2003, 23(3): 48-50, 54
    [343]张徽徽,武伟,刘洪斌.不同比例尺DEM提取地形信息的比较分析--以重庆市为例.西南大学学报(自然科学版), 2007, 29(7): 153-157
    [344]臧润国,井学辉,丁易等.新疆阿尔泰山小东沟林区木本植物群落的数量分类、排序及其环境解释.林业科学(投稿), 2008
    [345] Virgos E, Casanovas J G. Environmental constraints at the edge of a species distribution, the Eurasian Badger(Meles meles L.): a biogeographic approach. Journal of Biogeography, 1999, 26(3): 559-564
    [346] Austin M P, Smith T M. A new model for the continuum concept. Vegetatio, 1989, 83: 35-47
    [347] Austin M P, Cunningham R B , Fleming P M. New approaches to direct gradient analysis using environmental scalars and statistical curve fitting procedures. Vegetatio, 1984, 55: 11-27
    [348] Hofer G, Wagner H H, Herzog F, et al. Effects of topographic variability on the scaling of plant species richness in gradient dominated landscapes. Ecography, 2008, 31: 131-139
    [349] Burke I C, Lauenroth W K, Riggle R, et al. Spatial variability of soil properties in the shortgrass steppe: the relative importance of topography, grazing, microsite, and plant species in controlling spatial patterns. Ecosystems, 1999, 2(5): 422-438
    [350] Whittaker R H, Niering W A. Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope. Journal of Ecology, 1965, 46: 429-452
    [351] Peet R K. Latitudinal variation in Southern Rocky Mountain forests. Journal of Biogeography, 1978, 5: 275-289
    [352] Pausas J G, Carreras J, FerréA, et al. Coarse-scale plant species richness in relation to environmental heterogeneity. Journal of Vegetation Science, 2003, 14: 661-668
    [353]孔繁花,李秀珍,尹海伟等.地形对大兴安岭北坡林火迹地森林景观格局影响的梯度分析.生态学报, 2004, 24(9): 1863-1871
    [354]沈泽昊,赵俊.基于植物-地形关系的物种丰富度空间格局预测.生态学报, 2007, 27(3): 953-963
    [355] Bale C L, Williams J B, Charley J L. The impact of aspect on forest structure and floristics in some eastern Australian sites. Forest Ecology and Management, 1998, 110: 363-377
    [356] Sebastia M T. Role of topography and soils in grassland structuring at the landscape and community scales. Basic and Applied Ecology, 2004, 5(4): 331-346
    [357] Parker A J. Forest/ environment relationships in Lassen Volcanic National Park, California, U. S. A. Journal of Biogeography, 1991, 18(5): 543-552
    [358] Russo S E, Davies S J, King D A, et al. Soil-related performance variation and distributions of tree species in a Bornean rain forest. Journal of Ecology, 2005, 93: 879-889
    [359] Ohmann J L, Spies T A. Regional gradient analysis and spatial pattern of woody plant communities of Oregon forests. Ecological Monographs, 1998, 68(2): 151-182
    [360] Sánchez- González A, López- Mata L. Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico. Diversity and Distributions, 2005, 11: 567-575
    [361] MacArthur R H. Geographical ecology. New York: Harper and Row, 1972
    [362] Whittaker R H. Vegetation of the Siskiyou Mountains, Oregon and California Ecological Monographs, 1960, 30(3): 279-338
    [363] Klanderud K, Birks H J B. Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene, 2003, 13(1): 1-6
    [364] S?tersdal M, Birks H J B , Peglar S M. Predicting changes in Fennoscandian vascular plant species richness as a result of future climatic change. Journal of Biogeography, 1998, 25(1): 111-122
    [365] Odland A, Birks H J B. The altitudinal gradient of vascular plant richness in Aurland, western Norway. Ecography, 1999, 22(5): 548-566
    [366] Bhattarai K R, Vetaas O R. Variation in plant species richness of different life forms along a subtropical elevation gradient in the Himalayas, east Nepal. Global Ecology and Biogeography, 2003, 12(4): 327-340
    [367] Fosaa A M. Biodiversity patterns of vascular plant species in mountain vegetation in the Faroe islands. Diversity and Distributions, 2004, 10: 217-223
    [368] Austrheim G. Plant diversity pattern in semi-natural grasslands along an elevation gradient on southern Norway. Plant Ecology, 2002, 161: 193-205
    [369] Willig M R, Kaufman D M , Stevens R D. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics, 2003, 34: 273-309
    [370] Kessler M, Herzog S K, Fjelds? J, et al. Species richness and endemism of plant and bird communities along two gradients of elevation, humidity and land use in the Bolivian Andes. Diversity and Distributions, 2001, 7: 61-77
    [371] Lomolino M V. Elevation gradients of species- density: historical and prospective views. Global Ecology and Biogeography, 2001, 10(1): 3-13
    [372] Rahbek C. The relationship among area, elevation, and regional species richness in neotropical birds. American Naturalist, 1997, 149: 875-902
    [373] Rahbek C. The role of spatial scale and the perception of large- scale species- richness patterns. Ecology Letters, 2005, 8: 224-239
    [374] Wang Z, Tang Z, Fang J. Altitudinal patterns of seed plant richness in the Gaoligong mountains, south-east Tibet, China. Diversity and Distributions, 2007, 13(6): 845-854
    [375] Ren H B, Niu S K, Zhang L Y, et al. Distribution of vascular plant species richness along an elevational gradient in the Dongling mountains, Beijing, China. Journal of Integrative Plant Biology, 2006, 48(2): 153-160
    [376] McCoy E D. The distribution of insects along elevational gradients. Oikos, 1990, 58(3): 313-322
    [377] Sanders N J. Elevational gradients in ant species richness: area, geometry, and Rapoport's rule. Ecography, 2002, 25(1): 25-32
    [378] Sanders N J, Moss J, Wagner D. Patterns of ant species richness along elevational gradients in an arid ecosystem. Global Ecology and Biogeography, 2003, 12(2): 93-102
    [379] Shiu H J, Lee P F. Seasonal variation in bird species richness along elevational gradients in Taiwan. Acta Zoologica Taiwanica, 2003, 14(1): 1-21
    [380] Heaney L R. Small mammal diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses. Global Ecology and Biogeography, 2001, 10(1): 15-39
    [381] Li J S, Song Y L , Zeng Z G. Elevational gradients of small mammal diversity on the northern slopes of Mt. Qilian, China. Global Ecology and Biogeography, 2003, 12(6): 449-460
    [382] Rickart E A. Elevational diversity gradients, biogeography and the structure of montane mammal communities in the intermountain region of North America. Global Ecology and Biogeography, 2001, 10: 77-100
    [383] Ricklefs R E. A comprehensive framework for global patterns in biodiversity. Ecology Letters, 2004, 7(1): 1-15
    [384] Shimatani K, Kubota Y. Quantitative assessment of multispecies spatial pattern with high species diversity. Ecological Research, 2004, 19: 149-163
    [385]张林静,岳明,顾峰雪等.新疆阜康绿洲荒漠过渡带植物群落物种多样性与土壤环境因子的耦合关系.应用生态学报, 2002, 13(6): 658-662
    [386] Pausas J G, Austin M P. Pattern of plant species richness in relation to different environments: an appraisal. Journal of Vegetation Science, 2001, 12: 153-166
    [387] Ehrlich P R, Wilson E O. Biodiversity studies: science and policy. Science, 1991, 253: 758-762
    [388] Axmacher J C, Holtmann G, Scheuermann L, et al. Diversity of geometrid moths (Lepidoptera: Geometridae) along an Afrotropical elevational rainforest transect. Diversity and Distributions, 2004, 10: 293-302
    [389] Graves G L. Linearity of geographic range and its possible effect on the population structure of Andean birds. Auk, 1988, 105(1): 47-52
    [390] Harrison S, Viers J H, Quinn J F. Climatic and spatial patterns of diversity in the serpentine plants of California. Diversity and Distributions, 2006, 6: 153-161
    [391] Rahbek C. The elevational gradient of species richness: a uniform pattern? Ecography, 1995, 18(2): 200-205
    [392] Willis K J, Whittaker R J. Species diversity- scale matters. Science, 2002, 295: 1245-1248
    [393] Whittaker R J, Willis K J, Field R. Scale and species richness: towards a general, hierarchical theory of species diversity Journal of Biogeography, 2001, 28(4): 453-470
    [394]王国宏.祁连山北坡中段植物群落多样性的垂直分布格局.生物多样性, 2002, 10(1): 7-14
    [395] Odum E P. Fundamentals of Ecology (Second edition). USA: Saunders, Philadelphia, Pennsylvania, 1971
    [396] Berg ?, G?rdenfors U, Proschwitz T V. Logistic regression models for predicting occurrence of terrestrial molluscs in southern Sweden-importance of environmental data quality and model complexity. Ecography, 2004, 27: 83-93
    [397] Gaston K J. Global patterns in biodiversity. Nature, 2000, 405: 220-227
    [398] Griffiths G H, Mather P M. Remote sensing and landscape ecology: landscape patterns and landscape change International Journal of Remote Sensing, 2000, 21: 2537-2539
    [399] Rey Benayas J M, Scheiner S M. Plant diversity, biogeography and environment in Iberia: patterns andpossible causal factors. Journal of Vegetation Science, 2002, 13: 245-258
    [400] Rahbek C, Graves G R. Multiscale assessment of patterns of avian species richness Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(8): 4534-4539
    [401] Sarr D A, Hibbs D E, Huston M A. A Hierarchical Perspective of Plant Diversity. The Quarterly Review of Biology, 2005, 80(2): 187-212
    [402] Lobo J M, Jay-Robert P, Lumaret J P. Modelling the species richness distribution for French Aphodiidae (Coleoptera, Scarabaeoidea). Ecography, 2004, 27(2): 145-156
    [403] Miles L, Grainger A , Phillips O. The impact of global climate change on tropical forest biodiversity in Amazonia. Global Ecology and Biogeography, 2004, 13(6): 553-565
    [404] Guisan A, Weiss S B, Weiss A D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecology, 1999, 143: 107-122
    [405] Schussman H, Geiger E, Mau-Crimmins T, et al. Spread and current potential distribution of an alien grass, Eragrostis lehmanniana Nees, in the southwestern USA: comparing historical data and ecological niche models. Diversity and Distributions, 2006, 12: 582-592
    [406] Kupfer J A, Farris C A. Incorporating spatial non-stationarity of regression coefficients into predictive vegetation models. Landscape Ecology, 2007, 22(6): 837-852
    [407] Ortega-Huerta M A, Peterson A T. Modelling spatial patterns of biodiversity for conservation prioritization in North-eastern Mexico. Diversity and Distributions, 2004, 10(1): 39-54
    [408] Luoto M, Kuussaari M, Toivonen T. Modelling butterfly distribution based on remote sensing data. Journal of Biogeography, 2002, 29(8): 1027-1037
    [409] Walker P A. Modelling Wildlife Distributions Using a Geographic Information System: Kangaroos in Relation to Climate Journal of Biogeography, 1990, 17(3): 279-289
    [410] Seto K C, Fleishman E, Fay J P, et al. Linking spatial patterns of bird and butterfly species richness with Landsat TM derived NDVI. International Journal of Remote Sensing, 2004, 25(20): 4309-4324
    [411] Pettorellia N, Vika J O, Mysteruda A, et al. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology and Evolution, 2005, 20(9): 503-510
    [412] Nagendra H, Gadgil M. Satellite imagery as a tool for monitoring species diversity: an assessment. Journal of Applied Ecology, 1999, 36(3): 388-397
    [413] Manel S, Dias J M, Buckton S T, et al. Alternative methods for predicting species distribution: an illustration with Himalayan river birds. Journal of Applied Ecology, 1999, 36(5): 734-747
    [414] Davis A J, Jenkinson L S, Lawton J H, et al. Making mistakes in predicting shifts in species range in response to global warming. Nature, 1998, 391(6669): 783-786
    [415] Levin N, Shmida A, Levanoni O, et al. Predicting mountain plant richness and rarity from space using satellite-derived vegetation indices. Diversity and Distributions, 2007, 13(6): 692-703
    [416] Burnett M R, August P, V, Brown Jr J H, et al. The influence of geomorphological heterogeneity on biodiversity I. A Landscape Perspective. Conservation Biology, 1998, 12(2): 363-370
    [417]王玉辉,周广胜.内蒙古地区羊草草原植被对温度变化的动态响应.植物生态学报, 2004, 28(4): 507-514
    [418] Dupouey J L, Dambrine E, Laffite J D, et al. Irreversible impact of past land use on forest soil andbiodiversity. Ecology, 2002, 83(11): 2978-2984
    [419] Echeverría C, Newton A C, Lara A, et al. Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Global Ecology and Biogeography, 2007, 16(4): 426-439
    [420] Turner W, Spector S, Gardiner N, et al. Remote sensing for biodiversity science and conservation. Trends in Ecology and Evolution, 2003, 18(6): 306-314
    [421] Rocchini D, Chiarucci A , Loiselle S A. Testing the spectral variation hypothesis by using satellite multispectral images. Acta Oecologica 2004, 26(2): 117-120
    [422] Karl J W, Heglund P J, Garton E O, et al. Sensitivity of Species Habitat-Relationship Model Performance to Factors of Scale. Ecological Applications 2000, 10(6): 1690-1705
    [423] Frankham R. Conservation Genetics. Annual Reviews in Genetics, 1995, 29: 305-327
    [424] Lefsky M A, Cohen W B, Harding D J, et al. Lidar remote sensing of above-ground biomass in three biomes. Global Ecology and Biogeography, 2002, 11(5): 393-399
    [425] Cao M K, Woodward F I. Net primary and ecosystem production and carbon stocks of terrestrial ecoststems and their response to climate change. Global Change Biology, 1998(4): 185-198
    [426]方精云,陈安平,赵淑清等.中国森林生物量的估算:对Fang等Science一文( Science , 2001 , 291 : 2320~2322)的若干说明.植物生态学报, 2002, 26(2): 243-249
    [427] Brown S L, Schroeder P, Kern J S. Spatial distribution of biomass in forests of the eastern USA Forest Ecology and Management 1999, 123(1): 81-90
    [428] Clark D B, Clark D A. Landscape-scale variation in forest structure and biomass in a tropical rain forest. Forest Ecology and Management, 2000, 137: 185-198
    [429] Running S W, Baldocchi D D, Turner D P, et al. A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sensing of Environment, 1999, 70(1): 108-127
    [430] Saatchi S S, Houghton R A, Dos Santos AlvaláR C, et al. Distribution of aboveground live biomass in the Amazon basin. Global Change Biology, 2007, 13: 816-837
    [431] Foody G M, Cutler M E, Mcmorrow J, et al. Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Global Ecology and Biogeography, 2001, 10(4): 379-387
    [432] Ikeda H, Okamoto K , Fukuhara M. Estimation of aboveground grassland phytomass with a growth model using Landsat TM and climate data. International Journal of Remote Sensing, 1999, 20(11): 2283-2294
    [433] Todd S W, Hoffer R M , Milchunas D G. Biomass estimation on grazed and ungrazed rangelands using spectral indices International Journal of Remote Sensing, 1998, 19(3): 427-438
    [434]卢丽萍,赵成义.基于MODIS数据不同荒漠植被指数的空间变化研究-以新疆三工河流域为例.干旱区地理, 2005, 28(3): 381-385
    [435]张杰,沈芳,刘志国.长江口潮滩湿地植被光谱分析与遥感检测.华东师范大学学报(自然科学版), 2007(4): 42-48
    [436] Davi H, Soudani K, Deckx T, et al. Estimation of forest leaf area index from SPOT imagery usingNDVI distribution over forest stands. International Journal of Remote Sensing, 2006, 27(5): 885-902
    [437] Vicente-serrano S M, Cuadrat-Prats J M, Romo A. Early prediction of crop production using drought indices at different time-scales and remote sensing data: application in the Ebro Valley (north-east Spain). International Journal of Remote Sensing, 2006, 27(3): 511-518
    [438] Lefsky M A, Harding D, Cohen W B, et al. Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sensing of Environment, 1999, 67(1): 83-98
    [439] Phua M H, Saito H. Estimation of biomass of a mountainous tropical forest using Landsat TM data. Canadian Journal of Remote Sensing, 2003, 29(4): 429-440
    [440] Lorenzen B, Jensen A. Reflectance of blue, green, red and near infrared radiation from wetland vegetation used in a model discriminating live and dead above ground biomass. New phytologist, 1988, 108(3): 345-355
    [441] Keeling H C, Phillips O L. The global relationship between forest productivity and biomass. Global Ecology and Biogeography, 2007, 16(5): 618-631
    [442]张瑛山,王学兰,周林生.雪岭云杉林生物量测定的初步研究.新疆八一农学院学报, 1980(3): 19-25
    [443]冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力.北京:科学出版社, 1999
    [444] Boyd D S, Foody G M, Curran P J. The relationship between the biomass of Cameroonian tropical forests and radiation refected in middle infrared wavelengths (3.0±5.0 mm). International Journal of Remote Sensing, 1999, 20(5): 1017-1023
    [445]李建龙,蒋平,戴若兰. RS, GPS和GIS集成系统在新疆北部天然草地估产技术中的应用进展.生态学报, 1998, 18(5): 504-510
    [446]黄敬峰,王秀珍,胡新博.新疆北部不同类型天然草地产草量遥感监测模型.中国草地, 1999(1): 7-11, 18
    [447] Vanamburg L K, Trlica M J, Hoffer R M, et al. Ground based digital imagery for grassland biomass estimation. International Journal of Remote Sensing, 2006, 27(5): 939-950
    [448] Lu D. The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 2006, 27(7): 1297-1328
    [449] Houghton R A, Lawrence K T, Hackler J L, et al. The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Global Change Biology, 2001, 7: 731-746

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700