用户名: 密码: 验证码:
无取向硅钢织构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无取向硅钢是电力、电子工业广泛应用的软磁材料,其中高牌号无取向硅钢主要用于制造容量较大的大、中型电机以及发电机的铁芯。由于这些设备能耗大,且大多处于连续、长周期运行状态之中,其工作效率的稍许提高即可节省大量能源,产生明显的经济效益和社会效益。因此,从节能的观点出发,提高磁感、降低铁损一直是硅钢研究领域的重要课题。由于硅钢生产技术的保密性,其研究成果鲜有公开、系统的发表。目前,我国仅武钢和太钢具备生产高牌号无取向硅钢的能力,‘远远满足不了我国经济发展的需求,每年仍需大量进口高牌号无取向硅钢。影响无取向硅钢磁性的因素很多,原料的化学成分及纯净度、板坯的铸造组织、热轧工艺、冷轧和热处理工艺都是影响硅钢最终质量的重要因素。因此弄清各生产工艺过程的组织、织构状态及织构演变过程,研发新的轧制和退火技术以有效控制与优化织构的发展,具有重要的理论和实际意义。
     本论文选用某钢铁公司提供的无取向硅钢热轧及常化板材,在不同形变量及不同速比下,采用异步轧制方法对无取向硅钢进行轧制。同时采用同步轧制方法,在不同形变量下进行轧制,以便进行对比研究,然后在气氛保护条件下对冷轧样品进行再结晶退火。利用X射线衍射技术测定各样品的织构,借助ODF分析方法系统考察了热轧板织构、同步和异步轧制的无取向硅钢薄板的冷轧织构和再结晶织构,利用光学显微镜进行金相组织观察,利用单板磁性测试仪测定铁损及磁感应强度,并利用无取向硅钢织构数据,根据磁性理论进行模拟计算,探寻加工制造无取向硅钢生产的技术原型。
     热轧对硅钢的磁性能具有遗传性影响,但由于热轧无取向硅钢板制样等比较困难,研究工作相对比较少,本文对热轧无取向硅钢的研究结果表明:热轧板在距表面不同位置的织构组分是不同的,中心区域附近反高斯织构{001}<110>很强,而高斯织构{110}<001>只在表层附近存在。热轧板的织构与温度有很大的关系,同一板材的头部和尾部只是温度条件有差别,其它条件均相同,但头尾的织构组分差别却很大。在高硅条件下,尾部表层出现较高的反高斯织构。热轧板织构还与硅含量有关,高硅热轧板的反高斯织构{001}<110>和高斯织构{110}<001>组分均比低硅热轧板强度高。通过观察热轧板的显微组织发现无取向硅钢组织是不均匀的,在表层区域附近存在等轴晶组织,而中心区域附近为形变组织。等轴晶组织所占比例与硅含量有较大关系,在硅含量低的热轧板中等轴晶组织较多。另外温度对组织也有明显影响,热轧板头部等轴晶组织比较多,形变组织比较细小,热轧板尾部等轴晶组织较少,形变组织多而粗大。
     不同轧制工艺的研究结果表明:高牌号无取向硅钢在同步轧制和异步轧制过程中,随着形变量的增加,冷轧织构组分均逐渐向α织构和γ织构组分聚集,即冷轧织构由<110>//RD和<111>//ND织构组成,其中α织构以{100}-{111}<110>为主,Y织构则涵盖{111}<112>~<110>。但当压下率达到84%时,织构组分进一步变化,出现了较强的{001}<120>织构组分;在异步冷轧过程中高斯织构{110}<001>组分逐渐减少,直至消失,反高斯{001}<110>织构组分逐渐增强;常化板材沿厚度方向从表层到中心区域织构类型是不同的,中心区域反高斯织构较强,在异步冷轧后继续保持了这种状态,而表层和次表层高斯织构在冷轧后消失;异步轧制下沿厚度方向织构分布呈非对称状态,慢辊侧的反高斯织构强度明显高于快辊侧的强度,{111}<112>织构组分在表层附近的强度高于中心区域;不同速比下异步冷轧织构组分均含有反高斯织构以及α织构和γ织构,对于低牌号无取向硅钢,低速比异步轧制时的织构强度高于高速比异步轧制时的织构强度;在同步和异步轧制过程中,随着变形量的增加,晶粒逐渐被拉长,同时,晶粒也在发生复杂的转动,显微组织中存在形变孪晶组织。
     再结晶退火的研究结果表明:再结晶退火温度是控制高牌号无取向硅钢再结晶织构和组织的重要因素,改变温度可以显著影响再结晶组织和织构,进而改变磁性能,在800℃退火时的织构组分主要是{111}<112>,退火后的晶粒组织尺寸大小适中且大小比其他条件下的组织均匀,由于晶粒尺寸及其分布直接影响到无取向硅钢的性能,如果在最终产品中组织和织构的分布出现较大的不均匀性,必然会对产品的性能产生不利的影响;在异步轧制下,速比、温度和时间等因素共同影响着再结晶组织和织构,在一定的温度下,温度起主导作用,速比的影响不明显;以{110}和{113}织构为主的初始织构组分,异步冷轧后转变为较强的反高斯织构和α织构及γ织构,退火后,α织构明显降低,而γ织构变化不明显。退火后的{111}<110>织构组分减弱,{111}<112>织构组分增强。根据试验和理论计算,提出了无取向硅钢薄板在气氛保护条件下退火的主要技术参数选取原则,在800℃~900℃退火可以获得较好的磁性,磁性模拟计算的理论值与实测值吻合的较好。
Non-oriented silicon steels is widely used in electronic, electric power industry as soft magnetic materials. Among these, the high brand non-oriented silicon steel is mainly used to make high capacity, middle and large electric motor and the ferric core of the electric power generator. Because these equipments consume a lot of energy, and they are in a continuous and long-term working period, the slight improvement of working efficiency can save tremendous energy and have significant economic and social effect. Therefore, for the energy saving point of view, improving magnetic sensitivity and reducing ferromagnetic loss is always a major research task for silicon steel research field. Due to the confidential protection of silicon steel production technology, there are few systematic published research results. At present, only Wuhan steel company has the capability to manufacture high brand non-oriented silicon steel, but it is far below the demand of the economic development in our country. Therefore, large quantities of high brand silicon steel are imported every year. There are a lot of factors affecting the magnetic property of non-oriented silicon steel. The chemical composition of raw materials, impurities, texture of casting, hot-rolling, cold-rolling and heat treatment technology play important roles in controlling the final quality of the silicon steel. So there is a theoretical and realistic requirement to have a better understanding of the structure, texture and texture evolution for various process technologies, to develop new rolling and annealing technology and to efficiently control and optimize texture development.
     In this dissertation, non-oriented hot rolled and normal silicon steel provided by an iron and steel company was selected for cross-sear rolling under various deformation and speed ratio. Meanwhile, it was rolled synchronously under various deformations for a comparison study. The cold-rolled sample was annealed with gas protection. X-ray refraction technique was used to identify the macro-texture. ODF analysis method was used to systematically investigate the hot-rolled texture,synchronous and cross-shear rolling texture and recrystallization texture of non-oriented thin silicon steel plate.Optical microscopy was used to study the microstructure and single plate tester was used to measure ferromagnetic loss and the intensity of magnetic response. Based on the texture data of non-oriented silicon steel and with the help of magnetic theoretic model calculation, the technology protocol of manufacture of non-oriented silicon steel was studied.
     Hot-rolling has permanent effect on the magnetic property of silicon steel. There is little research of hot-rolling effect on magnetic property for non-oriented silicon steel due to the difficulty of sample preparation of hot-rolled non-oriented silicon steel plate. The results on hot-rolled non-oriented silicon steel show that the texture composition is different for hot-rolled plate with the varying depth from the surface. Anti-Gauss texture{111}<110> is very strong near the center, while the Gaussian texture{111}<110> exists near the top surface. The texture of hot-rolled plate is very sensitive to temperature.The same plate shows significantly different texture distribution for the front and end part due to the temperature difference with the other condition of the same. For high silicon steel, high level anti-Gauss texture appeared on the surface of tail part. The texture of hot-rolled plate is also dependent on silicon concentration. The anti-Gauss texture{111}<110> and Gaussian texture {111}<110> for high silicon steel shows higher intensity than that for low silicon steel. It was found that the structure of hot-rolled non-oriented silicon steel is not uniform. Isometric structure exists in the near surface region, while deformation structure exists in the central area. The concentration of isometric structure is dependent on the content of silicon; there is more isometric structure for hot-rolled low silicon steel plate. Apart from that, temperature also has a big effect on structure. There is more isometric structure at the front of the hot-rolled plate and deformation structure is finer. At the end of hot-rolled plate, isometric structure is less and deformation structure is coarse and big.
     The research results for different rolling technology show:that during the synchronous and cross shear rolling process for non-oriented high silicon steel, the texture converges to a and y texture with the increase of compressive deformation, i.e.,cold-rolled texture is <110>//RD and<111>//ND texture.αtexture is mainly{100}~{111}<110>, while y texture covers{111}<112>~<110>. strong texture of {001}<120> appeared when the compressive deformation reached 84%. During cross shear rolling process, the intensity of Gaussian texture{111}<110> gradually decreased until disappeared, and the anti-Gauss texture {111}<110> gradually increased. The texture type is different for normal plate in the depth direction from surface to center area. Anti-Gauss texture is stronger in the central area and it remains after cross shear rolling process, while Gaussian texture disappeared in the top surface and near top surface area after cold rolling process. Texture distribution is asymmetric in the thickness direction; anti-Gauss texture density along the slow speed roller side is more than that along the fast speed roller side. The intensity of{111}<112> texture is higher on the surface than that in the center area. Both anti-Gauss texture, a and y texture are found for cross shear rolling texture under different speed ratio.For non-oriented low silicon steel, texture intensity for cross shear rolling is higher under low speed ratio than under high speed ratio. For synchronous and cross shear rolling process, with the increase of deformation, grain is elongated and at the same time, grain is twisted. Therefore, deformed twin structure was found in the microstructure.
     The annealing recrystallization results indicate that:the annealing temperature plays an important role in controlling the recrystallization structure and texture for non-oriented high silicon steel. The change of annealing temperature can significantly affect recrystallization structure and texture, therefore, the magnetic property was also changed. At the annealing temperature of 800℃, the texture is mainly{111}<112>, the grain size is optimized after annealing and it is more uniform than other conditions. Since grain size and distribution can affect the property of non-oriented silicon steel, there will be adverse effect on the final product property if there is a big non-uniformity for the structure and texture distribution. Under cross shear rolling process, recrystallization structure and texture is dependent on rolling speed ratio, temperature and time. Under the testing condition used in this thesis, temperature plays a more important role and the effect of speed ratio is minor. The initial texture is mainly {110}and{113},after cross shear rolling, it changed to strong anti-Gauss texture and a and y texture. After annealing, a texture significantly decreased and no obvious change for y texture was found. Moreover, after annealing,{111}<110> texture weakened and{111}<112>texture enhanced. The main annealing technical parameter selection rule was proposed for non-oriented thin silicon steel sheet under atmosphere protection. Better magnetic property can be obtained after annealing at 800℃~900℃. A good match between theoretical simulation value and experimental results was obtained.
引文
1.何忠治.电工钢(上册)[M],北京:冶金工业出版社,1997.3:1-12.
    2.贺敏辛.现代轧制理论[M],北京:冶金工业出版社,1993,73-74.
    3.中村店登,福田文二郎ほか.日本特許公報,昭52-96919(1997)
    4. 笹川哲三,岩三健三ほか.日本特許公報,昭48-19049(1973)
    5.储双杰,瞿标,戴元远.某些元素对硅钢性能的影响[J],钢铁,1998,33(11):68-72.
    7.赵宇,何忠治.电工钢中的晶界偏聚[J],钢铁研究学报,1995,7(1):66-73.
    8.Shimanaka H, Irie T,Matsumura K,Nakamura H. A new non-oriented Si-steel with texture of {100}<0vw> [J], Journal of Magnetism and Magnetic Materials,1980,19(1-3):63-64.
    9. Grigory Lyudkovsky, Prabhat K, Rastogi. G.Lyudkovsiky etal. Effect of antimony on recrystallizati-on behavior arid magnetic properties of a nonoriented silicon steel [J],Metallurgical and Materials Transactions A,1984,15(2):257-260.
    10.Vodopivec F, Marinsek F, Gresovnik F, Gnidovec D, Pracek M, Jenko M. Effect of anti-mony of energy losses in non-oriented 1.8 Si,0.3 Al electrical sheets [J],Journal of Magnetism and Magnetic Materials,1991,97(1-3):281-285.
    11.储双杰.生产工艺参数对无取双向电工钢磁性的影响[J],特殊钢,2003,24(2):40-42.
    12.朱泉,潘大炜.板带异步轧制的理论与实践[M],沈阳:东北大学,1984.
    13.朱泉.异步轧制实验研究[J],钢铁,1980,15(5):1-6.
    14.齐克敏.异步恒延伸轧制的试验及理论研究[D],沈阳:东北工学院,1986.
    15.Coffin L.F, Taverneli J.F. Status of contact-bend-stretch rolling metals [J],J.Metals, 1967,8:14.
    16.Coffin L.F, Tavernelli J.F. The cyclic straining and fatigue of metals[J],Trans. AIME, 1959,215:794-807.
    17.Robertson D.K, Sansorne D.H. Weiteve versuchsergebnisse uber das walzen vonglavan-isch 115 verzinnt-en band auf der s-strabe [J],Metals Technology,1977,4(7):7.
    18.塩崎 宏行,木崎 皖司,佐藤 一幸,三上昌夫.異周速压延機にょる高强度鋼板 の压延[J],鐵と鋼,1984,1984,70(2):72-75.
    19.潘大炜.提高冷轧板带材厚度精度的新途径—异步冷轧法[J],铜加工,1983,2:89-93.
    20.汤富麟.异步单机连轧研究[J],钢铁,1979,14(6):43-55.
    21.吴隆华,张之香:“S”异步轧法及其应用[J],钢铁,1979,14(3):71.
    22.马东清.异步轧制对金属组织和性能的影响及其力能参数的研究[D],北京:北京钢铁研究总院,1981.
    23.齐克敏,李壬龙,高秀华,邱春林.异步轧制取向硅钢薄带的三次再结晶[J],钢铁,2001,36:58-61.
    24.王彤.异步轧制对电工钢磁性及织构的影响[D],沈阳:东北大学,1996.
    25.崔玉所.异步轧制取向硅钢薄带再结晶的研究[D],沈阳:东北大学,2001.
    26.高秀华.异步轧制取向硅钢极薄带的研究[D],沈阳:东北大学,2002.
    27. Liu Gang, Wang Fu, Zuo Liang, Qi Ke-Min, Liang Zhi-de. Effect of cross shear rolling on textures andmagnetic properties of grain oriented silicon steel[J],Scripta Materialia, 1997,37(12):1877-1881.
    28.Liang Zhi-de,Zao Xiang, Wang Fu, Zuo Liang, Liu Gang. Through thickness variation of cross shear rolling texture in grain oriented silicon steel [J],Journal of Materials Science & Technology,2002(18):519-521.
    30.裴伟.磁场退火下无取向硅钢薄板再结晶织构研究[D],沈阳:东北大学,2006.
    31.Bunge H J.Zur Karstellung allgemeiner texturenvon hans-joachim Bunge in Berlin [J], Z.Metallkde,1965,65:872-874.
    32.Roe R J.Description of crystallite orientation in polycrystalline materials,Ⅲ,General solution of pole figure inversion[J],Journal of Applied Physics,1965,36:2024-2031.
    33.Imhof J.An appreciative determination of the orientation distribution function[C],Proc ICOTOM5,1978,149-153.
    34.Ruer D,Baro R.A new method for the determination of the texture of materials of cubic structure from incomplete reflection plle figures[J],Adv X-Ray Anal,1977,20:187-191.
    35.Zuo Liang, Xu Jia-zhen, Wang Fu. Determination of ODF of polycrystalline materials from incomplete pole figures[A].In:Nagashima S eds.,Proc 6th Int Conf on Textures of Materials[C],Vol.2, ISIJ, Tokyo,1981.1259-1265.
    36.Bunge H J, Esling C. Determination of the odd part of the texture function by anomalous scattering [J],J.Appl.Cryst,1981,14:253-255.
    37.Pospiech J,Lucke K, Jura J. Reproduction of the true ODF from plle figures and single orientation measurements by application of gauss-type scattering models[C],Proc. ICOTOM6,1981,2:1390-1401.
    38.Wang Fu,Xu Jia-zhen,Liang Zhi-de. Application of the maximum-entropy method to the inverse-pole-figure determination of cubic materials [J],J. Appl.Cryst,1991,24:126-128.
    39.Wang Fu,Xu Jia-Zhen, Liang Zhi-de.determination of the complete ODF of cubic syst-em materials by the maximum entropy method[J],Textures Microstructure,19 92,19:55-58.
    40.Wang Yan-Dong,Xu Jia Zhen, Liang Zhi-de. The modified maximum entropy method (MMEM) in QTA from lower symmetry polycrystalline aggregates [J],Textures &Microstructure.,1995,26-27:103-110.
    41.Wang Yan-Dong,Xu Jia Zhen, Zuo LiangLiang Zhi-de.Some applications of the modified maximum entropy method in quantitative texture analysis[C],Proc. ICOTOM11,1996,1064-1069.
    42.Wang Yan-Dong,Xu Jia Zhen, Liang Zhi-de. A new algorithm of quantitative texture analysis adapted to thin films[J],J. Appl.Phys.,1996,79:7376-7381.
    43.王沿东,佟伟平,何长树,左良,梁志德.含磷深冲钢板的低分辨织构分析与弹性模量预估[J],金属学报,1999,35(6):627-630.
    44.Szpunar J,Ojanen M.The Relationship between Texture and Magnetic Propertes in Fe-Si Steel[J],Metall. Trans.,1975,6A:561-567.
    45.左良,王沿东.广义矢量法预估多晶体材料的磁晶各向异性[J],金属学报,1990,26(4):297-299.
    46.Shin, S.C, Kim, C.S.A new method for analyzing torque curves of uniaxial anisotro-picmaterials [J],Magnetics, IEEE Transactions on,1991,27(6):4852-4854.
    47.Bertram N.N, ZHU Jian-gang. Simulations of torque measurements and noise in thin film magneticrecording media[J],Magnetics, IEEE Transactions on,1991,27(6):5043-5045.
    48.Szpunar J, Ojanen M. Texture and magnetic properties in Fe-Si steel[J],Metallurgical and Materials Transactions A,1975,6(2):561-567.
    49. Zuo Liang etal.Prediction of magneto-crystalline anisotropy of polycrystalline material with generalized vector method[J],Acta metallurgica sinica,seriesB,1991,4(1):66-69.
    50.王朝群.金属板材成型性参数的预测方法[J],中国有色金属学报,1997,7(1):84-87.
    51.Mao Wei-min.Yu Yong-ning. Relationship Between Texture Magnetic Induction and Maximum Magnetic Permeability of Si Steels [M],Canda,1999,511-517.
    52.张世远,路权等.磁性材料基础[M],北京:科学技术出版社,1988,52.
    53.Biter F. In troductionto ferromagnetism[M],M acG raw-Hill,1937,213.
    54.钟文定.铁磁学[M],北京:科学出版社,中册,1987.
    55.Williams H.J.Magnetic properties of singlec rystals of silicon iron[J],PhysRev,1937, 52:747.
    56. K.H.斯图阿.铁磁畴[M],北京:科学出版社,1960,17.
    57.王沿东.冷轧无取向硅钢片磁性能的计算及多晶磁各向异理论探讨[D],沈阳:东北大学,1989.
    58.赵志业.金属塑性变形与轧制理论[M],北京:冶金工业出版社,1982,40-41.
    59.崔忠圻.金属学与热处理[M],北京:机械工业出版社,2004,179.
    60.何忠治.电工钢[M],北京:冶金工业出版社,1997,114-120.
    61.王轶农.电场作用下金属再结晶织构的研究[D],沈阳:东北大学,1999.
    62.陶杰,姚正军,薛烽.材料科学基础[M],北京:化学工业出版社,2006,440.
    63.李超.金属学原理[M],哈尔滨:哈尔滨工业大学,1995,295-298.
    64.Bellier S P, Doherty R D. Structure of deformed aluminium and itsrecrystallization em dash investigations wtth transmission kossel diffraction[J],Acta Met.,1977,25(5), 521-538.
    65.Burgers W G,Tiedema T J. Notes on the theory of annealing textures:Comments on a paper by P. A. Beck with the same title[J].Acta Metall.,1953,1(2):234-238.
    66.陈礼清.无间隙原子钢再结晶织构的模拟与试验研究[D],沈阳:东北大学,1994.
    67. Dillamore I L, Katoh H. Comparison of the observed and predicted deformation textures in curie meraals[J],Metal Sci.,1974,8:21-27.
    68.Dillamore I L, Katoh H. Mechanisms of recrystallization in cubic metals with particul-ar reference to their orientation-dependence[J],Metal Sci.,1974,8:73-83.
    69. Inokuti Y, Doherty R D. Transmission kossel study of the structure of compressde iron and its recrystallization behaviour[J],Acta Metall.,1978,26:61-80.
    70.UeckeK L.Formation of recrystallization textures In metals and alloys[C].Proc. ICOTM7,1984,195-210.
    71. Nes E, Hirsch J, Liiecke K.On the Origin of the cube recrystallization texture in directionally solidified aluminium[C],Proc.ICOTOM7,1984,663-668.
    72.Hirsch J, Lucke K.Application of quantitative texture analysis for investigating continuous discontinuous recrystallization processes of Al-001Fe[J],Acta Metall., 1985,33:1927-1938.
    73.Hutchinsion W B.The role of prior grain bound aries in recrystallization texture development in Iron[C],Proc. IOTOM8,1987,603-609.
    74. Inokuti Y, Maeda C, Shimanka H. Transmission kossel study of origin of Goss texture in grain oriented silicon steel[J], Trans.of ISIJ,1983,23:440-447.
    75.Heller H W F, van Dorp J H, Wolff G, Verbraak C A.Recrystallization behaviour of left brace 110 right brace 112 direction aluminium single crystals after rolling and plane-strain deformation[J],Metal Sci.1981,15(8):333-341.
    76.uckeK L, Canad T. Orientation dependence of grain boundary motion and the formation of recrystsllization textures[J],Metallurgical Quarterly.1974,13(1):261-274.
    77. Schimidt U, Lucke K. Recrystallization textures of silver,copper and alpha-brasses with different Zinc-contents as a function of the rolling temperature[J],textures of crystalline solids,1979,3(2):85-112
    78.Dugan B J, Lucke K, Koehlhoff G,Lee C S.On the origin of cube texture in copper[J].Acta Metall.Mater.,1993,41(6):1921-1927.
    79.毛为民.晶界快速迁移的原子模型[J],中国科学,1991,3A:311-316.
    80.孙建伦.IF钢退火过程中织构的研究[D],东北大学博士论文,1998.
    81.Jones H R.Grain boundary structure and kinetics[M],ASM,1980.
    82.Bunge H J.Texture analvsis in materials science[M].London:Butterworth, London, 1982.
    83.Zuo Liang. Watanabe T, Esling C.A theoretical approach to grain boundary character distribution(GBCD) in textured polycrystalline materials[J].Z. Metallkdw 1994,85(8): 85:554.
    84.胡广勇Fe-6.5wt%Si与Fe-3wt%Si薄板、薄带的制备、织构及晶界特征分别的研究[D],沈阳:东北大学,1998.
    85.王祖唐,关廷栋等.金属塑性成形理论[M],北京:机械工业出版社,1989,38-41.
    86.张新明,李赛毅.金属材料织构的研究及其发展[J],中国科学基金,1995.3:26-30.
    87.Umemoto M,Guo Z H,Tamura I.Effect of cooling rate on grain size of ferrite in a carbon steel[J],Materials Science and Technollgy,1987.3(4):249-255.
    88.中国金属学会.金属材料物理性能手册(第一册,第七篇,磁性)[M],北京:冶金工业出版社,1987,491-632.
    89.黄璞,刘振清,曾武等.晶体缺陷在无取向硅钢中的作用[J],电工钢.2007,29(3):8-24.
    90.刘雅政.材料成形理论基础[M],北京:国防工业出版社,2004,370.
    91.п.и.波卢欣.黄克琴等译.塑性变形的物理基础[M],北京:冶金工业出版社,1989,337.
    92.俞汉清,陈金德.金属塑性成形原理[M],北京:机械工业出版社,1999,22-25.
    93.崔忠圻.金属学与热处理[M],北京:机械工业出版社,2000,200-218.
    94. Lutz Meyer著.赵辉译.带钢轧制过程中材料性能的优化[M],北京:冶金工业出版社,1996.
    95.Lottee U, Meyeru L. R-D Knorr. Arch. Eisenhuttenwes,1976,47:286-294.
    96.鲁锋,李友国,桂福生,赵宇.热轧终轧温度对冷轧无取向硅钢析出物的影响[J],钢铁材料研究,2002,14(1):34-37.
    97.Enokizono M, Hashimoto Y, Mogi H.Iron loss distribution by influence of crystal grain in electromagnetic steel sheet and its two-dimensional magnetic properties [J],Journal of the Magnetics Society of Japan,2001,25(4-2)899-902.
    98.李军,杜炳坤.无取向硅钢薄带的研究[J],金属功能材料,1997,2:79-81.
    99.张文康,毛卫民,王一德,薛志勇,白志浩.热轧工艺对无取向硅钢组织结构和磁性能的影响[J],钢铁,2006,41(4):77-81.
    100.张新仁,谢晓心.高磁感无取向硅钢[J],钢铁研究,2000,4:57-61.
    101.毛卫民,余永宁.金属材料各向异性的开发研究[J],金属热处理学报,1997,18(3):95-100
    102.张锦刚,刘沿东,蒋奇武等.异步冷轧工艺对IF钢织构的影响[J],材料与冶金学报.2006,5(2):129-132.
    103.Mineo Muraki,Tetsuo Toge,Kei Sakata,Takashi Obara,Eiichi Furubayashi. Formation Mechanism of{111} Recrystallization Texture in Ferritic Steel[J],Iron and Steel,1999, 85(10):41-47.
    104.金自力,徐向棋.轧制条件对冷轧无取向硅钢织构的影响[J],特殊钢,2005,26(2): 25-27.
    105.毛卫民.冷轧钢板变形织构的定量分析[J],北京科技大学学报,1993,15(4):369-374.
    106.刘刚,王福,齐克敏等.异步轧制取向硅钢中织构沿板厚方向的分布与发展[J],金属学报,1997,33(4):364-369
    107.刘刚,齐克敏,贺会军等.异步轧制取向硅钢的织构形成与转变机理[J],钢铁研究学报,1999,11(5):30-33
    108.沙玉辉,刘恩,徐家桢等.磁场作用下取向硅钢薄带的再结晶织构[J],东北大学学报,2004,25(7):665-667.
    109.高秀华,齐克敏,叶何舟等.异步轧制对硅钢极薄带三次再结晶的影响[J],材料科学与工艺,2005,13(4):384-386.
    110. Dillamore IL,Katoh H.The Mechanisms of Recrystallization in Cubic Metals with Particular Reference to Their Orientation-Dependence[J],Metal Science,1974,8:73-78.
    111.张德芬.3104铝合金形变与再结晶过程中织构及显微组织的研究[D],沈阳:东北大学,2004.
    112.Kubota T, Fujikura M, Ushigami Y.Recent progress and future trend on grain-oriented silicon steel[J],J Magn Magn Mmater,2000,215-216:39-73.
    113.毛卫民.金属材料的晶体学织构与各向异性[M],北京:科学出版社,2002,8:193.
    114.毛为民,赵新兵.金属的再结晶与晶粒长大[M],北京:北京科技大学出版社,1994.
    115.Tongtae.Park.加热速度对无取向电工钢织构形成的影响[J],电工钢,2004,3:48-50.
    116.Matsuoks S,Morita M, Furukimi O,et at.Effect of lubrication condition on recrystallizat-ion texture of ultra-low C sheet hot-rolled in ferrite region [J],ISIJ International,1998, 38(6):633-639.
    117. Hou Chun-Kan.Effect of aluminum on the magnetic prorerties of lamination steels[J],IEEE Trans. Magn.,1996,32(2):471.
    118.张文康,毛卫民,白志浩.退火温度对冷轧无取向硅钢组织结构和磁性能的影响[J],特殊钢,2006,27(1):15-17.
    119.Hutchinson W B.Recrystallisation textures in iron resulting from nucleation at grain boundaries[J],Acta Metal,1989,37(4):1047-1056.
    120. Mineo Muraki,Tetsuo Toge,Kei Sakata,Takashi Obara,Eiichi Furubayashi.Formation mechanism of{111} recrystallization texture in ferritic steel[J],Iron and Steel,1999, 85(10):41-47.
    121.Iwashita S, Takezawa M, Honda T, Yamasaki J, kaido C.Changes in domain structure according to the thickness of non-oriented electrical sheets[J],Journal of the Magnetics Society of Japan,2001,25,903-906.
    122.田民波.磁性材料[M],北京:清华大学出版社,201,37.
    123.R.C.奥汉德利著.周永洽等译.现代磁性材料原理和应用[M],北京:化学工业出版社,2002,349-352.
    124.Huang B Y, Yamamoto K, Yamashiro Y, Kaido C.Effedt of the cooling condition on the magnetic properties of non-oriented silicon steel sheets [J],Journal of the Magnetics Society of Japan,1999,23,1369-1372.
    125.刘式适,刘式达.特殊函数[M],北京:气象出版社,1988,231-292.
    126.钟文定.铁磁学(中册)[M],北京:科学技术出版社,1987,6.
    127.王会宗.磁性材料及应用[M],北京:国防工业出版社.1989,35-36.
    128.宛德福,马兴隆.磁性物理学[M],成都:电子科技大学出版社,1994,249-253
    129.张世远,路权等.磁性材料基础[M],北京:科学技术出版社,1988,2-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700