用户名: 密码: 验证码:
粉末冶金法制备高硅硅钢片的轧制和热处理工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅含量在6.5%左右的高硅硅钢片具有十分优异的磁性能:磁导率高、铁损低、磁致伸缩小,可以实现低能耗、低噪声,是一类节能环保的软磁材料。但是6.5%硅钢是一种脆性材料,不可轧制加工,因此不能用传统轧制的工艺来制备。目前只有日本采用CVD法实现了工业化生产,但其成本高昂。近十几年来,由于粉末冶金法成本低,成为人们制备高硅硅钢片的又一途径。
     本文采用不同粉体原料,分别采用粉末轧制法和块体轧制法,探索了用粉末冶金法制备高硅硅钢片的工艺条件,研究了影响轧制工艺和硅钢磁性能的因素,得出了比较适宜的制备工艺,制得了性能较好的高硅硅钢片。
     首先,以铁粉为对象,采用有限元法对粉体轧制过程进行了模拟和实验。模拟和实验结果表明,采用粉体轧制时,上下表面由于受力情况与内部不同,多呈现疏松的结构。粉体轧制时,粉体的流动性和辊缝是影响轧制带材的重要因素。辊缝是影响带材密度的主要因素,高流动性的粉体轧制得到的带材较为致密。当原料中存在流动性差的另一硅相时,流动性差的硅相易损失,使带材元素含量偏离配比。
     纯铁在1400℃以下时难以烧结致密化。铁硅之间的扩散反应与粉体粒度和温度密切相关,从而影响烧结体的轧制能力,最终影响硅钢的性能。当硅粉粒度适当时,经初次热处理后,得到既无单质Si,又具有较好变形能力时,经二次轧制和高温热处理可以得到密度较高、性能较好的硅钢片。
     加入少量的Sn可以提高Si与Fe的反应能力,从而在低温短时间内实现Si与Fe的反应。Sn的加入还可改善Fe的烧结,容易得到大晶粒的Fe。含H2的气氛对烧结硅钢不利,易造成硅的氧化。比较适宜的烧结气氛为Ar。
     采用超细硅粉和铁粉混合后,经500-1000℃SPS处理后得到的块体材料具有变形能力,可以通过轧制得到厚度为0.3-0.4mmm的片材,但是经高温热处理得到的硅钢片材氧化严重,带材致密度不高,材料的磁性能比粉末轧制法制备的材料差。
     以Fe和FeSi为原料经SPS烧结可制备出具有轧制能力的硅钢锭。FeSi原料的颗粒粒度、SPS温度、压力对Fe和FeSi颗粒之间的扩散反应有影响,从而影响最终产物的物相显微结构。由粗颗粒原料烧结的块体具有良好的延展性,表现为韧性断裂;随粒度的减小、烧结温度的升高,烧结试样延展性变差,逐渐变成脆性断裂。制备致密且具有良好延展性的硅钢锭的适宜工艺条件为:粗FeSi颗粒在1100℃以下温度烧结、烧结压力50MPa。
     以具有可轧能力且密度高的硅钢块体为原料,经轧制减薄和退火处理,可以制备出性能较好的高硅硅钢片。其磁性能为饱和磁化强度17740Gs,矫顽力3.670e。其饱和磁化强度与由Fe和Si混合后再轧制烧结制备的硅钢相当,但矫顽力约降低9倍。
The high silicon steels with the silicon content of about 6.5% are energy-saving and environment-protected soft magnetic material with low-energy as well as low noise due to the excellent magnetic properties such as high magnetic permeability, low core loss, and low magnetostriction. However, the silicon steels with 6.5% silicon are too brittle to be rolled thus cannot be fabricated with the traditional rolling process. Up to now, only the Japanese have achieved industrialized production by CVD method with high cost. During recent decades, powder metallurgy, with low cost, has become another approach for the fabrication of the high silicon steels.
     In this paper, powder rolling and bulk rolling were applied with different raw powder materials to explore the process conditions of high silicon steels fabrication by powder metallurgy. The factors affecting the rolling process and magnetic properties of silicon steels were investigated. The suitable fabrication process as well as silicon steels with good properties were obtained.
     At the beginning, the simulation and experiment was carried out based on the finite element method, with iron as the objection. The loose structure was more likely to appear due to different load-carrying conditions between the inner and the out surface during powder rolling. The strip quality was greatly influenced by the roll gap and the powder flow ability since the gap was the main factor contributing to the strip density and dense strip could be attained with high flow ability powder. When another poor flow ability silicon phase existed in the raw material, the content of the strip could drift due to easy loss of such silicon phase.
     Pure iron is difficult to densify during sintering below 1400℃. The diffusion reaction between iron and silicon is closely related to the powder granularity and temperature, thus affecting the rolling ability as well as the final properties. With the proper silicon powder granularity, the green strip, having a good deformation ability and no elemental Si after the first heat treatment, could transform to high density silicon steels after the second rolling and heat treatment.
     The reaction between Si and Fe could be stimulated by small introduction of Sn thus being achieved in low temperature and short time, which also improved the sintering of Fe with a large crystal grain. The atmosphere with H2 deteriorated the sintering of silicon steel and resulted in the oxidation of Si while Ar atmosphere is better.
     The bulk material, with the blend of ultra-fine Si and Fe powder, had the deformation ability after 500-1000℃SPS treatment, which can transform to strip with the thickness of 0.3-0.4mm by rolling. They were severely oxidized after high temperature heat treatment with lower density and magnetic properties compared to materials by powder rolling.
     The silicon steel ingots can be fabricated by SPS technique with Fe and FeSi as the raw materials. The powder granularity as well as SPS temperature and pressure can affect the diffusion reaction between Fe and FeSi particles, hence influencing the microstructure of the final products. The bulk material with coarse powder had good ductility and performed ductile failure. With the decreasing granularity and the increasing temperature, the ductility degraded and brittle failure gradually took place. The proper processing condition for dense and ductile silicon steels should be:the coarse FeSi particles with the sintering temperature below 1100℃and the pressure 50MPa.
     The high silicon steels can be produced by roll-thinning and annealing with the highly dense silicon steel bulk as the raw materials. The saturated magnetization was 17740Gs and coercive force was 3.67Oe. The saturated magnetization is equivalent to that silicon steel blended by Fe and Si, but the coercive force reduced 9 times.
引文
[1]McGraw-Hill Dictionary of Scientific and Technical Terms,6th edition, published by the McGraw-Hill Companies, Inc.2003
    [2]田民波.磁学现象与磁性[M].北京:清华大学出版社,2001:1-2
    [3]陈洵.磁性塑料及其应用[J].工程塑料应用,1998,12:25-27
    [4]王鹏.飞艇对接用磁性材料及其机构研究[D].南京航空航天大学,南京,2007
    [5]张瑞华.几种新型塑料加工成型和应用[J].化工之友,2007,09:37-39
    [6]马啸华,马淮凌,黄华伟,丁秀云.铁氧磁流体磁性粒子形成的影响因素及其作用机理[J].应用化工,2005,5:301-303
    [7]蒋晓娜,兰中文,余忠,庄亚明,刘培元.Mn304对LiZn铁氧体磁性能、微结构和电阻率的影响[J].无机材料学报,2010,25(1):77-82
    [8]陈淘.磁性塑料[C].中国工程塑料工业协会第一届年会论文集,1998
    [9]王强.铁氧体磁性材料烧结技术[J].中国陶瓷,2010,46(4):21-24
    [10]中华人民共和国国家标准磁性材料分类.IEC标准404-1[S].北京:中国标准出版社,1989-Z1-007
    [11]孙世杰.近年铁基粉末冶金行业发展浅析[J].粉末冶金工业,2010,20(2):53-58
    [12]赵义恒,张药西.软磁材料的技术进展及选择[J].电子元器件应用,2009,11(3):73-79
    [13]J. A. Bas, J. A. Calcro, M. J. Dougan. Sintered soft magnetic materials Properties and application. Journal of Magnetism Magnetic Materials,2003,254:391-398
    [14]张继兰,陈玉国.非晶合金铁心配电变压器技术与选用[J].电气制造,2010(2):29-37
    [15]陈文满,陈登福,黄丽,廖明.热轧硅钢高温力学性能研究[J].材料导报,2008,5(22):426-428
    [16]徐跃民.森吉米尔轧机冷轧硅钢生产技术[J].武钢技术,1998(11):48-50
    [17]徐跃民.冷轧电工钢生产新技术[J].上海金属,2007,29(5):47-51
    [18]荣光.冷轧硅钢的生产工艺概述[J].本钢技术,2008(3):25-31
    [19]钱金川,于建兵,朱守敏.微晶合金磁芯材料在逆变电源中的应用[J].现代焊接,2009,
    [20]曾本量.葛知青译.Ni-Fe-Ta-Mo系高导磁率硬坡莫合金的特性.日本金属学会志,1975(3):281-284
    [21]张翠玲.NiFeNb种子层中Nb原子百分含量对坡莫合金膜磁性能的影响:[硕士学位论文].重庆:西南师范大学,2005
    [22]艾家和,高阳,耿魁伟,等.坡莫合金/铜磁性多层膜微观力学性能的研究[J].真空科学与技术学报,2004,24:42-49
    [23]牛永吉,桑灿,李振瑞,等.FeNi系坡莫合金的研究开发新进展.金属功能材料,2007,14(5):38-42
    [24]张莹.改善Cu坡莫软磁合金性能的工艺研究[J].热处理,2003(02):22-25
    [25]施永明,金永明,张庆.坡莫合金真空热处理工艺.今日科技,1978(3):15-17
    [26]张晓秋,胡柏荣.坡莫合金高温退火对磁性的影响.航空制造技术,1981(2):27-28
    [27]季勇,周丽萍,季红.磁致伸缩对超坡莫合金软磁性能的影响[J].首都师范大学学报,2004,25(3):29-31
    [28]王立军,张广强,李山红等.铁基非晶合金应用于电机铁芯的优势及前景[J].金属功能材料,2010,17(5):58-62
    [29]王新林.非晶和纳米晶软磁合金从研究到产业化(一)[J].金属功能材料,1996,3(5):161-169
    [30]M. Manivel Raja, K. Chatto Padhyay, B. Majumdar, A. Narayanasamy. Structure and soft magnetie Properties of Fine metalloys[J]. Journal of Alloys and Compounds,2000,297: 199-205
    [31]杨国斌.超微晶软磁合金的磁性和结构[J].物理,1994,24(2):65-70
    [32]Kubaschewski. Phase Diagrams of Binary Iron Alloy, H. Okamoto, editor. ASM International, Materials Park, OH,1993:380-381
    [33]E. Gumlich:Wiss、Abhandl. Physik-tech. Reinsanstadt.1918,4:267
    [34]T. D. Yensen:Phys. Rev.1915,6:404
    [35]田口悟.电磁钢板.日本:八蟠孔版有限会社,1979
    [36]田口悟.电工钢板.武汉钢铁公司硅钢片厂,1981
    [37]Mel Schwartz. Encyclopedia of materials, parts, and finishes,2nd ed. New York, London, Washington D.C., CRC Press,2002
    [38]NKK report, NKK Receives Okochi Prize for 6.5%-Si Steel Sheet Technology[C], NKK Monthly Release,1997, May
    [39]J. W. Cunningham, R. T. Darby, D. H. Lane and D. M. Pavlovic. Processing of 6.5-Percent Si-Fe Sheet and Tape[C]. The 1969 Workshop on Applied Magnetics, Washington D. C., 1969:22-23
    [40]K. I. Arai, K. Ohmori, T. Satoh and Y. Yamashiro. Very Low Core Loss High Silicon-Iron Ribbon. IEEE Transtions on Magnetics,1987,5:3221-3226
    [41]Masahiro Miyazaki, Masashi Ichikawa, Takayuki Komatsu, and Kazumasa Matusita. Formation and Electronic State of DO3-Type Ordered Structure in Sputtered Fe-Si Thin Films. Journal Applied Physics,1992,71(5):2368-2374
    [42]Takada Y, Abe M, Masuda S, et al. Commercial scale production of Fe-6.5wt%Si sheet and its magnetic properties[J]. J Appl Phys,1988,64(10):5367-5369
    [43]Haiji H, Okada K, Hiratani T, et al. Magnetic properties and workability of 6.5% Si steel sheet. J Magn Magn Mater,1996,160:109-114
    [44]何忠治.电工钢.北京:冶金工业出版社,1997
    [45]K. Narita and M. Enokizono. Effects of Ni, Al, and Mn additions on the mechanical and magnetic properties of 6.5% Si-Fe sheets[J]. IEEE Transactions on Magnetics,1976,12(6): 873
    [46]K. Narita and M. Enokizono. Effect of nickel and manganese addition on ductility and magnetic properties of 6.5% silicon-iron alloy[J]. IEEE Transactions on Magnetics, 1978,14(4):258-262
    [47]高田芳一.公开特许公报,昭63-145716
    [48]高田芳一,稻垣淳一,升田贞和.公开特许公报,昭63-35744
    [49]陈燮揆.中小型电机,1994,21(3):60
    [50]Tsuya N, Arai K.I.3M Conference. Cleveland,1978
    [51]胡广勇.Fe-6.5wt%Si与Fe-3wt%Si薄板、薄带的制备、织构及晶界特征分布的研究:[博士学位论文].东北大学,沈阳,1998
    [52]刘海明.高硅电工钢片的开发.金属材料研究,1993,19(2):23-28
    [53]Duwe P, Willens R H, klement W. The Study on Down Quenehing Solidifying Of Molten Metal[J]. J Applphys,1960(31):1136
    [54]T. Yamaji, M. Abe, Y. Takada et al. Magnetic properties and workability of 6.5% silicon steel sheet manufactured in continuous CVD siliconizing line[J]. Journal of Magnetism and Magnetic Materials,1994,133:187-189
    [55]H. Haiji, K. Okada, T. Hiratani et al. Magnetic properties and workability of 6.5% Si steel sheet[J]. Journal of Magnetism and Magnetic Materials,1996,160:109-114
    [56]胡广勇,武保林,王刚,等.CVD法制取Fe-6.5%薄板的扩散工艺计算机模拟[J].东北大学学报,1999,20(4):405-407
    [57]蔡宗英.熔盐电化学法渗硅制备Fe-6.5wt%Si薄板的基础研究:[硕士学位论文].河北理工学院,河北,2003
    [58]T. Ros-Yanez, Y. Houbaert and V.G. Rodriguez. High-silicon steel produced by hot dipping and diffusion annealing. Journal of Applied Physics,2002,91(10):7857-7859
    [59]Tanya Ros-Yanez, Yvan Houbaert and Marc De Wulf. Evolution of magnetic properties and microstructure of high-silicon steel during hot dipping and diffusion annealing. IEEE Transactions on Magnetics,2002,38(5):3201-3203
    [60]高田芳一.高机能磁性薄钢板(6.5% Si素钢板).NKK技报,1989(125):58
    [61]Joannopoulos J. D., Meade R. D., Winn J. N. Photonic Crystals:Molding the Flow of Light [M]. Princeton Univ Press, NJ,1995.
    [62]T. Sakai, Y. Suzuki, S. Shimosato et al. Magentic proerties of Fe-Si alloys by powder metallurgy. IEEE Transactions on Magnetics,1977,13(5):1445-1447
    [63]K. Kusaka, T. Imaoka and T. Kondo. Relationship between properties and Si-content sintering conditions of Fe-Si type magnetic alloys[J]. Journal of the Japan Society of Powder and Powder Metallurgy,2000,47(2):195-202
    [64]员文杰,沈强,张联盟.粉末轧制法制备Fe-6.5%Si硅钢片的研究[J].粉末冶金技术,2007,25(1):32-34
    [65]Ken Makita, and Osamu Yamashita. Cold-Rolled Texture Magnetic Properties of Fe-6.2%Si Sintered Material[J]. J Japan Inst. Metals,1999,63(9):1121-1124
    [66]Ran Li, Qiang Shen, Lianmeng Zhang et al. Magnetic Properties of High Silicon Iron Sheet Fabricated by Direct Powder Rolling[J]. Journal of Magnetism and Magnetic Materials, 2003,281:135-139
    [67]W. F. Wang. Rolling compaction, magnetic properties, and microstructural development during sintering of Fe-Si[J]. Powder Metallurgy,1995,38(4):289-293
    [68]E. V. Walker and J. Howard. The Production of Silicon-Iron Magnetic Strip with The (110) [001] Texture, by Cold Rolling From Sintered Compacts[J]. Powder Metallurgy,1959,4: 32-43
    [69]Masahiro Miyazaki, Masashi Ichikawa, Takayuki Komatsu, and Kazumasa Matusita. Formation and Electronic State of DO3-Type Ordered Structure in Sputtered Fe-Si Thin Films[J]. Journal Applied Physics,1992,71(5):2368-2374
    [70]ABAQUS理论手册,2005
    [71]Takaji, Kusakawa, Toshikatsu, Otani. Properties of Various Pure Irons:Study on pure iron Ⅰ. Tetsu-to-Hagane 50 (1):42-47
    [72]M. Goertz. Iron-Silicon Alloys Heat Treated in a Magnetic Field[J]. J. Appl. Phys.1951,22: 964-965
    [73]A Heiming, K H Steinmetz, G Vogl and Y Yoshida. Mossbauer studies on self-diffusion in pure iron[J]. Journal of Physics F:Metal Physics.1988,18(7):1491-1503
    [74]R. K. Dube. Metal Strip via Roll Compaction and Related Powder Metallurgy Routs [J]. International Materials Reviews,1990,35 (5):253-291
    [75]特贝尔,(美)克雷克著.北京冶金研究所《磁性材料》翻译组译.磁性材料[M].北京:科学出版社,1979
    [76]戴道生,钱昆明著,铁磁学[M].北京:科学出版社,1987
    [77]G. Jangg, M. Drozda, G. Eder. Magnetic Properties of Sintered Iron[J]. Powder Metallurgy International,1983,15:173-177
    [78]张世权.磁性材料基础.北京:科学出版社,1988
    [79]B. A. James. Review of the magnetic properties of sintered iron[J]. Powder Metallurgy, 1979,2:75-79
    [80]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997
    [81]郭栋,周志德.金属粉末轧制[M].北京:冶金工业出版社,1984
    [82]彭超群,江垚,贺跃.元素粉末冷轧成形及反应合成制备TiAl合金过滤材料[J].中国有色金属学报,2004,14(6):889-895
    [83]江垚,贺跃辉,汤义武.元素粉末冷轧成形及反应合成制备Ti-Al合金板材.中国有色金属学报,2004,14(9):1501-1507
    [84]员文杰.粉末轧制法制备高硅硅钢片的工艺及过程原理的研究:[博士学位论文].武汉理工大学,武汉,2007
    [85]S. Coffa, L. Calcagno, S. U. Campisano et al. Diffusion of ion-implanted gold in p-type silicon[J]. Journal of Applied Physics,1988,64(11):6291-6295
    [86]H. Nakashima and K. Hashimoto. Diffusivities of transition-metal impurities in silicon[J]. Materials Science Forum,1992,83-87:227-232
    [87]西泽泰二著,郝士明译.微观组织热力学[M].北京:化学工业出版社,2006
    [88]郝润蓉,方锡义,钮少冲.无机化学丛书第三卷碳硅锗分族[M].科学出版社,1998
    [89]何忠治.电工钢[M].冶金工业出版社,1996
    [90]T. D. Yensen, N. A. Ziegler. Trans. Am. Soc. Met,1935,23:556
    [91]H. F. Fishmeister, E. Arzt. Densification of powders by particle deformation[J]. Powder Metallurgy,1983,26:82-86
    [92]S. Mocarski, W. Hall. Pore Morphology of Ferrous Metal Powder Sintered at High Temperatures [J]. The international journal of powder metallurgy,1980,16:387-401
    [93]K. Hajmrle, J. M. Capus. Sintering atmospheres and dc magnetic properties of iron[J]. Powder Metallurgy,1980,2:95-99
    [94]J. M. Capus, K.Hajmrle. The Effect Of Sintering Atmospheres on Magnetic Properties [J]. Powder Metallurgy International,1983,15:193-196
    [95]K. H. Moyer. Modern development in powder metallurgy [J]. Progress in Powder Metallurgy,1977,11:371-383
    [96]G. Jangg, M. Drozda, G. Eder. Magnetic Properties of Sintered Iron[J].Powder Metallurgy International,1983,15:173-177
    [97]G. Jangg, M. Drozda, G. Eder. Magnetic Properties of Sintered Iron[J]. Powder Metallurgy International,1984,16:60-64
    [98]Baik J M, Kameda J, Buck O. Small punch test evaluation of intergranular embrittlement of an alloy steel[J]. Script Mitallurgica,1983,17:1443-1447
    [99]X Mao, H Takahashi, T Kodaira. Use of subsized specimen for evaluation the strength and fracture toughness of irradiated 2.25Cr-1Mo steel[J]. Journal of Engineering Materials and Technology,1992.114:168-171
    [100]W. F. Wang. Rolling Compaction, Magnetic Properties and Microstructural Development during Sintering of Fe-Si[J]. Powder Metallurgy,1995,38 (4):289-293
    [101]李然.粉末压延法制备高硅铁硅合金:[硕士学位论文].武汉

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700