用户名: 密码: 验证码:
流程工业生产系统TRF模型及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前新兴的扩展PSE领域研究和流程工业MES(P-MES)系统实践之间有着相辅相成的紧密关联,两者既具有相同的对象,也有着共同的目标。由于扩展PSE领域的研究工作继承和延续了传统PSE的研究思路,使得当前大量的努力和成果集中于多层次的决策与优化方法方面。然而,作为最终面向工程应用的理论研究,这些努力和成果是否具有价值和意义则必须由系统化的应用成效决定,即当前及未来扩展PSE理论研究活动必须以类似于P-MES的系统技术的前沿需求为导向方能获得均衡及有目标的发展。本项研究首先以此为视角对扩展PSE及P-MES的现状进行了系统性的对比分析,从而指出了若干薄弱环节,进而明确了系统导向下的若干研究挑战,最终将其中最缺乏关注与成果的全局生产系统状态观测与反馈建模难题作为本项研究的主题。
     通过分析空间多尺度的生产系统(工厂)和时间多尺度的CMS系统之间的信息流关系,透视了控制信息流的分解过程和反馈信息流的聚集过程。面向生产系统状态观测、反馈和追溯的目标,提出在反馈信息流中实现测量数据、基本信息单元和生产系统状态信息逐层聚集与融合的TRF模型理论及其4项关键方法。论证了TRF模型的机理和针对生产物流结构性动态的适应能力,给出了该模型及其关键方法在工厂级控制环中的架构方式。
     以上述系统性分析结果为基础展开4项关键方法的研究,分别在TRF模型中实现事件跟踪、移动合成、模型表达和模型解析。其中,基于数据/信息之间的冗余关系将事件跟踪问题转化为一类在线的必要特征估计问题,从而解决了-般测量时序下的事件跟踪难题,以此为基础分别给出了自动的事件在线跟踪和移动实时合成方法。从TRF模型的时间表达原理入手,对比调度优化中广泛使用的连续时间原理及相关方法,通过分析STN/RTN在传统连续时间方法中的作用及其面向TRF模型表达需求的不足,创新地提出了连续时间网络(CTN)概念,基于CTN及其节点图式所提供的动态索引,给出了TRF模型的动态表达方法和动态解析方法。
     由上述关键方法的原理支撑的TRF模型系统概念设计、关键方法仿真以及同比优势均表明本项研究的结果成立,且具有深入研究和实践的价值。
Current emerging research in extended PSE domain and system practice of process industry MES (P-MES), which have the same object and target, has a mutual relation in-between. Since researches in extended PSE area inherit and continue the research thought of traditional PSE, a majority efforts and results lie in aspects such as multi-hierarchy decision-making and optimization method. However, as an engineering application oriented theoretical research, value and significance of these efforts and results must be evaluated by systematical application effectiveness, that is to say, current and future theory research activities in extended PSE domain can only obtain balance and development by following future demand similar to that of P-MES. In this thesis, current situation and weak point of extended PSE and P-MES have been compared systematically first, then multiple weak points are pointed, research challenges under system direction are further identified, eventually, global process system feedback modeling problem that lacks focuses and achievements is taken as the topic of this research.
     Decomposition process of control information flow and aggregation process of feedback information flow are demonstrated by analyzing process system (plant) of multi-dimensional space and CIMS system of multi-dimensional time. To fulfill the target concerning state tracing, feedback and tracking of process system, TRF model theory including aggregation and fusion realization of measurement data, basic information units and state information in process system based on feedback information flows and four other key methods. Mechanism of TRF model and adaptability subject to structural dynamic of process flows are verified, architecture modes of this model and relevant key method in plant-wide scale are given.
     Research works on four key methods are conducted based on analysis results mentioned above to realize event-tracing, movement integration, model presentation and model analysis. Based on redundancy relation between data/information, event-tracing problem is transformed into a class of on-line necessary characteristic estimation problem to solve the difficult problem of on-line event-tracing in conventional measurement time series, then automatic event-tracing and movement integration methods are given respectively. Begin with the theory for time representation in TRF model, continuous time method widely adopted in scheduling optimization is analyzed by comparison. Concept of continuous time network (CTN) is proposed creatively though analyzing the role of STN/RTN in traditional continuous time method and their insufficiency to meet the model presentation demands in TRF. By following the node-graph dynamic index mechanism of CTN, dynamic description method and analytic method of TRF model are given.
     Design of TRF model system concept, key method simulation and advantages by comparison supported by mechanism of the aforementioned key method demonstrate the correctness of this research, besides,this research deserves further research and has value in practical application.
引文
[1]褚健、荣冈.(2004).流程工业综合自动化技术,北京:机械工业出版社.
    [2]ISA-The Instrumentation S., and Automation Society, The ANSI/ISA 95.00.01, Enterprise-control system integration-Part 1:models and terminology [M].2005, Research Triangle Park, North Carolina 27709 USA:ISA.
    [3]冯毅萍.(2008).石化生产过程多分辨率物流模型的建模方法,浙江大学博士学位论文.
    [4]Luis P, Jose M L. (2008). Capturing dynamics in integrated supply chain management, Computers and Chemical Engineering,32:2582-2605.
    [5]Harjunkoski I, Nystrom R, Alexander H. (2009). Integration of scheduling and control-Theory or Practice?, Computers and Chemical Engineering,33:1909-1918.
    [6]Brussel H V, Wyns J, Valckenaers P, Bongaerts L, Peeters P. (1998). Reference architecture for holonic manufacturing systems:PROSA, Computers in Industry, 37(3):255-274.
    [7]Valckenaers P, Brussel H V, Wyns J, Bongaerts L, Peeters P. (1998). Designing Holonic manufacturing systems Robotics and Computer-Integrated Manufacturing, 14(5-6):455-464.
    [8]Guo Q, Zhang M. (2009). A novel approach for multi-agent-based Intelligent Manufacturing System, Information Sciences,179(18):3079-3090.
    [9]Wang L., Lin S. (2009). A multi-agent based agile manufacturing planning and control system, Computers & Industrial Engineering,57(2):620-640.
    [10]Chen K., Chen C. (2010). Applying multi-agent technique in multi-section flexible manufacturing system, Expert Systems with Applications,37(11):7310-7318.
    [11]Panetto H., Molina A. (2008). Enterprise integration and interoperability in manufacturing systems:Trends and issues, Computers in Industry,59(7):641-646.
    [12]Shaw C. F, Song E Y. (2003) A Manufacturing Process Information Model for Design and Process Planning Integration, Journal of Manufacturing Systems,22(1):1-15.
    [13]朱炜,荣冈.(2004).一种基于Multi-Agent系统的流程MES自适应数据集成技术研究,第五届全球智能控制与自动化大会,杭州:3129-3133.
    [14]Vernadat F B. (2007). Interoperable enterprise systems:Principles, concepts, and methods, Annual Reviews in Control,31(1):137-145.
    [15]Panetto H, Molina A. (2008). Enterprise integration and interoperability in manufacturing systems:Trends and issues, Computers in Industry,59(7):641-646.
    [16]Chen D, Doumeingts G, Vernadat F. (2008). Architectures for enterprise integration and interoperability:Past, present and future, Computers in Industry,59(7):647-659.
    [17]Morbach J, Wiesner A, Marquardt W. (2008). Onto CAPE 2.0-A (Re-)usable ontology for Computer-Aided Process Engineering, Computer Aided Chemical Engineering,25:991-996.
    [18]Morbach J, Wiesner A, Marquardt W. (2009). OntoCAPE-A (re)usable ontology for computer-aided process engineering, Computers & Chemical Engineering, 33(10):1546-1556.
    [19]Klatt K U, Marquardt W. (2009). Perspectives for process systems engineering—Personal views from academia and industry, Computers & Chemical Engineering,33(3):536-550.
    [20]Barton P I, XBanga J R, Galan S. (2000). Optimization of hybrid discrete/continuous dynamic systems, Computers & Chemical Engineering,24(9-10):2171-2182
    [21]Naraharisetti P K, Adhitya A, Karimi I A, Srinivasan R.(2009). From PSE to PSE2 —Decision support for resilient enterprises. Computers and Chemical Engineering, 33:1939-1949.
    [22]Klatt K, Marquardt W. (2009) Perspectives for process systems engineering-Personal views from academia and industry, Computers and Chemical Engineering,33:536-550.
    [23]Grossmann I. (2005). Enterprise-wide Optimization:A New Frontier in Process Systems Engineering, AIChE,51 (7):1846-1857.
    [24]Varma V A, Reklaitis G V, et al. (2007). Enterprise-wide modeling & optimization-An overview of emerging research challenges and opportunities, Computers and Chemical Engineering,1:692-711.
    [25]Hwang W T, Tien S W, Shu C M. (2007). Building an Executive Information System for Maintenance Efficiency in Petrochemical Plants—An Evaluation, Process Safety and Environmental Protection,85(2):139-146.
    [26]Bertolini M., Bevilacqua M., et al. (2009). Development of Risk-Based Inspection and Maintenance procedures for an oil refinery. Journal of Loss Prevention in the Process Industries,22(2):244-253.
    [27]Dietz A, Azzaro-Pantel C, Pibouleau L, Domenech S. (2006). Multiobjective optimization for multiproduct batch plant design under economic and environmental considerations, Computers & Chemical Engineering,30(4):599-613.
    [28]Vassiliadis C G. (2000). Maintenance-based strategies for environmental risk minimization in the process industries, Journal of Hazardous Materials,71 (1-3):481-501.
    [29]Bassett M H, Dave P, Doyle, et al. (1996). Perspectives on model based integration of process operations. Computers and Chemical Engineering,20(6-7):821-844.
    [30]Chatzidoukas C, Kiparissides C, Perkins J D, Pistikopoulos E N. (2003). Optimal grade transition campaign scheduling in a gas-phase polyolefin FBR using mixed-integer dynamic optimization, Computer Aided Chemical Engineering,15:744-747.
    [31]Musulin E, Arbiza M J, Bonfill, Puigjaner A., et al. (2005). Closing the information loop in recipe-based batch production, Computer Aided Chemical Engineering, 20(2):1381-1386.
    [32]Cao Y, Yang Y, Yang L. (2008). Dynamic scheduling and control system based on multi-layer mixed construction of manufacturing resource agents, In Proceedings international symposium on information processing,2008:247-251.
    [33]Mufioz E, Capon-Garcia E, Moreno-Benito M, Espufia A, LPuigjaner L. (2011) Scheduling and control decision-making under an integrated information environment, Computers & Chemical Engineering,35(5):774-786.
    [34]Perea-Lopez E, Ydstie B E, Grossmann I E. (2003). A model predictive control strategy for supply chain optimization, Computers & Chemical Engineering, 27(8-9):1201-1218.
    [35]Bose S, Pekny J F. (2000) A model predictive framework for planning and scheduling problems:A case study of consumer goods supply chain, Computers & Chemical Engineering,24:329-335.
    [36]Shaik M, Gudi R D. (2005). A multilevel control-theoretic framework for integration of planning, scheduling, and rescheduling, Industrial & Engineering Chemistry Research, 44:4001-4021.
    [37]Li X, Marlin T. (2007). The application of robust MPC to an industrial supply chain optimization problem, In AIChE annual meeting 2007Salt lake City, USA, November 4-9.
    [38]Sundar R T, Lakshminarayanan S. (2008) Performance assessment/enhancement methodology for supply chains. Industrial and Engineering Chemistry Research,47(3): 748-759.
    [39]中国石化SMES3.0系统设计报告(I).(2007).北京.
    [40]Available from: https://www.cee.siemens.com/web/slovakia/sk/corporate/portal/produkty/divizie/automati zacna/ponuka/priemyselne/Pages/manufacturing_execution_systems_-_simatic_it.aspx
    [41]Available from:http://www.aspentech.com/core/
    [42]Available from:http://soft.supcon.com/view.asp?newsid=441
    [43]Available from: http://hpsweb.honeywell.com/Cultures/en-US/Products/OperationsApplications/Productio nManagement/POMSnet/default.htm
    [44]张溥明.(2001).流程工业数据协调模型与算法研究,浙江大学博士学位论文.
    [45]张奇然.(2006).流程工业物流分层建模与数据校正算法研究,浙江大学博士学位论文.
    [46]李荣雨.(2007).基于PCA的统计过程监控研究,浙江大学博士学位论文.
    [47]福建炼油厂生产操作规程.(2001).福建.
    [48]Kretsovalis A, Mah R S H. (1987). Observability and redundancy classification in multicomponent process networks. AIChE J.33(1):70-82.
    [49]Ali Y, Narasimhan S. (1993). Sensor network design for maximizing reliability of linear processes. AIChE J,39(5):820-828.
    [50]Stanley G M, Mah RSH. (1981). Observability and redundancy classification in process networks theorems and algorithms. Chem. Engng Sci,36(12):1941-1954.
    [51]Crowe C M. (1988). Recursive identification of gross error in linear data reconciliation, AIChE J,34(4):541-550.
    [52]袁永根.(1985).化工过程数据的校正和估算方法.计算机与应用化学,2(4):259-270。
    [53]Kelly J D. (1999). Reconciliation of process data using other projection matrices [J]. Computers Chem. Engng,27:785-789.
    [54]Crowe C M. (1986). Reconciliation of Process Flow Rates by Matrix Projection.Part Ⅱ The Nonlinear Case. AIChE Journal,32:616-623.
    [55]Stanley G M, Mah RSH. Estimation of flows and temperatures in process networks. AIChE Journal,23:642-650.
    [56]Vaclavek V, Loucka M. (1976). Selection of Measurements Necessary to Achieve Multicomponent Mass Balances in Chemical Plant. Chem. Eng. Sci,31:1199-1205.
    [57]Madron F, Veverks V. (1992). Optimal selection of measuring points in complex plants by linear models, AIChEJ,38:227-236.
    [58]Sanchez M, Bandoni A and Romagnoli J. (1992). P LADAT:A package for process variable classification, Computers Chem. Engng., S499-S506.
    [59]Maquin D, Luong M and Ragot J. (1994). Observability analysis and sensor placement. SAFE PROCESS'94 IFAC/IMACS Symposium on Fault Detection. Supervision and Safety for Technical Process,725-730.
    [60]Bagajewicz M J. (1997). Design and retrofit of sensor networks in process plants. AICh J,43(9):2300-2306.
    [61]Sen S, Narasimhan S and Deb K. (1998). Sensor network design of linear processes using genetic algorithms. Computers Chem. Engng.,22(3):385-390.
    [62]Wang Y, Zhang P M, Rong G and Wang S Q. (1999). Sensor networks design for linear systems using genetic algorithm,'99 Korea-China Joint Workshop on Process Systems Engineering, Taejon Korea,1999:23-26.
    [63]Bagajewicz M J and Sanchez M C. (1999). Design and upgrade of nonredundant and redundant linear sensor networks. AIChE J.,45(9):1927-1938.
    [64]Kretsovalis A and Mah R S H. (1987). Effect of redundancy on estimation accuracy in process data reconciliation. Chem. Engng. Sci.,42(9):2115-2121.
    [65]张溥明,荣冈.(2001).线性测量网传感器配置与多目标优化.纪工学报,52(7):646-649。
    [66]张劲松,李歧强.(2006).混杂Petri网在流程工业生产物流建模中的应用,系统仿真学报18:10.
    [67]郑丽钰.(2008).基于DEVS的石化多层次物流模型建模和仿真研究.浙江大学硕士学位论文.
    [68]Jeffrey D K. (2003). Next-generation refinery scheduling technology, NPRA Plant Automation and Decision Support Conference.
    [69]Artiba A, Riane F. (1998). An application of a planning and scheduling multi-model approach in the chemical industry, Computers in Industry,36(3):209-229.
    [70]Abraham J N. (2009). Integration of generative and evaluative models for production scheduling of lube oil plants in a petroleum refinery, Applied Mathematical Modeling, 33:1213-1227.
    [71]Available from:www.aspentech.com/ps/orion.pdf.
    [72]Available from: http://kbcdev.contentactive.com/default/documents/industry%20releases/pr_010319.pdf.
    [73]冯毅萍,荣冈.(2005).流程工业智能工厂实验系统.信息与控制,34(4)。
    [74]许华、吴玉成、荣冈.(2010).流程工业企业级仿真及优化技术平台课题技术报告,杭州.
    [75]裴瑞凌.(2005).智能工厂流程模拟仿真平台IntelSim的设计,浙江大学硕士学位论文.
    [76]吴华兵.(2006).工厂物流与能耗过程仿真平台研究与应用.浙江大学硕士学位论文.
    [77]吴婕.(2007).多生产方案炼油过程物流仿真系统,浙江大学硕士学位论文.
    [788]李笕列.(2009).流程企业模型与数据管理研究,浙江大学博士学位论文.
    [79]王旭.(2008).流程工业多层次数据校正方法及其应用研究,浙江大学博士学位 论文.
    [80]吕品晶.(2005).数据校正方法与工程应用研究,浙江大学硕士学位论文.
    [81]Li D F, Liu L, Zhu W, and RONG G. (2008). Material-flow Modeling Technology and Its Application in Manufacturing Execution Systems of Petrochemical Industry, Chinese Journal of Chemical Engineering,16(1):71-78.
    [82]Roslof J, Harjunkoski I, Bjorkqvist J, Karlsson S, Westerlund T. (2001). An MILP-based reordering algorithm for complex industrial scheduling and rescheduling, Computers & Chemical Engineering,25(4-6):821-828.
    [83]Mendez C A, Cerda J, Grossmann I E, Harjunkoski I, Fahl M. (2006). State-of-the-art review of optimization methods for short-term scheduling of batch processes, Computers & Chemical Engineering,30(6-7):913-946.
    [84]Minseok K, In-Beum L. (1997). Rule-based reactive rescheduling system for multi-purpose batch processes. Computers& Chemical Engineering, S1197-S1202.
    [85]Bertalanffy V L. (1950). An outline of general systems theory, British Journal for the Philosophy of Science,1,2. (转引自文献[19])
    [86]Gigch V J P. (1991). System design modeling and metamodeling, New York:Plenum.(转引自文献[19])
    [87]Yang A D, Marquardt W. (2009). An ontological conceptualization of multiscale models, Computers and Chemical Engineering,33:822-837.
    [88]Li J, Ge W, Zhang E J,& Kwauk M. (2005). Multi-scale compromise and multilevelcorrelation in complex systems. Chemical Engineering Research and Design, 83(A6):574-582.
    [89]孙惠泉.(2004).图论及其应用,科学出版社,北京。
    [90]Kondili E, Pantelides G C, Sargent R W H. (1993). A General Algorithm for Short-term Scheduling of Batch Operation 0-1 MILP Formulation. Computer Chemical Engineering,17(2):211-227.
    [91]Mochus L, Reklatitis G V. (1993). Mathematical Programming Formulation for Scheduling of Batch Operation Based on Nonumiform Time Discretization. Computer Chemical Engineering,1147-1156.
    [92]Available from:http://www.aspentech.com/ps/orion.pdf.
    [93]Available from:http://www.kbcat.com/pdfs/news/ps 000306.pdf.
    [941 Magalhaes M V O, Moro L F L, Smania P, Hassimotto M K, Pinto J M, Abadia G J.(1998). SIPP-A solution for refinery scheduling [C].1998 NPRA computer Conference, National Petroleum Refiners Association,16-18.
    [95]George C, Nikolaos P, Dimitris M. (2005). Refinery short-term scheduling with tank farm, inventory and distillation management:An integrated simulation-based approach. European Journal of Operational Research,166:812-827.
    [96]Available from:http://www.aspentech.com/products/aspen-advisor.aspx.
    [97]Available from:http://hpsweb.honeywell.com/Cultures/en-US/Products/BusinessApplication s/businessflex/default.htm
    [98]Available from:http://www.aspentech.com/products/aspen-event-management.aspx
    [99]刘金琨,尔联洁.(2000).多智能体技术应用综述.控制与决策,16(2):133-140。
    [100]Draa B C, Moulin B. (1992). Trends in distributed artifitial intelligence. Artifitial Intelligence,56(6):35-66.
    [101]Jose M L, Georgios M K, Mariana B, Antonio E, Luis P. (2008). Integrating strategic, tactical and operational supply chain decision levels in a model predictive control framework, Computer Aided Chemical Engineering,25:477-482.
    [102]Reklaitis G V R. (2005). Enterprise-wide decision support systems:PSE contributions & promise, Computer Aided Chemical Engineering,20:1.
    [103]Bassett M H, Dave P, Doyle F J Ⅲ, Kudva G K, Pekny J F, Reklaitis G V, Subrahmanyam S, Miller D L, Zentner M G. (1996). Perspectives on model based integration of process operations, Computers & Chemical Engineering,20(6-7):821-844.
    [104]Lukszo Z, Weijnen M P C, Negenborn R R, Schutter B D,Ilie M. (2006). Challenges for process system engineering in infrastructure operation and control, Computer Aided Chemical Engineering,21:95-100.
    [105]Teixeira A P, Carinhas N, Joao M L, Dias, Cruz P, Paula M. (2007). Hybrid semi-parametric mathematical systems:Bridging the gap between systems biology and process engineering, Journal of Biotechnology,132(4):418-425.
    [106]Norton C, Cameron I, Crosthwaite C, Balliu N, Tade M, Shallcross D, Hoadley A, Barton G, Kavanagh J. (2008). Development and deployment of an immersive learning environment for enhancing process systems engineering concepts, Education for Chemical Engineers,3(2):e75-e83.
    [107]Basson L, Petrie J. A critical systems approach to decision support for process engineering, Computers & Chemical Engineering,31(8):876-888.
    [108]Cauvin S, Barbieux M, Carrie L, Celse B. (2008). A generic scientific information management system for process engineering, Computer Aided Chemical Engineering, 25:931-936.
    1109] Gallestey E, Stothert A, Castagnoli D, Ferrari-Trecate G, Morari M. (2003). Using model predictive control and hybrid systems for optimal scheduling of industrial processes, Automatisierungstechnik,51(6):285-293.
    [110]Nystrom R H, Franke R, Harjunkoski I,& KrollA. (2005). Production campaign planning including grade transition sequencing and dynamic optimization, Computers and Chemical Engineering,29:2163-2179.
    [111]Flores-Tlacuahuac A,& Grossmann I E, (2006). Simultaneous cyclic scheduling and control of amultiproduct CSTR. Industrial and Engineering Chemistry Research, 45:6698-6712.
    [112]Terrazas-Moreno S, Flores-Tlacuahuac A,& Grossmann I E. (2007). Simultaneous cyclic scheduling and optimal control of multi-grade polymerization reactors, AIChE Journal,53(9):2301-2315.
    [113]Terrazas-Moreno S, Flores-Tlacuahuac A,& Grossmann I E. (2008). Simultaneous design, scheduling, and optimal control of a methyl-methacrylate continuous polymerization reactor, AIChE Journal,54(12):3160-3170.
    [114]Prata A., Oldenburg J, Kroll A,& Marquardt W. (2008). Integrated scheduling and dynamic optimization of grade transitions for a continuous polymerization reactor. Computers and Chemical Engineering,32(3):463-476.
    [115]Oldenburg J,& Marquardt W. (2008). Disjunctive modeling for optimal control of hybrid systems, Computers and Chemical Engineering,32(10):2346-2364.
    [116]Lim M K,&Zhang Z. (2003). A multi-agent based manufacturing control strategy for responsive manufacturing, Journal of Materials Processing Technology,139(1 3):379-384.
    [117]Christos T M. (2009). Integration of Production Planning and Scheduling, Computer Aided Chemical Engineering,27:117-118.
    [118]Christos T. M, Sung C. (2009). Integration of production planning and scheduling: Overview, challenges and opportunities, Computers & Chemical Engineering, 33(12):1919-1930.
    [119]Susara A H, Grossmann I E. (2003). A strategy for the integration of production planning and reactive scheduling in the optimization of a hydrogen supply network, Computers & Chemical Engineering,27(12):1813-1839.
    [120]Li Z K, Ierapetritou M G. (2009). Integrated production planning and scheduling using a decomposition framework, Chemical Engineering Science,64(16):3585-3597.
    [121]Li Z K., Ierapetritou M G. (2009). Integration of Planning and Scheduling and Consideration of Uncertainty in Process Operations, Computer Aided Chemical Engineering,27:87-94.
    [122]Li Z K, Ierapetritou M G. (2010). Rolling horizon based planning and scheduling integration with production capacity consideration, Chemical Engineering Science, 65(22):5887-5900.
    [123]Li Z K, Ierapetritou M G. (2010). Production planning and scheduling integration through augmented Lagrangian optimization, Computers & Chemical Engineering, 34(6):996-100.
    [124]Edwin Z, Tijn P J B, Jan C F, Andre B H. (2011). Simultaneous Optimization of Planning and Scheduling in an Oil Refinery, Computer Aided Chemical Engineering, 29:925-929.
    [125]Nikisha K S, Ierapetritou M G. (2012). Integrated production planning and scheduling optimization of multisite, multiproduct process industry, Computers & Chemical Engineering,37:214-226.
    [126]Badell M, Romero J, Huertas R, Puigjaner L. (2004). Planning, scheduling and budgeting value-added chains, Computers & Chemical Engineering,28(1-2):45-61.
    [127]Munawar S A, Mangesh D K, Patwardhan S C, Madhavan K P, Pragathieswaran S, Lingathurai P, Ravindra D G. (2005). Integration of planning and scheduling in multi-site plants:Application to paper manufacturing, Computer Aided Chemical Engineering, 20:1621-1626.
    [128]Majozi T, Zhu X X. (2005). A combined fuzzy set theory and MILP approach in integration of planning and scheduling of batch plants—Personnel evaluation and allocation, Computers & Chemical Engineering,29(9):2029-2047.
    [129]Lee J H, Lee J M. (2006). Approximate dynamic programming based approach to process control and scheduling, Computers & Chemical Engineering, 30(10-12):1603-1618.
    [130]Flores-Tlacuahuac A, Grossmann I E. (2006) An effective MIDO approach for the simultaneous cyclic scheduling and control of polymer grade transition operations, Computer Aided Chemical Engineering,21:1221-1226.
    [131]Sun Y L, El-Farra N H. (2011). Integrating control and scheduling of distributed energy resources over networks, Chemical Engineering Science, In Press, Corrected Proof, Available online.
    [132]Musch H, List T, Dempf D, Heyen G. (2004). On-line estimation of reactor key performance indicators:An industrial case study, Computer Aided Chemical Engineering, 18:247-252.
    [133]Mitra K, Ghivari M. (2006). Modeling of an industrial wet grinding operation using data-driven techniques, Computers & Chemical Engineering,30(3):508-520.
    [134]Radermecker E, Marie-Noelle D, Heyen G. (2009). Adaptation and testing of data reconciliation software for CAPE-OPEN compliance, Computer Aided Chemical Engineering,26:303-308.
    [135]Barszcz T, Czop P. (2011). A feedwater heater model intended for model-based diagnostics of power plant installations,Applied Thermal Engineering, 31(8-9):1357-1367.
    [136]Reiman T, Pietikainen E. (2011). Leading indicators of system safety-Monitoring and driving the organizational safety potential, Safety Science, In Press, Corrected Proof. Available online.
    [137]Carrapico O L, Odloak D. (2005). A stable model predictive control for integrating processes, Computers & Chemical Engineering,29(5):1089-1099.
    [138]Ulas S, Urmila M D. Integrating product and process design with optimal control:A case study of solvent recycling, Chemical Engineering Science,61(6):2001-2009.
    [139]Diinnebier G. Troubleshooting and process optimisation by integrating CAPE tools and Six Sigma methodology, Computer Aided Chemical Engineering,25:943-948.
    [140]Manenti F. (2011). Considerations on nonlinear model predictive control techniques, Computers & Chemical Engineering,35(11):2491-2509.
    [141]Patel M P, Shah N, Ashe R. (2011). Plant-wide optimisation and control of a multi-scale pharmaceutical process, Computer Aided Chemical Engineering,29:713-717.
    [142]Oscar Daniel Chuk, Benjamin R, Kuchen. Supervisory control of flotation columns using multi-objective optimization [J], Minerals Engineering,2011,24(14):1545-1555.
    [143]Yim S Y, Ananthakumar H G, Benabbas L, Horch A, Drath D, Thornhill N F. (2006). Using process topology in plant-wide control loop performance assessment, Computers & Chemical Engineering,31(2):86-99.
    [144]Exler O, Antelo L T, Egea J A, Alonso A A, Banga J R. (2008). A Tabu search-based algorithm for mixed-integer nonlinear problems and its application to integrated process and control system design, Computers & Chemical Engineering,32(8):1877-1891.
    [145]Balasko B, Nemeth S, Janecska A, Nagy T, Nagy G, Abonyi J. (2007). Process modeling and simulation for optimization of operating processes, Computer Aided Chemical Engineering,24:895-900.
    [146]Skogestad S. Control structure design for complete chemical plants,Computers & Chemical Engineering,28(1-2):219-234.
    [147]Wassick J M. (2009). Enterprise-wide optimization in an integrated chemical complex, Computers & Chemical Engineering,33(12):1950-1963.
    [14S]Manenti F, Manca D. (2009). Transients modeling for enterprise-wide optimization: Generalized framework and industrial case study, Chemical Engineering Research and Design,87(8):1028-1036.
    [149]Biegler L T, Zavala V M. (2009). Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization, Computers & Chemical Engineering,33(3):575-582.
    [150]Yu Y, Lee J M. (2010). Probabilistic modeling and dynamic optimization for performance improvement and risk management of plant-wide operation, Computers & Chemical Engineering,34(4):567-579.
    [151]Yuzgec U, Palazoglu A, Romagnoli J A. (2010). Refinery scheduling of crude oil unloading, storage and processing using a model predictive control strategy, Computers & Chemical Engineering,34(10):1671-1686.
    [152]Aissani N, Beldjilali B, Trentesaux D. (2009). Dynamic scheduling of maintenance tasks in the petroleum industry: A reinforcement approach, Engineering Applications of Artificial Intelligence,22(7):1089-1103.
    [153]Poulin E, Hodouin D, Lachance L. (2010). Impact of plant dynamics on the performance of steady-state data reconciliation, Computers & Chemical Engineering, 34(3):354-360.
    [154]Wassick J M, Ferrio J. (2011). Extending the resource task network for industrial applications, Computers & Chemical Engineering,35(10):2124-2140.
    [155]Gimenez D M, Henning G P, Maravelias C T. (2009). A novel network-based continuous-time representation for process scheduling:Part I. Main concepts and mathematical formulation, Computers & Chemical Engineering,33(9):1511-1528.
    [156]Gimenez D M, Henning G P, Maravelias C T. (2009). A novel network-based continuous-time representation for process scheduling:Part Ⅱ. General framework, Computers & Chemical Engineering,33(10):1644-1660.
    [157]Mouret S, Grossmann I E, Pestiaux P. (2011). Time representations and mathematical models for process scheduling problems, Computers & Chemical Engineering,35(6):1038-1063.
    [158]Georgios K D, Saharidis, Minoux M, Dallery Y. (2009). Scheduling of loading and unloading of crude oil in a refinery using event-based discrete time formulation, Computers & Chemical Engineering,33(8):1413-1426.
    [159]Maravelias C T, Papalamprou K. (2009) Polyhedral results for discrete-time production planning MIP formulations for continuous processes, Computers & Chemical Engineering,33(11):1890-1904.
    [160]Seid R, Majozi T. (2012) A novel technique for prediction of time points for scheduling of multipurpose batch plants, Chemical Engineering Science,68(1):54-71.
    [161]Seid R, Majozi T. (2012). A robust mathematical formulation for multipurpose batch plants, Chemical Engineering Science,2012,68(1):36-53.
    [162]Pan M, Qian Y, Li X X. (2008). A novel precedence-based and heuristic approach for short-term scheduling of multipurpose batch plants, Chemical Engineering Science, 63(17):4313-4332.
    [163]Shaik M A, Floudas C A, Kallrath J, Hans-Joachim P. (2009). Production scheduling of a large-scale industrial continuous plant:Short-term and medium-term scheduling, Computers & Chemical Engineering,33(3):670-686.
    [164]Lima R M, Grossmann I E, Yu J. (2011). Long-term scheduling of a single-unit multi-product continuous process to manufacture high performance glass, Computers & Chemical Engineering,35(3):554-574.
    [165]Shaik M A, Floudas C A. (2008). Unit-specific event-based continuous-time approach for short-term scheduling of batch plants using RTN framework, Computers & Chemical Engineering,32(l):260-274.
    [166]Cheng-Liang Chen, Chia-Yuan Chang. A resource-task network approach for optimal short-term/periodic scheduling and heat integration in multipurpose batch plants [J], Applied Thermal Engineering,2009, V29(5):1195-1208.
    [167]Bose S K, Bhattacharya S. (2009). A State Task Network model for scheduling operations in cascaded continuous processing units, Computers & Chemical Engineering, 33(1):287-295.
    [168]Kilic O A, Donk D P, Wijngaard J. (2011). A discrete time formulation for batch processes with storage capacity and storage time limitations, Computers & Chemical Engineering,35(4):622-629.
    [169]MirHassani S A, Jahromi H F. (2011). Scheduling multi-product tree-structure pipelines, Computers & Chemical Engineering,35(1):165-176.
    (170] Castro P M, Harjunkoski 1, Grossmann I E. (2011). Optimal scheduling of continuous plants with energy constraints, Computers & Chemical Engineering, 35(2):372-387.
    [171]Maravelias C T. (2012). On the combinatorial structure of discrete-time MIP formulations for chemical production scheduling, Computers & Chemical Engineering, 38:204-212.
    [172]Morbach J, Wiesner A, Marquardt W. (2009).OntoCAPE—A(re)usable ontology for computer-aided process engineering, Computers & Chemical Engineering,2009, 33(10):1546-1556.
    [173]Singh R, Gernaey K V, Gani R. (2009). Model-based computer-aided framework for design of process monitoring and analysis systems, Computers & Chemical Engineering,33(1):22-42.
    [174]Li Z K, Ierapetritou M G. (2010). Preduction planning and scheduling integration through augmented Lagrangian optimization, Computers & Chemical Engineering, 34(6):996-1006.
    [175]Yang A D, Marquardt W. (2009). An ontological conceptualization of multiscale models, Computers & Chemical Engineering,33(4):822-837.
    [176]Gao Y, Shang Z G, Kokossis A. (2009). Agent-based intelligent system development for decision support in chemical process industry, Expert Systems with Applications, 36(8):11099-11107.
    [177]Leitao P. (2009). Agent-based distributed manufacturing control:A state-of-the-art survey, Engineering Applications of Artificial Intelligence,22(7):979-991.
    [178]Trentesaux D. (2009). Distributed control of production systems, Engineering Applications of Artificial Intelligence,22(7):971-978.
    [179]Ochoa S, Wozny G, Jens-Uwe R. (2010). A new algorithm for global optimization: Molecular-Inspired Parallel Tempering, Computers & Chemical Engineering, 34(12):2072-2084.
    [180]Hwang W T, Tien S W, Shu C W. (2007). Building an Executive Information System for Maintenance Efficiency in Petrochemical Plants—An Evaluation, Process Safety and Environmental Protection,85(2):139-146.
    [181]Rolon M, Martinez E. (2012). Agent-based modeling and simulation of an autonomic manufacturing execution system, Computers in Industry,63(1):53-78.
    [182]Fengqi Y, Grossmann I E. (2008). Design of responsive supply chain under demand uncertainty, Computer & Chemical Engineering,32:3090-3111.
    [183]Floudas C A, Lin X X. (2004). Continuous-time versus discrete-time approaches for scheduling of chemical processes:a review, Computer& Chemical Engineering,2004, 28:2109-2129.
    [184]Li Z K, Ierapetritou M. (2008). Process scheduling under uncertainty:Review and Challenges, Computer & Chemical Engineering,32:715-727.
    [185]Bertalanffy L. (1950). An outline of general systems theory. British Journal for the Philosophy of Science,1,2.
    [186]Bertalanffy L. (1976). General systems theory NewYork:George Braziller.
    [187]Bahill A T, Gissing B. (1998). Re-evaluating systems engineering concepts using systems thinking. IEEE Trans. Systems, Man and Cybernetics-Part C:Applicationsand Reviews,28:516-527.
    [188]Wymore A W. (1993). Model-based systems engineering. Boca Raton:CRC Press.
    [189]李德芳,张朝俊,蒋白桦,刘伟.(2010).面向流程企业的可配置MES体系结构,纪工学报,2010年02期.
    [190]Pavlin G, Oude P, Maris M, Nunnink J, Hood T. (2010).A multi-agent systems approach to distributed Bayesian information fusion, Information Fusion,11:267-282.
    [191]Aytug H, Lawley M A, McKay K, Mohan S, Uzsoy, R. (2005). Executing production schedules in the face of uncertainties:A review and some future directions. European Journal of Operational Research,161(1):86-110.
    [192]M'endez C A, Cerd'a J. (2003). Dynamic scheduling in multiproduct batch plants. Computers and Chemical Engineering,27:1247-1259.
    [193]M'endez C A, Cerd'a J. (2004). An MILP framework for batch reactive scheduling with limited discrete resources. Computers and Chemical Engineering,28:1059-1068.
    [194]Bonfill A, Bagajcwicz M. Espu na A. Puigjancr L. (2004). Risk management in the scheduling of batch plants under uncertain market demand. Industrial and Engineering Chemistry Research,43(3):741-750.
    [195]Bonfill A, Espuna A, Puigjaner L. (2005). Addressing robustness in scheduling batch processes with uncertain operation times. Industrial and Engineering Chemistry Research,44(5):1524-1534.
    [196]Lin X, Janak S L, Floudas C A. (2004). A new robust optimizationapproach for scheduling under uncertainty. I. Bounded uncertainty. Computers and Chemical Engineering,28:1069-1085.
    [197]Guillen-Gosalbez G, Grossmann I E. (2010). A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model, Computers & Chemical Engineering,34(1):42-58.
    [198]Amaro A C S, Barbosa-Povoa A P E F D. (2009). The effect of uncertainty on the optimal closed-loop supply chain planning under different partnerships structure, Computers & Chemical Engineering,33(12):2144-2158.
    [199]Puigjaner L, Heyen G. (2006).Computer-aided process and product engineering, Weinheim:Wily-VCH.
    [200]Grossmann I E, Guillen-Gosalbez G. (2010). Scope for the application of mathematical programming techniques in the synthesis and planning of sustainable processes, Computers & Chemical Engineering,34(1):1365-1376.
    [201]Shah N, Saharidis G K D, Jia Z Y, Ierapetritou M G. (2009). Centralized-decentralized optimization for refinery scheduling, Computer & Chemical Engineering,33:2091-2105.
    [202]Ochoa S, Wozny G, Jens-Uwe R. (2010). Plantwide Optimizing Control of a continuous bioethanol production process, Journal of Process Control,20:983-998.
    [203]Munoz E, Espuna A, Puigjaner L. (2010). Towards an ontological infrastructure for chemical batch process management, Computer & Chemical Engineering,34:668-682.
    [204]Lainez J M, Reklaitis G V, Puigjaner L. (2010). Linking marketing and supply chain models for improved business strategic decision support, Computers & Chemical Engineering,34(12)2107-2117.
    [205]Dam K H, Adhitya A, Srinivasan E, Lukszo Z. (2009). Critical evaluation of paradigms for modelling integrated supply chains, Computers & Chemical Engineering, 33(10):1711-1726.
    [206]Jung J Y, Blau G, Pekny J F, Reklaitis G V, Eversdyk D. (2008). Integrated safety stock management for multi-stage supply chains under production capacity constraints, Computers & Chemical Engineering,32(11):2570-2581.
    [207]Pinto-Varela T, Novais A Q. (2011). Bi-objective optimization approach to the design and planning of supply chains:Economic versus environmental performances, Computers & Chemical Engineering,35(8):1454-1468.
    [208]Ochoa S, Jens-Uwe R, Wozny G. (2010). Integrating real-time optimization and control for optimal operation:Application to the bio-ethanol process, Biochemical Engineering Journal,53(1):18-25.
    [209]Balaji S, Du J, White C M, Ydstie B E. (2010). Multi-scale modeling and control of fluidized beds for the production of solar grade silicon, Powder Technology,199(1):23-31.
    [210]Parvazinia M, Nassehi V. (2010). Using bubble functions in the multi-scale finite element modeling of the convection-diffusion-reaction equation, International Communications in Heat and Mass Transfer,37(2):125-130.
    [211]Ge W, Wang W, Yang N, et al. (2011). Meso-scale oriented simulation towards virtual process engineering (VPE)—The EMMS Paradigm, Chemical Engineering Science,66(19):4426-4458.
    [212]梁军,赵勇.(2004).系统工程导论,化学工业出版社,北京.
    [213]Grbovic M, Li W C, Xu P, K A. Usadi, Song L M, Vucetic S. (2012). Decentralized fault detection and diagnosis via sparse PCA based decomposition and Maximum Entropy decision fusion, Journal of Process Control,22(4):738-750.
    [214]俞金寿.(2008).工业过程先进控制技术,华东理工大学出版社,上海.
    [215]Zhang X, Sargent R W H. (1996). The optimal operation of mixed production facilities. Part A. General formulation and some solution approaches for the solution. Computers and Chemical Engineering,20:897-904.
    [216]Castro P., Barbosa-Povoa A P F D,& Matos H. (2001). An improved RTN continuous-time formulation for the short-term scheduling of multipurpose batch plants. Industrial and Engineering Chemistry Research,40:2059-2068.
    [217]Ierapetritou M G, Floudas C A. (1998). Effective continuous-time formulation for short-term scheduling. Part 1. Multipurpose batch, Industrial and Engineering Chemistry Research,37:4341-4359.
    [218]Ierapetritou M G, Floudas C A. (1998). Effective continuous-time formulation for short-term scheduling. Part 2. Continuous and semi-continuous processes, Industrial and Engineering Chemistry Research,37:4360-4374.
    [219]Lin X, Floudas C A. (2001). Design, synthesis and scheduling of multipurpose batch plants via an effective continuous-time formulation, Computers and Chemical Engineering,25:665-674.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700