用户名: 密码: 验证码:
超磁致伸缩智能构件驱动系统的研究和开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超磁致伸缩执行器(Giant Magnetostrictive Actuator, GMA)是一种基于超磁致伸缩材料(Giant Magnetostrictive Material, GMM)的新型磁-机换能执行器件。作为一种具有高定位精度、高频率响应、大输出位移的执行器,广泛应用于超精密加工机床、超精密位置控制、精确位移传感器、振动控制等领域。
     活塞是发动机的核心零件之一,其工作性能直接影响发动机的运行性能。传统的圆形活塞销孔存在应力集中等缺陷,采用异形销孔能够有效地减小销孔的应力集中。然而传统的异形活塞销孔加工方式较为落后,为此提出了基于GMM智能镗杆(超磁致伸缩执行器中的一种)的弯曲型活塞销孔加工系统。针对该加工系统的实际应用,驱动系统作为一个电磁转换的驱动部件是整个加工系统中必不可少的。
     论文的第一章节,首先介绍了超磁致伸缩执行器的性能特点和研究应用现状;然后针对本课题中GMM智能镗杆实际应用状况,以及它对电磁转换驱动部件性能要求的基础上,参考国内外应用于GMM智能镗杆的驱动系统的研究现状,阐述了适用于本实验室的GMM智能镗杆驱动系统的研制意义和实用价值。
     第二章节基于GMM智能镗杆的执行条件,预先设定了驱动系统的性能参数。在性能参数已定的前提下,首先将驱动系统划分为不同的功能模块;再以各个功能模块为基础完成相应的具体设计,包括各个功能模块的运行方式、元器件的选型等;最后整合各个功能模块的理论计算与仿真,完成驱动系统的总体设计方案。
     第三章节,在设计方案的基础上完成了驱动系统制作,在研制过程中根据驱动系统对输出功率、输出电流、输出电压、控制精度、频率响应特性、噪声干扰等要求,分析总结了制作驱动系统时遇到的主要问题及其相应的解决措施。主要包括电源纹波干扰对运算放大器的影响;功率元器件的热量耗散分析和可行的散热方式;电路应用过程中的各种保护措施。
     第四章通过基于虚拟仪器的驱动系统测试平台,对驱动系统的性能进行了测试分析。测试内容主要包括输出特性测试、电流纹波测试、频率响应测试以及可靠性测试。得出了驱动系统的具体性能指标。
     第五章针对驱动系统最终的研制目的(用于基于GMM智能镗杆的活塞异形销孔加工系统),将驱动系统应用到GMM智能镗杆上,测试驱动系统在系统中的实际工作性能和GMM智能镗杆的输出位移;通过对采集得到的电流信号和位移信号等实验数据进行分析,得出驱动系统性能可靠的结论。
     第六章在归纳总结研究工作之后,对可进一步深入的研究问题进行了展望。
Giant Magnetostrictive Actuator(GMA) is a novel smart actuator which is based on Giant Magnetostrictive Material(GMM).For GMA's merits of high precision, fast response, large output displacement,it is now widely utilized in some ultra-precision machining tools, ultra-precision position control, sensors, vibration control, etc.
     Piston is one of the most important parts of an engine, its performance quality directly affect the operation of an engine. According to experience, Adopting piston with non-circular piston hole can effectively decrease the risk of stress concentration which circular piston hole have, and greatly enhance the piston's performance.
     But in fact, traditional non-circular piston hole manufacturing methods have various disadvantages, flexure boring system which based on the GMA could achieve higher performance. so as a magneto-mechanical energy converter, power amplifier is one of the most important arts of that system.
     In the first chapter of this paper, the first is an introduce of GMA's characteristic features and applications; then, application situation of GMA, the requirements for a magneto-mechanical energy converter, power amplifier's domestic and international development researchs are summarized. on that basis, a design of a power amplifier was proposed for flexure type GMA.
     In the second chapter, we set the parameters of power amplifier in advance, which based on the application situation of the GMA. At first we divide the whole power amplifier into different function modulus; then, make specific design for each function modulus, include the operation mode of each function modulus, Choose the right components and so on; At last,integrate each modulus together, and complete the power amplifier's schematic diagram.
     In third chapter, introduce various matters and the corresponding solutions that meeting in the process of making power amplifier for high output power, high output current, output voltage, control precision, fast response and noise interference. These matters include Power interference on the influence of operational amplifiers, power dissipation of power MOSFET and corresponding cooling methods, and various protective methods for the power amplifier.
     In the fourth chapter,we test the performance of the power amplifier on Power amplifier test platform which based on virtual instrument. These testings including output characteristic testing, noise interference testing and so on.
     Because this power amplifier is used for non-circular piston hole manufacturing system, so in the fifth chapter of this paper, we test the total output characteristic of power amplifier in this GMA system. Experiences reveal that it has high precision of amplitude and phase, and suitable for the system.
     In the last chapter, main work and key innovative points are summarized, and further research work is put forward.
引文
[1]邬义杰.超磁致伸缩材料发展及其应用现状研究[J].2004,(04):55-59.
    [2]蒋志红,刘湘林,金绥更.稀土超磁致伸缩材料的发展[J].1991,12(01):55-59.
    [3]李松涛.超磁致伸缩材料及其应用[J]. 2006,(02):30-32.
    [4]Ghorayeb S R, Hansen T T, Straub F K. Application of Magnetostrictive smart materials in Rotor Servoflap control[J]. Journal of the American Helicopter.1995,24(43):28-37.
    [5]Straub F K, Merkley D J. Design of a smart material actuator for rotor control [J]. Smart Materials and Structures.1997,6(3):223-234.
    [6]刘楚辉.超磁致伸缩材料的工程应用研究现状[J].2005,43(492):25-27.
    [7]孙红灵.振动主动控制若干问题的研究[D].合肥:中国科技大学,2007.
    [8]Moona S L C. Structural vibration control using linear magnetostrictive actuators[J]. Journal of Sound and Vibration.2007:875-891.
    [9]Oates W S S R C. Optimal Tracking Using Magnetostrictive Actuators Operating in Nonlinear and Hysteretic Regimes[J]. Journal of Dynamic Systems, Measurement, and Control.2009,131(3): 31001-31011.
    [10]Liang C, Prorok B C. Measuring the thin film elastic modulus with a magnetostrictive sensor[J]. JOURNAL OF MICROMECHAN1CS AND MICROENGINEERING.2007,17(4):709-714.
    [11]Angara R, Si L, Anjanappa M. A high speed magnetostrictive mirror deflector[J]. SMART MATERIALS AND STRUCTURES.2009,18(7):1-7.
    [12]Nakamura Y, Nakayama M, Masuda K, et al. Development of active six-degrees-of-freedom microvibration control system using giant magnetostrictive actuators[J]. Smart Materials and Structures. 2000,10(9):175-185.
    [13]吕福在,项占琴,戚宗军,等.稀土超磁致伸缩材料高速强力电磁阀的研究[J].2000,18(02):199-202.
    [14]孟爱华,李明范,潘玉良,等.超磁致伸缩致动器式脉冲喷射开关阀性能研究[J].2010,41(8):211-215.
    [15]孟爱华,吕福在,程耀东.基于超磁致伸缩致动器的脉冲喷射开关阀建模与仿真[J].2009,45(8):303-307.
    [16]Hu J, Xu F, Huang A Q, et al. Optimal design of a vibration-based energy harvester using magnetostrictive material (MsM)[J]. Smart Materials and Structures.2010,20(11):1-12.
    [17]马浩全,张凯,胡德金.活塞异形销孔加工的研究[J].2005,27(05):518-528.
    [18]Kumar B K, Jebaraj C, Manivasagam S. Piston Pin Hole Design Improvement for Engines of Higher Rating[J]. ASME Conference Proceedings.2005:491-496.
    [19]吴劲松,吴声震.活塞异形销孔的研究[J].1994:7-13.
    [20]金张甫.九十年代我国内燃机铝活塞技术发展趋势[J].1991,(03):18-23.
    [21]李小弟.镗削活塞异型销孔[J].2001,(2):25-26.
    [22]李小弟,崔红娟,杜金榜,等.新型活塞异型销孔数控镗削技术的研究[J].机电工程.2001,18(2):3-6.
    [23]朱更红,谌国权.活塞异型销孔的数控加工技术[J].内燃机配件.2002,(3):27-28.
    [24]孙永强,冯之敬,赵广木.国内活塞异形外圆车削加工技术的现状[J].2002:7-9.
    [25]李喜,谌国权,邓美军.ETK2206数控活塞异型销孔镗床的设计[J].设计与研究.2004,(05):52-54.
    [26]Kim M, Higucht T, Mizuno T. Application of a magnetic bearing spindle to non-circular fine boring[C]. Massachusetts:1998.
    [27]王海峰,胡德金.基于磁悬浮主轴的活塞异形销孔加工原理研究[J].内燃机工程.2006,27(3):54-57.
    [28]张凯,胡德金,马浩全.新型活塞异形销孔加工方法的研究[J].组合机床与自动化加工技术.2003,(8):6-9.
    [29]唐志峰.超磁致伸缩执行器的基础理论与实验研究[D].杭州:浙江大学,2005.
    [30]刘洋.磁致伸缩导波锚杆无损检测实验研究[D].浙江大学.
    [31]杨兴,贾振元,武丹,等.基于功率MOSFET的超磁致伸缩执行器驱动电源[J].压电与声光.2001,23(1):33-36.
    [32]马志新,周志平.基于超磁致伸缩材料微位移驱动器的原理及实验研究[J].
    [33]任耀新.高频振动时效装置的研究[D].杭州:浙江大学,2006.
    [34]周凯峰.30A高精度交直流恒流源的研制[D].昆明:昆明理工大学,2002.
    [35]汪雨凌.25A恒流源系统实验研究与设计[D].长春:吉林大学,2006.
    [36]苏娟.高频功率MOSFET驱动电路及并联特性研究[D].西安:西安理工大学,2003.
    [37]刘山.电磁式微进给机构的研究[D].西安:西安交通大学,1999.
    [38]钱敏,徐鸣谦,米智楠.功率MOSFET并联驱动特性分析[J].半导体技术.2007,32(11):951-956.
    [39]张良,黄子平,刘承君,等MOSFET器件并联实验研究[J].通信电源技术.2007,24(6):5-11.
    [40]高锋阳,周忠祖,高大庆,等LEM_MACC_DCCT电流检测比较[J].电源技术应用.2007,10(6):70-73.
    [41]Dobeck N, Lamora B, Larkin J. Precision power supply control module[Z]. San Francisco:1991.
    [42]胡承志.超磁致伸缩驱动器电流源的设计[D].哈尔滨工业大学,2011.
    [43]张敬佩,张春熹,宋凝芳.开关电源噪声对光纤陀螺精度影响的研究[J].中国惯性技术学报.2003,11(1):45-48.
    [44]杨智敏,李晔.开关电源EMC设计[J].移动电源与车辆.2002,(1):11-13.
    [45]王会立.开关电源的电磁兼容设计[J].电源技术应用.2003,6(4):24-27.
    [46]何光平.开关电源电磁骚扰分析与抑制[J].电视技术.2004,(3):60-62.
    [47]雷新.EMI滤波器的设计特性及其选取原则[J].电磁兼容设计与检测.2002:50-54.
    [48]胡学芝.开关电源的噪声及抑制方法[J].电气时代.2002,(3):43-44.
    [49]马学军,杨荫福.开关电源的噪声及其抑制[J].通信电源技术.2002,(1):37-39.
    [50]马立新,周智.开关电源的噪声干扰及其抑制方法的分析[J].山东电子.2001,(2):25-28.
    [51]王赋攀杨鹏MOSFET功率开关器件的散热设计[J].通信电源技术.2005:31-33.
    [52]李峰.空冷散热器的改进措施的研究[D].北京:华北电力大学,1999.
    [53]张景柳.CPU风扇散热器散热效果分析[D].南京:南京理工大学,2006.
    [54]蒲广益. ANSYS Workbench12基础教程与实例详解[M].北京:中国水利水电出版社,2010.
    [55]田金颖.CPU热管散热器的实验研究与数值模拟[D].天津商业大学.
    [56]王积伟 吴振顺.控制工程基础[M].北京:高等教育出版社,2006:87-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700