用户名: 密码: 验证码:
城市降雨径流磷污染负荷及河岸带生态阻控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化的快速发展,城区不透水面积比率不断增大,造成城市中暴雨内涝频发;同时,城市降雨径流水质不断恶化,已经成为不可忽视的非点源污染之一。城市降雨径流通过雨水的冲刷和携带作用,向下级受纳水体输移了包括固体颗粒物、重金属、营养盐、有机物污染物以及细菌等在内的大量污染物质,其中氮、磷等营养盐被认为是造成城市水体富营养化的主要因素,因此备受国内外研究者的关注。另一方面,城市化的快速发展同时造成了城市河岸带的面积萎缩、基质硬化以及生态功能退化等严重的环境问题,而河岸带是城市降雨径流进入受纳水体前的最后屏障,因此如何选择合理的技术对城市河岸带进行生态化改造,恢复其原有的生态阻控能力已经成为全球城市环境研究的热点之一。
     在国家重大水专项“城市黑臭河道外源阻断、工程修复与原位多级生态净化关键技术研究与示范”、国家自然科学基金“沿海城市河岸带氮素截留效率和转化机制研究”以及上海市优秀学科带头人计划“城市河岸带对面源营养盐的生态阻控机理研究”的资助下,本研究选取了温州这一典型南方沿海城市作为主要研究区域,通过实地调研、现场监测以及室内模拟、分析等方法,系统研究了温州城区不同类型降雨径流中总磷(TP)、溶解态磷(DP)和颗粒态磷(PP)的环境行为特性,探讨了降雨条件(雨前干期、降雨量、降雨强度等)、区域环境、下垫面类型以及径流其他理化性质对于不同形态磷环境行为特征的影响作用;并以实际监测数据为基础,估算了监测区内不同类型降雨径流中TP\DP以及PP的污染负荷和年排放通量,同时对其潜在的影响因素进行了探讨。另一方面,针对温州城区降雨径流的污染特征和岸带实际特点,研发了新型多层介质渗滤系统,并对其在城市硬质型河岸带生态改造中的应用前景进行了实践研究。论文主要结论如下所示:
     (1)温州城区夏季降雨pH平均值为5.83,虽然高于酸雨阈值,但相差不大;雨水中TP含量水平普遍较低,优于国家地表水Ⅱ类标准,基本上不会对受纳水体造成环境压力。
     (2)温州城区夏季降雨径流中TP的含量介于0.01-4.32mg·L-1, DP含量介于ND-0.88mg· L-1,PP含量则介于ND-4.31mg·L-1。径流中TP、 DP以及PP含量均表现出随径流历时波动下降的趋势,其中TP和PP含量下降趋势较为明显且具有高度的一致性,而DP含量下降趋势相对独立且不甚明显。径流初期,温州城区所有降雨径流样品中PP占据了TP含量绝对主导的地位;而径流的中后期,PP所占比例会有不同程度的下降,甚至会出现DP占据主导地位的情况。
     (3)温州城区降雨径流中各种P的含量受多种因素的影响:雨前干期长短对温州夏季降雨径流中TP和PP含量的影响不甚显著,而对DP含量的影响作用较为明显,表现出显著的正相关关系(p<0.05);降雨过程中的瞬时雨强对径流中TP. DP以及PP含量动态变化的影响显著,瞬时雨强的峰值之后径流中P含量均会急剧下降,而后缓慢回升直至达到动态平衡;下垫面类型对径流中各种P含量的影响同样显著,小区路面和交通干道径流中TP和PP污染较为严重,而DP污染则是汇流口径流中最为严重,但是无论对于哪种P而言,屋面径流皆为污染最轻的;降雨径流中TP和PP含量与所有理化指标之间都显著相关(p<0.01),且相关程度较高,其中径流SS和CODcr含量与TP和PP含量的线性拟合程度较好;径流中DP含量只与BOD5、CODcrr.TIC以及TOC等指标显著相关(p<0.01),但线性拟合程度皆较差;另外,区域环境以及人类活动强度等因素也能显著影响降雨径流中各种P的含量。
     (4)根据累积曲线法判断可知:从径流类型来看,各种下垫面径流中TP和PP的初始冲刷效应较为普遍,而DP则是以稀释为主。从降雨事件来看,径流中TP和PP的初始冲刷效应同样较为普遍,且强度多为中等或微弱冲刷;而DP在降雨过程中出现初始冲刷效应的情况较少,多以微弱或者中等稀释为主。交通干道径流中TP和PP的初始冲刷强度指数较其他径流要高,而屋面径流中TP和PP的初始冲刷效应强度较低;DP的初始冲刷强度则是以屋面径流和汇流口径流为首,而其余径流中DP的初始冲刷强度差别不大。下垫面类型以及大部分降雨特征参数与径流中P的初始冲刷强度指数之间的相关关系不够显著,只有DP的初始冲刷强度指数与降雨历时之间存在着显著的正相关关系(p<0.05)。
     (5)温州夏季降雨径流中TP和PP EMC超出国家地表水V类标准的情况较为普遍,且超标程度较高,最大值甚至可以达到地表水V类标准的6倍以上;而所有监测径流中仅有一例DP EMC超标的情况出现,且超标程度较低,仅为标准阈值的1.2倍。区域环境对降雨径流中TP和DP EMC的影响较大,而下垫面类型则对径流中TP和PP EMC的影响较大。就不同降雨条件而言,雨强干期仅与径流中DP EMC之间存在着显著的正相关关系(p<0.05);最大雨强则与TP和PP EMC之间皆存在着显著的负相关关系(p<0.05);降雨量、降雨历时以及平均降雨强度与径流P EMC之间的相关关系皆不够显著。就整场降雨径流中各种P的总负荷而言,场次之间、不同类型径流之间以及不同研究区之间,降雨径流中各种P的总负荷差异并不显著(p>0.05);而降雨条件对于径流中各种P负荷的影响较为显著,其中TP、PP负荷与降雨量之间显著正相关(p<0.05),DP负荷则与降雨量和平均雨强皆显著正相关(p<0.01)。
     (6)温州九山外河试验小区降雨径流中TP的年排放通量约为367.33k,其中DP贡献率为7%左右,PP的贡献率为93%左右;山下河试验小区降雨径流中TP的年排放通量约为237.85k,其中DP的贡献率为17%左右,PP的贡献率为83%左右。就试验小区内不同下垫面的贡献能力来看,交通干道对降雨径流中TP和PP排放通量的贡献能力最大,而屋面的贡献能力则最小,基本上不会对下级受纳水体构成威胁;而不同下垫面对DP的贡献能力较为复杂,并无统一的结论,由此可见下垫面对DP排放通量的贡献能力受区域环境的影响较大。
     (7)多层介质渗滤系统室内微型实验的结果表明,在综合考虑系统对径流中TP和TN去除效果的情况下,沸石和麦饭石以3:7的体积比进行填充时,系统的效率最高,5:5配比次之,而7:3配比的填充柱对TP的去除效果无法满足实际应用需要。中型实验模型对径流中TP和NH3-N的去除效率较高,最高能够达到90%以上;TN和CODcr的去除率虽然略低,但是最高也能够达到50%以上;而由于受滤料本身含有N03--N以及系统内硝化反应的影响,出水中N03--N和N02--N则主要以增加为主,且增加幅度较大。停水期间,多层介质渗滤系统对径流中各种污染物的去除效率随滞留时间的延长虽然有所提高,但是幅度较小,其整体效率与行水期相类似。海绵铁滤料并没有表现出对径流中各种污染物去除效率明显的促进作用,且经过布水实验后甚至会因氧化而形成致密的板结层,阻碍径流的顺利下渗,因此,海绵铁滤料不适合作为多层介质渗滤系统的除氧剂。
     (8)城市硬质型河岸带生态修复模型垂直径流对于除了N03-N以外的各个监测指标都有较好的去除效果,其含量基本上都低于国家地表水V类标准的阈值,明显优于温州城区地表水质,而最底端的原土层出水水质甚至优于国家地表水III类标准。
     (9)对比具备不同透水铺装层的两模型可知,以草皮为表层的A模型整体透水性要明显优于以生态透水砖为表层的B模型,进而造成A模型表层径流产流时间比B模型晚60min左右,而且A模型下渗水量也较B模型明显要高,即相同条件下A模型处理水样的体积要多于B模型。表层透水性的差异进一步造成了系统对污染物综合净化能力的差异,A模型对TP、 NH3-N、 NO2--N、 TN以及CODcr的最高净化能力分别能够达到73.2、479.2、25.2、171.2以及2372.4mg·m-2·h-1,而B模型对于上述污染物的最大净化能力分别为54.0、173.8、9.2、156.4以及2525.2mg-m-2-h-1,只有CODcr的最高净化能力高于A模型,主要是因为A模型的草皮表层容易造成SS的流失。因此,在条件允许的情况下,城市硬质型河岸带生态化改造过程中,表层宜选用草皮等植被型透水材料铺装。植被的重新栽种以及长时间静置等措施都会对系统的净化能力产生负面影响,尤其是以草皮为表层的A模型,且系统达到重新稳定的耗时较长。另外,本研究中因为入水污染物含量波动较小,所以只有A模型的NO2--N净化能力与其入水浓度之间的相关关系达到了显著水平(p<0.05),其余各指标的净化能力与入水浓度之间的相关关系均不显著。
     (10)温州市九山外河岸带的改造工作应主要着眼于现有绿化区域的基质改造,以增加其下渗速率;同时,还应尽可能丰富其植被类型,以达到增强河岸带对降雨径流污染阻控能力的目的。对于山下河岸带而言,在对硬化基质进行替换的同时,还应选取草皮或矮灌丛等植被型透水铺装对其硬化表面进行置换:而针对其承接径流量较少的特点,可以适当降低基质改造深度,以达到经济效应最大化的目的。
With the rapid development of urbanization, the ratio of impervious surface in urban areas increased gradually, leading to the frequent waterlogging by rainstorm and the degradation of water quality of urban storm runoff, and urban storm runoff becomes an important non-point pollution source that can not be ignored. Urban storm runoff from different underlying hard-surface types can transport high pollutant loads to receiving water, including solids, nutrients, heavy metals, oils, hydrocarbons, organic pollutants and bacteria, and so on. Of all pollutants, nutrients such as nitrogen (N) and phosphorus (P), have been paid the most attention due to their role in eutrophication. Moreover, the rapid development of urbanization also causes conspicuous contraction of area, matrix hardening and degeneration of ecological function to urban riparian zone; meanwhile riparian zone is the final hurdle for urban storm runoff to flow into receiving water. Hence, selecting the reasonable technology to carry out the ecological reconstruction for urban riparian zone, increasing the infiltration capacity for urban storm runoff and restoring its original ecological removal ability for pollutants have become one of the hot spots of studies about urban environment in the world today.
     With the support of the National Key Water Special Project of China, the National Natural Science Foundation of China and the project of Excellent Academic Leaders of Shanghai, Wenzhou, a typical coastal city in southern China, was chosen as the main research area in this study. By means of field investigation, field monitoring, indoor simulation and analysis, environmental behavior characteristics of total phosphorus (TP), dissolved phosphorus (DP) and particulate phosphorus (PP) in different types of urban storm runoff were studied; in addition, and the effects of characteristics of rainfall (Antecedent Dry Weather Period, ADWP; precipitation; rainfall intensity, etc.), regional environment, underlying surface type and other characteristics of storm runoff on phosphorus pollution were also investigated. Based on the data of field observation, pollution loads in one single rainfall event and annual emission fluxes of TP, DP and PP from different urban runoff sources were estimated, and their potential influence factors were discussed at the same time. On the other hand, based on the characteristics of urban storm runoff pollution in Wenzhou, a new type of multilayer filter system was developed, and then practice researches about its application prospect in ecological reconstruction of urban hard-type riparian zone were carried out. The main conclusions can be summed up as follows.
     (1) The average pH value of rainfall during the study period in Wenzhou was5.83. Although higher than the threshold of acid rain, it was quite close. TP concentrations in rainfall samples were generally low and below the threshold of Class Ⅱ suggested by environmental quality standard for surface water, which implied that summer rainfall in Wenzhou was not a pollution source for urban receiving water.
     (2) TP, DP and PP concentrations in summer urban storm runoff of Wenzhou ranged from0.01to4.32mg·L-1, ND to0.88mg·L-1and ND to4.31mg·L-1, respectively. Meanwhile, concentrations of different kinds of phosphorus in runoff all showed a downward trend with runoff duration, especially for the concentrations of TP and PP, while the downward trend of DP was not so significant due to its relative low concentration. In the initial period of storm runoff, PP was generally the dominant component of TP in all kinds of runoff, while the major form of P varied over time, especially in both roof runoff and outlet runoff in Jiushanwai River study area, where TDP made up the largest portion in the latter stages of runoff events.
     (3) There were many kinds of influence factors that could affect the concentrations of P in Wenzhou urban storm runoff. Though the relationships between ADWP and concentrations of TP and PP in runoff were not significant, DP concentrations were positively correlated to AWDP at the0.05level (2-tailed). Instantaneous rainfall intensity also had an influence on P concentrations during the runoff duration, P concentrations would decline sharply just after the rainfall intensity reached its peak, and then rose again slowly until achieving their dynamic balance. Underlying surface type was another important influence factor on P concentrations in storm runoff. Both urban community road and main road runoff were noticeable for their high concentrations of TP and PP, and DP concentration in outlet runoff was significantly higher than others, while P concentrations in roof runoff were almost the lowest among the various runoff sources, which implied that urban roof runoff was not a significant source of P in the present study areas. Both TP and PP concentrations were positively correlated with pH, SS, BOD5, CODcr, TIC and TOC concentrations (p<0.01), while TDP was just positively correlated with BOD5, CODCr, TIC and TOC (p<0.01). In addition, regional environmental conditions and human activity intensity could also affect P concentrations in urban storm runoff.
     (4) The accumulative characteristics of TP, DP and PP in urban storm runoff were judged using the method of M (V) curve suggested by Geiger. The results showed that the first flush effect of TP and PP in the various runoff were frequent while that of DP was not. Among different rainfall events, the first flush effect of TP and PP were also frequent, and the strength of the first flush was medium or negligible; meanwhile the first flush effect of DP was infrequent, and medium or negligible dilution of DP was dominant. Additionally, the strength of the first flush of TP and PP in main road runoff was higher than those in others; on the contrary, the strength of the first flush of DP in roof and outlet runoff was the highest. The effects of underlying surface types and most rainfall characteristics on the strength of the first flush of P in runoff were not very significant, only the strength of the first flush of DP was positively correlated with rainfall duration at the level of0.05.
     (5) The EMCs of TP and PP in urban runoff samples frequently exceeded the threshold of Class V suggested by environmental quality standard for surface water, and excessive degree was quite high, the max of them were as high as six times of the threshold; whereas low EMCs for TDP was observed in all runoff samples, there was only one exception that DP EMC in outlet runoff was1.2times of the threshold. Regional environmental conditions affected EMCs of TP and DP significantly, while underlying surface type affected EMCs of TP and PP significantly. The EMCs of TP and PP were negatively correlated with maximum rainfall intensity (p<0.05), while the EMCs of TDP positively correlated with AWDP (p<0.05). On the other hand, there were no significant differences of P loads among various rainfall events, runoff types or study areas; while TP and PP loads positively correlated with precipitation (p<0.05), and DP load was positively correlated with both precipitation and mean rainfall intensity (p<0.01).
     (6) The annual TP emission fluxes from Jiushanwai River study areas were367.33kg, with about7%of DP and93%of PP; meanwhile, the annual TP emission fluxes from Shanxia River study areas were237.85kg, and DP made up17%while PP made up83%. Underlying surface type determined the TP and PP loadings in storm runoff, but regional environmental conditions affected the export of TDP more significantly.
     (7) The results of micro experiments about multilayer filtration system showed that, in considering the removal efficiencies of TP and TN, the system constructed from zeolite and medical stone with the combination of3:7was the best choice, the combination of5:5was the second, while the system with the combination of7:3could not meet the need of TP removal. The removal efficiencies of both TP and NH3-N of medium experimental models were more than90%; though removal efficiencies of TN and CODCr were not so high, their max still could be about50%; the concentrations of NO3--N and NO2--N in infiltrated water increased greatly comparing with their initial concentrations due to dissolution from materials and nitration reaction. In addition, although removal efficiencies of pollutants in stagnant water showed a rising trend with duration during the interval between water distribution events, the rate was negligible. On the other hand, sponge iron did not show a significant acceleration effect on removal efficiencies of pollutants; moreover it would harden and form a blockage that slowed the infiltration if it was buried shallower.
     (8) The layered filtration systems showed high removal efficiencies of pollutants with an exception of NO3--N, especially in the infiltration flow. The concentrations of pollutants except NO3--N in infiltrated water were all below the threshold of Class Ⅴ even Class Ⅲ suggested by environmental quality standard for surface water, which were also better than the quality of urban water in Wenzhou.
     (9) The comparison between two layered filtration systems (LFS) with different permeable pavement layers suggested that permeability of turf layer was much better than that of permeable brick, causing an approximate60min gap of runoff-yielding time between two systems and more infiltration under the same constraints. The difference of permeability also affected the comprehensive removal rates (CRRs) for pollutants of LFS significantly. The max CRRs for TP, NH3-N, NO2--N, TN and CODCr of LFS-A with turf layer were73.2,479.2,25.2,171.2and2372.4mg-m-2·h-1, respectively; while those of LFS-B with permeable brick layer were54.0,173.8,9.2,156.4and2525.2mg-m'2·h-1, respectively. Hence, turf is a better option than permeable brick as a choice of permeable surface for a layered filtration system. Additionally, some engineering measures, such as the utilization of replanted turf, may reduce the CRRs for pollutants for long periods of time, especially for a LFS with turf layer. The CRR of NO2--N of LFS-A was positively correlated to its initial concentrations at the level of0.05, while no other significant relationships between the CRRs of pollutants and their initial concentrations were observed due to their slight change.
     (10) The most important renovation measure for the riparian zone of Jiushanwai River is to replace the matrixes of the existing greening area, which will increase its infiltration rate significantly; meanwhile, enriching the vegetation types is also very important for the increasing of its ability to removal pollutants from urban storm runoff. On the other hand, in Shanxia River study area, besides replacing the matrixes of the existing greening area, its harden surface also should be substituted for vegetation pavement such as grass or dwarf shrub. However, because there was less quantity of runoff flow into the riparian zone of Shanxia River, the depth of replacement could be shallower comparing with that in Jiushanwai River study area.
引文
1. Abu-Zreig M, Rudra R P, Whiteley H R, et al. Phosphorus removal in vegetated filter strips [J]. J. Environ. Qual.,2003,32(2):613-619.
    2. Alexandratos S D. New polymer-supported ion-complexing agents:Design, preparation and metal ion affinities of immobilized ligands [J]. J. Hazard. Mater.,2007,139(3):467-470.
    3. Al-Khashman O A. Chemical characteristics of rainwater collected at a western site of Jordan [J]. Atmos. Res.,2009,91(1):53-61.
    4. Angier J T, McCarty G W, Prestegaard K L. Hydrology of a first-order riparian zone and stream mid-Atlantic coastal plain, Maryland [J]. J Hydrol.,2005,309(1-4):149-166.
    5. Babel S and Kurniawan T A. Low-cost adsorbents for heavy metals uptake from contaminated water:a review [J]. J. Hazard. Mater.,2003,97(1-3):219-243.
    6. Baez A, Belmont R, Garcia R, et al. Chemical composition of rainwater collected at a southwest site of Mexico City, Mexico [J]. Atmos. Res.,2007,86(1):61-75.
    7. Baker M J, Blowes D W, Ptacek C J. Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems [J]. Environ. Sci. Technol.,1998,32(15):2308-2316.
    8. Ball J E, Jenks R, Aubourg D. An assessment of the availability of pollutant constituents on road surfaces [J]. Sci. Total Environ.,1998,209(2-3):243-254.
    9. Barrett M E, Irish Jr. L B, Malina Jr. J F, et al. Characterization of highway runoff in Austin, Texas area [J]. J. Environ. Eng.,1998,124(2):131-137.
    10. Basak B and Alagha O. The chemical composition of rainwater over Buyukcekmece Lake, Istanbul [J]. Atmos. Res.,2004,71(4):275-288.
    11. Basnyat P, Teeter L D, Flynn K M, et al. Relationships between landscape characteristics and nonpoint source pollution input to coastal estuaries [J]. Environ. Manage.,1999,23(4):539-549.
    12. Bertrand-Krajewski J L, Chebbo G, Saget A. Distribution of pollutant mass vs volume in stormwater discharges and the first flush phenomenon [J]. Water Res.,1998,32(8):2341-2356.
    13. Birch G F, Fazeli M S, Niatthai C. Efficiency of an infiltration basin in removing contaminants from urban stormwater [J]. Environ. Monit. Assess.,2005,101(1-3):23-38.
    14. Blair R B. Land use and avian species diversity along an urban gradient [J]. Ecol. Appl., 1996(6):506-519.
    15. Botequilha L and Ahern J. Applying landscape ecological concepts and metrics in sustainable landscape planning [J]. Landscape Urban Plan.,2002,59(2):65-93.
    16. Brezonik P L and Stadelmann T H. Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in the Twin Cities metropolitan area, Minnesota, USA [J]. Water Res.,2002,36 (7):1743-1757.
    17. Brian M, Hickey C, Doran B. A review of the efficiency of buffer strips for the maintenance and enhancement of riparian ecosystems [J]. Water Qual. Res. J. Canada,2004,39(3):311-317.
    18. Bucheli T D, Muller S R, Heberle S, et al. Occurrence and behavior of pesticides in rainwater, roof runoff, and artificial stormwater infiltration [J]. Environ Sci. Technol.,1998,32(22):3457-3464.
    19. Chang W S, Hong S W, Park J. Effect of zeolite media for the treatment of textile wastewater in a biological aerated filter [J]. Process Biochem.,2002,37(7):693-698.
    20. Chebbo G, Gromaire M C, Ahyerre M, et al. Production and transport of urban wet weather pollution in combined sewer systems:the "Marais" experimental urban catchment in Paris [J]. Urban Water,2001,3(1-2):3-15.
    21. Christine M, Mertz G, Chebbo G, et al. Origin and characteristics of urban wet weather pollution in combined sewer systems [J]. Water Sci. Technol.,1998,37(1):35-43.
    22. Conley D J, Paerl H W, Howarth R W, et al. Controlling eutrophication:nitrogen and phosphorus [J]. Science,2009,323(5917):1014-1015.
    23. D'Arcy B J, Usman F, Griffiths D, et al. Initiatives to tackle diffuse pollution in the UK [J]. Water Sci. Technol.,1998,38(10):131-138.
    24. Davis A P, Shokouhian M, Sharma H, et al. Laboratory study of biological retention for urban stormwater management [J]. Water Environ. Res.,2001,73(1):5-14.
    25. Davis A P, Shokouhian M, Sharma H, et al. Water quality improvement through bioretention media:nitogen and phosphorus removal [J]. Water Environ. Res.,2006,78(3):284-293.
    26. Davis A P. Field performance of bioretention:Water quality [J]. Environ. Eng. Sci.,2007,24(8): 1048-1064.
    27. De Aguiar M R M P, Novaes A C, Guarino A W S. Removal of heavy metals from wastewaters by aluminosilicate [J]. Quim. Nova,2002,25(6):1145-1154.
    28. Deletic A and Maksimovic C T. Evaluation of water quality factors in storm runoff from paved areas [J]. J. Environ. Eng., ASCE,1998,124(9):869-879.
    29. Deletic A. The first flush load of urban surface runoff [J]. Water Res.,1998,32(8):2462-2470.
    30. Dimova G, Mihailov G, Tzankov T Z. Cmbined filter for ammonia removal-Part Ⅰ:Minimal zeolite contact time and requirements for desorption [J]. Water Sci. Technol.,1999,39(8):123-129.
    31. Drapper D and Tomlinson R. Pollutant Concentrations in road runoff:southeast Queensland case study [J]. J. Environ. Eng.,2000,126(4):313-319.
    32. Dyer A. An introduction to zeolite molecular sieves [M]. New York:John Wiley and Sons Inc. 1988.
    33. Elman J L. Finding structure in time [J]. Cognitive Sci.,1990,14(2):179-211.
    34. Galli J. Peat sand filters:A proposed stormwater management practice for urbanized areas [M]. Metropolitan Washington Council of Governments,1990.
    35. Ganrot Z, Dave G, Nilsson E. Recovery of N and P from human urine by freezing, struvite precipitation and adsorption to zeolite and active carbon [J]. Bioresource Technol.,2007, 98(16):3112-3121.
    36. Garland J A. Dry and wet removal of sulphur from the atmosphere [J]. Atmos. Environ.,1978, 12(1-3):349-362.
    37. Genc-Fuhrman H, Mikkelsen P S, Ledin A. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater:Experimental comparison of 11 different sorbents. Water Res.,2007, 41(3):591-602.
    38. Geiger W. Flushing effects in combined sewer systems [A]. In Proc.4th Int. Conf. on Urban Storm Drainage [C]. Lausanne, Switzerland,1987, pp.40-46.
    39. Ghermandi A, Vandenberghe V, Benedetti L, et al. Model-based assessment of shading effect by riparian vegetation on river water quality [J]. Ecol. Eng.,2009,35(1):92-104.
    40. Gilbert J K and Clausen J C. Stormwater runoff quality and quantity from asphalt, paver, and crushed stone driveways in Connecticut [J]. Water Res.,2006,40(4):826-832.
    41. Gnecco I, Berretta C, Lanza L G, et al. Storm water pollution in the urban environment of Genoa, Italy [J]. Atmos. Res.,2005,77(1-4):60-73.
    42. Goreau T J, Kaplan W A, Wofsy S C, et al. Production of NO2- and N2O by nitrifying bacteria at reduced concentrations of oxygen [J]. Appl. Environ. Microb.,1980,40(3):526-532.
    43. Gromaire-Mertz M C and Garnaud S. Characterization of urban runoff pollution in Paris [J]. Water Sci. Tech.,1999,39(2):1-8.
    44. Gromaire-Mertz M C and Garnaud S. Contribution of different sources to the pollution of wer weather flows in combined sewers [J]. Water Res.,2001,35(2):521-533.
    45. Gschnitzer A. Heavy Metals Associated with Storm Water Runoff from Elevated Roadways [D]. New Orleans:University of New Orleans,2002.
    46. Gupta K and Saul A J. Specific relationships for the first flush load in combined sewer flows [J]. Water Res.,1996,30(5):1244-1252.
    47. Hatt B E, Fletcher T D, Deletic A. Hydraulic and pollutant removal performance of fine media stormwater filtration systems [J]. Environ. Sci. Technol.,2008,42(7):2535-2541.
    48. Hatt B E, Fletcher T D, Deletic A. Treatment performance of gravel filter media:Implications for design and application of stormwater infiltration systems [J]. Water Res.,2007,41(12): 2513-2524.
    49. Hedstrom A. Ion exchange of ammonium in zeolites:A literature review [J]. J. Environ. Eng., 2001,127(8):673-681.
    50. Hsieh C and Davis A P. Evaluation and optimization of bioretention media for treatment of urban storm water runoff [J]. J. Environ. Eng.,2005,131 (11):1521-1531.
    51. Hsieh C, Davis A P, Needelman B A. Nitrogen removal from urban stormwater runoff through layered bioretention columns [J]. Water Environ. Res.,2007,79(12):2404-2411.
    52. Huang K, Zhuang G S, Xu C, et al. The chemistry of the severe acidic precipitation in Shanghai, China [J]. Atmos. Res.,2008,89(1-2):149-160.
    53. Huang N E. A new view of nonlinear water waves-the Hilbert spectrum [J]. Ann. Rev. Fluid Mech.,1999,31(1):417-457.
    54. Jarvis B. Investigation of stormwater runoff from highway surfaces [D]. Perth:The University of Western Australia,1992.
    55. Kang J H, Kayhanian M, Stenstorm M K. Predicting the existence of stormwater first flush from the time of concentration [J]. Water Res.,2008,42(1-2):220-228.
    56. Kim G, Choi E, Lee D. Diffuse and point pollution impacts on the pathogen indicator level in the Geum River, Korea [J]. Sci. Total Environ.,2005,350(1-3):94-105.
    57. Kim G, Yur J, Kim J. Diffuse pollution loading from urban stormwater runoff in Daejeon city, Korea [J]. J. Environ. Manage.,2007,85(1):9-16.
    58. Kim H, Seagren E A, Davis A P. Engineered bioretention for removal of nitrate from stormwater runoff [M]. Water Environment Federation.2000.
    59. Kim L H, Kang J, Kayhanian M, et al. Characteristics of litter waste in highway storm runoff [J]. Water Sci. Technol.,2006,53(2):225-234.
    60. Kim L H, Kayhanian M, Zoh K D, et al. Modeling of highway stormwater runoff [J]. Sci. Total Environ.,2005,348(1-3):1-18.
    61. Klumpp A, Hintemann T, Lima J S, et al. Bioindication of air pollution effects near a copper smelter in Brazil using mango trees and soil microbiological properties [J]. Environ. Pollut., 2003,126(3):313-321.
    62. Krein A and Schorer M. Road runoff pollution by polycyclic aromatic hydrocarbons and its river sediments [J]. Water Res.,2000,34(16):4110-4115.
    63. Krishnani K K, Zhang Y, Xiong L, et al. Bactericidal and ammonia removal activity of silver ion-exchanged zeolite [J]. Bioresource Technol.,2012,117:86-91.
    64. Lai D Y F and Lam K C. Phosphorus sorption by sediments in a subtropical constructed wetland receiving stormwater runoff [J]. Ecol. Eng.,2009,35(5):735-743.
    65. Le Coustumer S and Barraud S. Long-term hydraulic and pollution retention performance of infiltration systems [J]. Water Sci. Technol.,2007,55(4):235-243.
    66. Lee B K, Hong S H, Lee D S. Chemical composition of precipitation and wet deposition of major ions on the Korean peninsula [J]. Atmos. Environ.,2000,34(4):563-575.
    67. Lee D, Dillaha T A, Sherrard J H. Modeling phosphorus transport in grass buffer'strips [J]. J. Environ. Eng.,1989,115(2):409-427.
    68. Lee J H and Bang K W. Characterization of urban stormwater runoff [J]. Water Res.,2000, 34(6):1773-1780.
    69. Legret M and Pagotto C. Evaluation of pollutant loadings in the runoff waters from a major rural highway [J]. Sci. Total Environ.,1999,235(1-3):143-150.
    70. Li H B, Li J, Hou C T, et al. A sub-nanomole level electrochemical method for determination of prochloraz and its metabolites based on medical stone doped disposable electrode [J]. Talanta,2010,83(2):591-595.
    71. Li L Q, Yin C Q, He Q C, et al. First flush of storm runoff pollution from an urban catchment in China [J]. J. Environ. Sci.,2007,19(3):295-299.
    72. Liikanen A, Puustinen M, Koskiaho J, et al. Phosphorus removal in a wetland constructed on former arable land [J]. J. Environ. Qual.,2004,33(3):1124-1132.
    73. Loppi S, Frati L, Paoli L, et al. Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme(central Italy) [J]. Sci. Total Environ.,2004,29(1-3):113-122.
    74. Malone R F, Saidi H, Wegener K. Predictive accuracy determination applied to a linear model phosphorus loading resulting from urban runoff [J]. Appl. Math. Model.,1984,8(2):81-88.
    75. McDowell R W and Sharpley A N. Approximating phosphorus release from soils to surface runoff and subsurface drainage. J. Environ. Qual.,2001a,30(2):508-520.
    76. McDowell R W and Sharpley A N. Soil phosphorus fractions in solution:influence of fertiliser and manure, filtration and method of determination [J]. Chemosphere,2001b,45(6-7):737-748.
    77. Michael D S and Thomas S. Observations on the chemical composition of rain using short sampling times during a single event. Atmos. Environ.,1983,17(8):1483-1487.
    78. Michelbach S. Origin, resuspension and settling characteristics of solids transported in combined sewage [J]. Water Sci. Technol.,1995,31(7):69-76.
    79. Mizuta K, Matsumoto T, Hatate Y, et al. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal [J]. Bioresource Technol.,2004,95(3):255-257.
    80. Muliss R M, Revitt D M, Shutes R B. The impacts of urban discharges on the hydrology and water quality of an urban watercourse [J]. Sci. Total Environ.,1996,189-190:385-390.
    81. Nelson D W and Logan T J. Chemical processes and transport of phosphorus [J]. Agr. Manag. Water Qual.,1983,65-91.
    82. Nielsen T H and Revsbech N P. Nitrification, denitrification, and N-liberation associated with two types of organic hotspots in soil [J]. Soil Biol. Biochem.,1998,30(5):611-619.
    83. Ning P, Bart H J, Li B, et al. Phosphate removal from wastewater by model-La(III) zeolite adsorbents [J]. J. Environ. Sci.,2008,20(6):670-674.
    84. Novotny V and Chesters G. Handbook of nonpoint pollution:sources and management [J]. Van Nostrand Reinhold Environmental Engineering Series. Van Nostrand Reinhold Co. New York. 1981.555,1981.
    85. Novotny V and Olem H. Water quality:prevention, identification & management of diffuse pollution [M]. Van Nosstrand Reinhold, New York.1994.
    86. Okuda T, Iwase T, Uedaa H, et al. Long-term trend of chemical constituents in precipitation in Tokyo metropolitan area, Japan, from 1990 to 2002 [J]. Sci. Total Environ.,2005,339(1-3): 127-141.
    87. Parkyn S. Review of riparian buffer zone effectiveness [M]. New Zealand:Ministry of Agriculture and Forestry,2004, pp.1-31.
    88. Petersen R C Jr. The RCE:A riparian, channel, and environmental inventory of small streams in the agriculture landscape [J]. Freshwater Biol.,1992,27(2):295-306.
    89. Peterson S O, Nielsen T H, Frostegard A, et al. O2 uptake, C metabolism and denitrification associated with manure hotspots [J]. Soil Biol. Biochem.,1996,28(3):341-349.
    90. Pratt C J. Use of permeable, reservoir pavement constructions for stormwater treatment and storage for re-use [J]. Water Sci. Tech.,1999,39(5):145-151.
    91. Rao P, Momin G, Safai P, et al. Rain water and throughfall chemistry in the silent valley forest in the south India. Atmos. Environ.,1995,29(16):2025-2029.
    92. Rassam D W, Fellows C S, De Hayr R, et al. The hydrology of riparian buffer zones; two case studies in an ephemeral and a perennial stream [J]. J Hydrol.,2006,325(1-4):308-324.
    93. Rice C W, Sierzega P E, Tiedje J M, et al. Stimulated denitrification in the microenvironment of a biodegradable organic waste injected into soil [J]. Soil Sci. Soc. Am. J.,1988,52(1):102-108.
    94. Roberts A D, Prince S D, Jantz C A, et al. Effects of projected future urban land cover on nitrogen and phosphorus runoff to Chesapeake Bay [J]. Ecol. Eng.,2009,35(12):1758-1772.
    95. Rossman L A. Stormwater management model user's manual, Version 5.0 [M]. Cincinnati:OH 45268,2004,50-51.
    96. Saget A, Chebbo G, Bertrand-Krajewski J L. The first flush in sewer system [A]. In Proc. Int. Conf. on Sewer Solids-Characteristics, Movement, Effects and Control [C]. Dundee, U.K., 1995, pp.58-65.
    97. Sansalone J J and Buchberger S G. Partitioning and first flush of metals in urban roadway storm water [J]. J. Environ. Eng.,1997,123(2):134-143.
    98. Sarioglu M. Removal of ammonium from municipal wastewater using natural Turkish (Dogantepe) zeolite [J]. Sep. Purif. Technol.,2005,41(1):1-11.
    99. Sartor J D, Boyd G B, Agardy F J. Water pollution aspects of street surface contaminants[J]. J. Water Pollut. Contr. Fed.,1974,46(3):458-467.
    100. Schmidt S D and Spencer D R. The magnitude of improper waste discharges in an urban stormwater system [J]. J. Water Pollut. Contr. Fed.,1986,58(7):744-748.
    101. Schueler T R, Kumble P A, Heraty M A, et al. A current assessment of urban best management practices:Techniques for reducing non-point source pollution in the coastal zone [M]. Metropolitan Washington Council of Governments,1992.
    102. Schueler T R. Controlling urban runoff:A practical manual for planning and designing urban BMPs [M]. Order copies from, Metropolitan Information Center,1987.
    103. Shaw S B, Walter M T, Steenhuis T S. A physical model of particulate wash-off from rough impervious surfaces [J]. J. Hydrol.,2006,327(3-4):618-626.
    104. Siriwardene N R, Deletic A, Fletcher T D. Clogging of stormwater gravel infiltration systems and filters:insight from a laboratory study. Water Res.,2007,41(7):1433-1440.
    105. Smith V H, Tilman G D, Nekola J C. Eutrophication:impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems [J]. Environ. Pollut.,1999,100(1-3):179-196.
    106. Stamm C, Fluhler H, Gachter R, et al. Preferential transport of phosphorus in drained grassland soils [J]. J. Environ. Qual.,1998,27(3):515-522.
    107. Surbeck C Q, Jiang S C, Ahn J H, et al. Flow fingerprinting fecal pollution and suspended solids in stormwater runoff from an urban coastal watershed [J]. Environ. Sci. Technil.,2006, 40(14):4435-4441.
    108. Syversen N and Borch H. Retention of soil particle fractions and phosphorus in cold-climate buffer zones [J]. Ecol. Eng.,2005,25(4):382-394.
    109. Taebi A and Droste R L. Pollution loads in urban runoff and sanitary wastewater [J]. Sci. Total Environ.,2004.327(1-3,5):175-184.
    110. Taylor G D, Fletcher T D, Wong T H F, et al. Nitrogen composition in urban runoff— implications for stormwater management [J]. Water Res.,2005,39(10):1982-1989.
    111. Temprano J, Arango O, Cagiao J, et al. Stormwater quality calibration by SWMM:A case study in northern Spain [J]. Water SA.,2006,32(1):55-63.
    112. Thomann R V and Mueller J A. Principle of surface water quality modeling and control [M]. New York:Haper & ROV,1987.
    113. Tsihrintzis V A and Hamid R. Runoff quality prediction from small urban catchments using SWMM [J]. Hydrol. Process.,1998,12(2):311-329.
    114. Tu J, Wang H, Zhang Z, et al. Trends in chemical composition of precipitation in Nanjing, China, during 1992-2003. Atmos. Res.,2005,73(3-4):283-298.
    115. Urbonas B R. Design of a sand filter for water quality enhancement. Water Environ. Res.,1999, 71(1):102-113.
    116. US EPA. Meeting the environment challenge [M]. Washington DC:US EPA.1990, pp.46.
    117. US EPA. National water quality inventory. Report to Congress Executive Summary [M]. Washington DC:US EPA.1995:497.
    118. Vaze J, Chiew F H S. Experimental study of pollutant accumulation on an urban road surface [J]. Urban Water,2002,4(4):379-389.
    119. Vorreiter L and Hickey C. Incidence of the first flush phenomenon in catchments of the Sydney region [A]. In National Conf. Publication-Institution of Engineers [C]. Australia,1994, pp. 359-364.
    120. Wang S B, Ang H M, Tade M O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes [J]. Chemosphere.2008,72(11):1621-1635.
    121. Wang W C H and Williams S D. SWMM application in Indian River County, Florida [C]. In Hydraulic Engineering. New York, USA:ASCE,1989:454-459.
    122. Wetzel R G. Limnology, Lake and River Ecosystems [M]. San Diego:Academic Press,2001.
    123. Wu J S, Allan C J, Saunders W L, et al. Characterization and pollutant loading estimation for highway runoff [J]. J. Environ. Eng.,1998,124(7):584-592.
    124. Yuan Y, Hall K, Oldham C. A preliminary model for predicting heavy metal contaminant loading from an urban chatchment [J]. Sci. Total Environ.,2001,266(1-3):299-307.
    125. Zhang G S, Zhang J, Liu S M. Chemical composition of atmospheric wet depositions from the Yellow Sea and East China Sea [J]. Atmos. Res.,2007,85(1):84-97.
    126. Zhao J W, Shan B Q, Yin C Q. Pollutant loads of surface runoff in Wuhan City Zoo, an urban tourist area [J]. J. Environ. Sci.,2007,19(4):464-468.
    127.包红军,李致家,王莉莉.降雨径流模拟神经网络模型及应用[J].西安建筑科技大学学报(自然科学版),2009,41(5):719-722.
    128.边博,朱伟,黄峰,等.镇江城市降雨径流营养盐污染特征研究[J].环境科学,2008,29(1):19-25.
    129.边博.前期晴天时间对城市降雨径流污染水质的影响[J].环境科学,2009,30(12):3522-3526.
    130.常静,刘敏,许世远,等.上海城市降雨径流污染时空分布与初始冲刷效应[J].地理研究,2006,25(6):994-1002.
    131.常静.城市地表灰尘—降雨径流系统污染物迁移过程与环境效应[D].上海:华东师范 大学,2007.
    132.车伍,欧岚,汪慧贞,等.北京城区雨水径流水质及其主要影响因素[J].环境污染治理技术与设备,2002,3(1):33-37.
    133.陈吉泉.河岸植被特征及其在生态系统和景观中的作用[J].应用生态学报,1996,7(4):439-448.
    134.陈桥,胡维平,章建宁.城市地表污染物累积和降雨径流冲刷过程研究进展[J].长江流域资源与环境,2009,18(10):992-996.
    135.陈述彭.《上海城市自然地图集》读图心得[J].地理学报,2005,60(6):1046.
    136.程波,张泽,陈凌,等.太湖水体富营养化与流域农业面源污染的控制[J].农业环境科学学报,2005,25(Z1):118-124.
    137.程红光,岳勇,杨胜天,等.黄河流域非点源污染负荷估算与分析[J].环境科学学报,2006,26(3):384-391.
    138.程江,杨凯,黄小芳,等.上海中心城区苏州河沿岸排水系统降雨径流水文水质特性研究[J].环境科学,2009,30(7):1893-1900.
    139.董欣,陈吉宁,赵冬泉.SWMM模型在城市排水系统规划中的应用[J].给水排水,2006,32(5):106-109.
    140.董欣,杜鹏飞,李志一,等.城市降雨屋面、路面径流水文水质特征研究[J].环境科学,2008,29(3):607-612.
    141.段金明,林建清,方宏达,等.改性沸石同步深度脱氮除磷的实验研究[J].环境工程学报,2009,3(5):829-833.
    142.方红远,陈志春.城市降雨径流负荷计算的统计分析法[J].环境科学与技术,2002,25(1):13-18.
    143.冯绍元,侯立柱,丁跃元,等.多层渗滤介质系统去除城市雨水径流有机污染物[J].环境科学学报,2008,28(6):1 123-1130.
    144.甘华阳,卓慕宁,李定强,等.广州城市道路雨水径流的水质特征[J].生态环境,2006,15(5):969-973.
    145.顾琦,刘敏,蒋海燕.上海市区降水径流磷的负荷空间分布[J].上海环境科学,2002,21(4):213-216.
    146.郭琳,曾光明,程运林.城市街道地表物特征分析[J].中国环境监测,2003,19(6):40-42.
    147.郭青海,马克明,杨柳.城市非点源污染的主要来源及分类控制对策[J].环境科学,2006,27(11):2170-2715.
    148.郭青海,马克明,赵景柱,等.城市非点源污染控制的景观生态学途径[J].应用生态学报,2005,16(5):977-981.
    149.国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    150.韩冰,王效科,欧阳志云.城市面源污染特征的分析[J].水资源保护,2005,21(2):14
    151.韩芸.城市河道人工水面水质污染及控制研究[D].西安:西安建筑科技大学,2009.
    152.郝长虹,颜丽,娄翼来,等.天然沸石负载氧化镁对养猪场废水中磷的净化效果及其机制研究[J].沈阳农业大学学报,2010,41(3):331-334.
    153.何旭升,逢勇,鲁一晖,等.净水型护岸技术的探讨[J].水利学报,2008,39(6):659-666.
    154.贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制[J].环境科学,1998,5(19):87-92.
    155.侯立柱,冯绍元,丁跃元,等.多层渗滤介质系统对城市雨水径流氮磷污染物的净化作用[J].环境科学学报,2009,29(5):960-967.
    156.黄金良,杜鹏飞,欧志丹,等.澳门城市小流域地表径流污染特征分析[J].环境科学,2006,27(9):1753-1759.
    157.纪荣平,吕锡武,李先宁.人工介质对富营养化水体中氮磷营养物质去除特性研究[J].湖泊科学,2007,19(1):39-45.
    158.姜必亮,王伯荪,蓝崇钰,等.不同质地土壤对填埋场渗滤液的吸收净化效能[J].环境科学,2000,21(5):32-37.
    159.蒋海燕,刘敏,顾琦,等.上海城市降水径流营养盐氮负荷及空间分布[J].城市环境与城市生态,2002,15(1):15-17.
    160.鞠琴,郝振纯,余钟波,等.基于人工神经网络的降雨径流模拟研究[J].辽宁工程技术大学学报,2007,26(6):940-943.
    161.孔繁花,尹海伟.城市绿地功能的研究现状、问题及发展方向[J].南京林业大学学报:自然科学版,2010,34(2):119-124.
    162.李家科,李亚娇,李怀恩.城市地表径流污染负荷计算方法研究[J].水资源与水工程学报,2010,21(2):5-13.
    163.李立青,尹澄清,何庆慈,等.武汉汉阳地区城市集水区尺度降雨径流污染过程与排放特征[J].环境科学学报,2006,26(7):1057-1061.
    164.李立青,尹澄清,孔玲莉,等.2次降雨间隔时间对城市地表径流污染负荷的影响[J].环境科学,2007,28(10):2287-2293.
    165.李立青,尹澄清.雨、污合流制城区降雨径流污染的迁移转化过程与来源研究[J].环境 科学,2009,30(2):368-373.
    166.李丽,王全金,李忠卫.四种填料对总磷的静态吸附试验研究[J].华东交通大学学报,2009,26(4):39-43.
    167.李猛.城市面源污染负荷特征及其跌水曝气强化净化技术研究与应用[D].上海:华东师范大学,2012.
    168.李增新,李相仁.天然沸石在环境污染治理中的应用进展[J].环境污染治理技术与设备,2004,5(3):19-22.
    169.李忠,符瞰,夏启斌.改性天然沸石的制备及对氨氮的吸附[J].华南理工大学学报(自然科学版),2007,35(4):6-10.
    170.刘启明,成路,沈冰心,等.沸石覆盖层控制水库底泥氮磷释放的影响因素[J].集美大学学报(自然科学版),2010,15(5):18-21.
    171.刘晓涛.城市河流治理若干问题的讨论[J].规划师,2001,17(6):66-69.
    172.刘兴坡,刘遂庆,李树平,等.基于SWMM的排水管网系统模拟分析技术[J].给水排水,2007,33(4):105-1 08.
    173.陆雍森.环境评价(第二版)[M].上海:同济大学出版社,1999.
    174.罗专溪,朱波,唐家良,等.自然沟渠控制村镇降雨径流中氮磷污染的主要作用机制[J].环境科学学报,2009,29(3):56 1-568.
    175.苗文凭,林海,卢晓君.粉煤灰吸附除磷的改性研究[J].环境工程学报,2008,2(4):502-506.
    176.聂发辉.上海城市景观绿地削减地表径流及其污染负荷的可行性研究[D].上海:同济大学,2008.
    177.欧阳威,王玮,郝芳华,等.北京城区不同下垫面降雨径流产污特征分析[J].中国环境科学,2010,30(9):1249-1256.
    178.祁莹莹,毕春娟,陈振楼,等.温州城市不同下垫面径流中无机氮的含量及初期冲刷效应[J].环境科学学报,2012,32(12):2986-2997.
    179.祁莹莹.城市降雨径流氮污染特征与生态箱净水技术研究[D].上海:华东师范大学,2012.
    180.任玉芬,王效科,韩冰,等.城市不同下垫面的降雨径流污染[J].生态学报,2005,25(12):3225-3230.
    181.任玉芬,王效科,欧阳志云,等.沥青油毡屋面降雨径流污染物浓度历时变化研究[J].环境科学学报,2006,26(4):601-606.
    182.日本土木学会.滨水景观设计[M].孙逸增译.大连:大连理工大学出版社.2002.
    183.邵德民,沈爱华,张维.降雨过程中雨水pH值连续观测资料分析[J].大气科学,1988,12(2):147-152.
    184.沈桂芬,张敬东,严小轩,等.武汉降雨径流水质特性及主要影响因素分析[J].水资源保护,2005,21(2):57-58,71.
    185.万金宝,兰新怡,汤爱萍,等.多级表面流人工湿地系统对农村面源污染氮磷的去除[A].中国环境科学学会2010年学术年会论文集(第一卷)[C],2010,966-970.
    186.王浩,陈吕军,温东辉.天然沸石对溶液中氨氮吸附特征的研究[J].生态环境,2006,15(2):219-223.
    187.王和意,刘敏,刘巧梅,等.城市降雨径流非点源污染分析与研究进展[J].城市环境与城市生态,2003,16(6):283-285.
    188.王庆成,于红丽,姚琴,等.河岸带对陆地水体氮素输入的截流转化作用[J].应用生态学报,2007,18(11):261 1-2617.
    189.王晓峰,王晓燕.国外降雨径流污染过程及控制管理研究进展[J].首都师范大学学报(自然科学版),2002,23(1):91-97.
    190.王新军,罗继润.城市河道综合整治中生态护岸建设初探[J].复旦学报(自然科学版),2006,45(1):120-126.
    191.王兴钦,梁世军.城市降雨径流污染及最佳治理方案探讨[J].环境科学与管理,2007,32(3):50-53.
    192.王秀蘅,任南琪,王爱杰,等.铁锰离子对硝化反应的影响效应研究[J].哈尔滨工业大学学报,2003,35(1):122-125.
    193.温州政府.温州概况.[EB/OL]. http://www.wenzhou.gov.cn/col/co13582/index.html.
    194.温灼如,苏逸深,刘小靖,等.苏州水网城市暴雨径流污染的研究[J].环境科学,1986,7(6):2-6.
    195.吴希媛,张丽萍,倪含斌,等.青山湖流域不同地表覆盖降雨径流中氮磷流失过程研究[J].水土保持学报,2008,22(1):56-59.
    196.席北斗,徐红灯,翟丽华,等.pH对沟渠沉积物截留农田排水沟渠中氮、磷的影响研究[J].环境污染与防治,2007,29(7):490-494.
    197.夏宏生,向欣.城市道路降雨径流中悬浮颗粒物特征及其全过程削减探讨[J].环境科学与管理,2009,34(5):34-37.
    198.夏继红,严忠民.国内外城市河道生态型护岸研究现状及发展趋势[J].中国水土保持, 2004,3:20-21.
    199.肖文浚.改性微孔沸石的制备及其去除微污染水源中氨氮的研究[D].武汉:武汉理工大学,2003.
    200.熊小京,叶均磊,王新红,等.天然沸石处理低浓度含氨废水的实验研究[J].厦门大学学报(自然科学版),2006,45(12):828-831.
    201.许世远.上海城市自然地理图集[M].北京:中国地图出版社,2004.
    202.杨德敏,曹文志,陈能汪,等.厦门城市降雨径流氮、磷污染特征[J].生态学杂志,2006,25(6):625-628.
    203.杨懂艳,李秀金,.陈圆圆,等.北京市湿沉降特征分析[J].环境科学,2011,32(7):1867-1873.
    204.尹澄清.城市面源污染的控制原理和技术[M].北京:中国建筑工业出版社,2009.
    205.张凤凤,李土生,卢剑波.河岸带净化水质及其生态功能与恢复研究进展[J].农业环境科学学报,2007,26(增刊):459-464.
    206.张建春,彭补拙.河岸带研究及其退化生态系统的恢复与重建[J].生态学报,2003,23(1):56-63.
    207.张晶晶.城市降雨径流中重金属污染特征与污染负荷[D].上海:华东师范大学,2011.
    208.张美兰,何圣兵,陈初雪,等.天然沸石和硅酸钙滤床的脱氨除磷效果[J].水处理技术,2007,33(11):71-74.
    209.张巍,张树才,岳大攀,等.北京城市道路地表径流中PAHs的污染特征研究[J].环境科学学报,2008,28(1):160-167.
    210.张修峰.上海地区大气氮湿沉降及其对湿地水环境的影响[J].应用生态学报,2006,17(6):1099-1102.
    211.张瑜英,孙丽云,李占斌.城市非点源污染研究进展与展望[J].人民黄河,2006,28(3):42-43.
    212.张之山,金崟,雷中方,等.土壤渗滤系统中亚硝态氮的变化与系统运行性能的关系[J].复旦学报(自然科学版),2006,45(6):755-761.
    213.张志超,黄霞,肖康,等.脱氮除磷膜-生物反应器的除磷效果及特性[J].清华大学学报(自然科学版),2008,48(9):92-94.
    214.赵冬泉,陈吉宁,王浩正,等.城市降雨径流污染模拟的水质参数局部灵敏度分析[J].环境科学学报,2009,29(6):1170-1177.
    215.赵广琦,崔心红,张群,等.河岸带植被重建的生态修复技术及应用[J].水土保持研究, 2010,1:252-258.
    216.赵桂瑜,周琪.页岩陶粒对水体中磷的吸附动力作用及动力学[J].环境污染与防治,2007,29(3):182-185.
    217.赵剑强,孙奇清.城市道路路面径流水质特性及排污规律[J].长安大学学报(自然科学版),2002,22(2):21-23.
    218.赵剑强.城市地表径流污染与控制[M].北京:中国环境科学出版社,2002.
    219.赵磊,杨逢乐,王俊松,等.合流制排水系统降雨径流污染物的特性及来源[J].环境科学学报,2008,28(8):1561-1570.
    220.赵哲,王国庆.麦饭石改善饮用水水质技术研究[J].黑龙江环境通报,2007,3 1(3):87-89.
    221.钟春欣,张玮.基于河道治理的河流生态修复[J].水利水电科技进展,2004,24(3):12-15.
    222.周栋,陈振楼,毕春娟,等.沸石和麦饭石组合滤料对城市降雨径流氮磷去除效率的研究[J].华东师范大学学报(自然科学版),2011,1:185-193.
    223.周栋,陈振楼,毕春娟.温州城市降雨径流磷的负荷及其初始冲刷效应[J].环境科学,2012,33(8):2634-2643.
    224.周婕成.城市降雨径流中多环芳烃的污染特征、源解析及生态风险评价[D].上海:华东师范大学,2011.
    225.朱丹,王世和,张维.钢渣净化水中磷素的研究进展[J].电力环境保护,2009,25(6):4-7.
    226..朱克银,曹亮.天然沸石处理氨氮废水及农作物应用研究[J].安徽化工,2001,27(2):32-35.
    227.卓慕宁,吴志峰,王继增,等.珠海城区降雨径流污染特征初步研究[J].土壤学报,2003,40(5):775-778.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700