用户名: 密码: 验证码:
认知无线电中合作频谱感知方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术及其应用业务的飞速发展,使得适合于无线通信的频谱资源变得日益紧张,这已成为制约无线通信技术发展的瓶颈,而认知无线电技术是解决这个问题的最佳方案。频谱感知使得认知无线电具有检测、学习及感知各种无线电磁参数的能力,是认知无线电技术能否实现实际应用的前提与基础,是认知无线电技术中的关键技术之一。
     本文正是以认知无线电技术为背景,重点对中心式的合作频谱感知算法进行了研究。在对传统频谱感知算法深入研究的基础上,针对它们的某些缺点,借助数学上的合作博弈理论以及随机矩阵理论等工具对新的合作频谱感知技术展开了研究,并取得了一些研究成果。其主要研究成果如下:
     (1)根据渐进谱理论中有关随机矩阵最大特征的统计特性,提出了一种基于双特征值判决门限的合作频谱感知算法。
     利用多个认知用户接收到的主用户发射机信号产生一个采样协方差矩阵,该协方差矩阵包含了主用户信号源的相关信息。在主用户发射机信号存在与不存在两种假设条件下,依据渐近谱理论推出这两种假设情况下采样协方差矩阵的最大特征值,并以这两个最大特征值作为判决门限,实现对某段频谱内是否存在主用户发射机信号做出判决。
     (2)针对基于最大特征值的频谱感知算法对噪声敏感的缺点,提出了一种基于最大特征值与平均能量比值的合作频谱感知算法。
     该算法将认知用户接收信号协方差矩阵的最大特征值与接收信号的平均能量的比值作为检验统计量,并由采样协方差矩阵的最大特征值的极限、平均能量分布特性以及虚警概率求得判决门限,该判决门限与噪声没有任何关系且无需任何有关主用户发射机信号的先验知识。该算法克服了基于最大特征值的频谱感知算法对噪声敏感的缺点,进一步提高了整个系统的感知性能及其可靠性。
     (3)构建了一种合作频谱感知博弈模型,并在此基础上提出了一种基于一般化纳什谈判解策略的合作频谱感知新方法。
     在有中心节点的多认知用户合作频谱感知场景中,由于每一认知用户所处的空间位置以及无线电磁环境的不同,使得每个认知用户接收机的信噪比及判决门限均不相同。因此,每一认知用户在数据融合时将具有不同的感知贡献和权重。基于以上事实,本方法利用合作博弈论中的一般化纳什谈判解策略,构造出较符合实际情况的两认知用户合作感知的纳什谈判解。采用感知可信度来表征距离及信道参数等对感知可靠性的影响,并通过最优化方法求得两认知用户合作感知情形下,每个认知用户在感知结果中所占的权重,进而求出此情形下的合作频谱感知性能。对于多认知用户的情况,先采用指派分组算法将多认知用户分成两俩一组,然后同样利用一般化纳什谈判解策略求出每一组的合作感知性能。最后求出整个系统的感知性能。
     (4)根据认知无线电中授权频谱被占用情况的统计On-Off模型,提出了一种基于贝叶斯判决规则的异步合作频谱感知算法。
     该算法考虑到主用户行为会对认知用户的检测性能产生影响,以及在实际的合作频谱感知环境中,每个认知用户感知信息的获取时间不尽相同,而且各个认知用户将感知信息传送给融合中心的时间也不可能同步。本算法将每个认知用户在不同时刻的软判决结果传输给数据融合中心,在考虑到不同认知节点具有不同信噪比的情况下,将On-Off模型求得的贝叶斯判决准则似然比作为感知权重,对各认知用户的感知结果进行数据融合。由于算法考虑到了合作感知过程中每个认知用户感知时刻不同步、传输数据异步的实际特点,因此,与传统的同步合作频谱感知算法相比,该算法的合理性及可靠性更强,感知性能也更高。
With the rapid development of wireless communications technologies and the applications, the last decade has witnessed the growing demand for wireless radio spectrum. This has resulted in that wireless spectrum has been increasingly scarce, which has led to the obstacle to the improvement of wireless communications technologies. Cognitive Radio (CR) is the optimal choice to solve the above problem. Spectrum sensing enables the capability of CR to detect, learn and be aware of the wireless electromagnetic parameters, and it determines whether CR can be applied to the practical system or not, is one of the key techniques for cognitive radio.
     In this dissertation, the centralized cooperative spectrum sensing algorithms are mainly focused on, and the disadvantages of the traditional spectrum sensing methods are deeply investigated. In order to overcome the disadvantages of the conventional spectrum sensing algorithms, this dissertation has explored some novel cooperative spectrum sensing algorithms based on cooperative game theory and random matrix theory, and has acquired some research fruits as follows.
     (1) Based on the distribution of the maximum eigenvalue of random matrix in asymptotic spectrum theory, a DET (Double Eigenvalue Threshold) cooperative spectrum sensing algorithm is proposed.
     DET can find the two maximum eigenvalues for hypotheses H0 (signal does not exist) and H1 (signal exists) by analysis of the sample covariance matrix of the received signals using Asymptotic Spectrum Theory (AST). The two maximum eigenvalues are regarded as two thresholds to decide whether the transmitted primary user signal is present or not.
     (2) In order to overcome the disadvantages that the maximum eigenvalue based algorithms are sensitive to the noise uncertainty, a ME-ED (Maximum Eigenvalue-Energy Detection) is presented in this dissertation.
     The proposed algorithm exploits the ratio of the Maximum Eigenvalue to Energy Detection (ME-ED) to determine whether the Primary User (PU) is absent or not. Through the theoretical analyses, ME-ED scheme can work well without the knowledge of the PU priori and the noise power. In addition, ME-ED algorithm is not sensitive to noise uncertainty at all, and can further improve the sensing performance and robustness.
     (3) A cooperative spectrum sensing game model has been constructed, based on which a novel cooperative spectrum sensing approach using General Nash Bargaining Solution (GNBS) is presented.
     In the centralized cooperative spectrum sensing scenario, different cognitive users (Secondary Users, SUs) have different average SNRs and different decision thresholds due to the different spatial position and wireless electromagnetic environment for each SU. Therefore, each SU contributes differently to the final sensing result, and has different weight at the fusion center. According to the aforementioned circumstances, the proposed algorithm exploits GNBS in Cooperative Game Theory (CGT) to construct a two-user cooperative sensing Nash bargaining solution problem. In the proposed scheme, Sensing creditability degree is used for characterizing effects of the distance and channel parameters on the sensing creditability, and the sensing performance for two-user case is derived by using the optimization method. For multi-user case, all SUs are grouped into pairs called coalitions with the assignment method, and for each pair, the sensing performance is obtained based on the two-user method. Finally, the sensing results for each pair are weighted at the fusion center to acquire the final sensing performance.
     (4) A novel asynchronous cooperative spectrum sensing (ACSS) algorithm is presented in this dissertation, which is based on the occupancy model of licensed band and Bayesian decision rule.
     In practice, each secondary user (SU) can not synchronously obtain the sensing information and make the decision, and the sensing data from all SUs can not be transmitted to the data fusion center at the same time. What’s more, primary users’behaviors which can be modeled as the On-Off model also affect the detection performance of CR. The proposed algorithm ACSS takes all these factors into account. In ACSS, the asynchronous soft decision results from secondary users are transmitted to the fusion center, and these soft decisions are weighted based on the likelihood ratio from Bayesian decision rule and combined at the fusion center. In addition, the fact that each SU has different SNR is considered in ACSS. Compared with the traditional synchronous cooperative spectrum sensing (SCSS) algorithms, the proposed algorithm is theoretically more reasonable, more credible and more suitable to the practical situation.
引文
[1] Ying-Chang Liang, Hsiao-Hwa Chen, and J. Mitola, et al.“Guest Editorial - Cognitive Radio: Theory and Application”, IEEE Journal on Selected Areas in Communications, 2008, 26 (1), pp. 1-4.
    [2] S. Haykin,“Cognitive radio: brain-empowered wireless communications”, IEEE Journal on Selected Areas in Communications, 2005, 23(2), pp. 201-220.
    [3] I.F. Akyildiz, W.Y. Lee, M.C. Vuran, and S. Mohanty,“NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey”, Computer Networks, 2006, 50(13), pp. 2127-2159.
    [4] Beibei Wang and K.J.R. Liu,“Advances in Cognitive Radio Networks: A Survey”, IEEE Journal of Selected Topics in Signal Processing, 2011, 5(1), pp. 5-23.
    [5] C. Cordeiro, K. Challapali, D. Birru, and N. Sai Shankar,“IEEE 802.22: the first worldwide wireless standard based on cognitive radios”, 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005, 2005, pp. 328-337.
    [6] Guizhu Feng, Wei Chen, and Zhigang Cao,“A Joint PHY-MAC Spectrum Sensing Algorithm Exploiting Sequential Detection”, IEEE Signal Processing Letters, 2010, 17(8), pp. 703-706.
    [7] Shengli Xie, Yi Liu, Yan Zhang, and Rong Yu,“A Parallel Cooperative Spectrum Sensing in Cognitive Radio Networks”, IEEE Transactions on Vehicular Technology, 2010, 59(8), pp. 4079-4092.
    [8] J. Mitola and G.Q. Maguire,“Cognitive radio: making software radios more personal”, IEEE Personal Communications, 1999, 6(4), pp. 13-18.
    [9] J. Mitola,“An integrated agent architecture for software defined radio”, Ph.D.Dissertation, Royal Institute of Technology, 2000.
    [10] R.W. Thomas,“Cognitive Networks”, Ph.D.Dissertation, Virginia Polytechnic Institute and State University, 2007.
    [11] D. Niyato and E. Hossain,“Cognitive radio for next-generation wireless networks: an approach to opportunistic channel selection in IEEE 802.11-based wireless mesh”, IEEE Wireless Communications, 2009, 16(1), pp. 46-54.
    [12] Honggang Zhang and Xiaofei Zhou, et al.“Multiple signal waveforms adaptation in cognitive ultra-wideband radio evolution”, IEEE Journal on Selected Areas in Communications, 2006, 24(4), pp. 878-884.
    [13] K.R. Chowdhury and I.F. Akyildiz,“Cognitive Wireless Mesh Networks with Dynamic Spectrum Access”, IEEE Journal on Selected Areas in Communications, 2008, 26(1), pp. 168-181.
    [14] R. Ruslan and Tat-Chee Wan,“Wi-Fi load balancing using cognitive radio techniques”, 2010 International Symposium in Information Technology (ITSim) , 2010, pp. 1-5.
    [15] E. Baccarelli, M. Biagi, C. Pelizzoni, and N. Cordeschi,“Generalized Access for MIMO Cognitive Radios”, IEEE International Conference on Communications, 2008. ICC’08, 2008, pp. 2364-2370.
    [16] Xiangpeng Jing, Siun-Chuon Mau, D. Raychaudhuri, and R. Matyas,“Reactive cognitive radio algorithms for co-existence between IEEE 802.11b and 802.16a networks”, IEEE Global Telecommunications Conference, GLOBECOM’05, 2005, pp. 2465-2469.
    [17] Ruofan Jin, D. Grace, and P. Mitchell,“Cognitive Radio for UWB spectrum sharing and power allocation”, 2010 7th International Symposium on Wireless Communication Systems (ISWCS), 2010, pp. 1001-1005.
    [18] Xiaofei Zhou, K.Y. Yazdandoost, Honggang Zhang, and I. Chlamtac,“Cognospectrum: spectrum adaptation and evolution in cognitive ultra-wideband radio”, IEEE International Conference on Ultra-Wideband, 2005, pp. 713-718.
    [19] N. Bouabdallah, B. Ishibashi, and R. Boutaba,“Performance of Cognitive Radio-Based Wireless Mesh Networks”, IEEE Transactions on Mobile Computing, 2011, 10(1), pp. 122-135.
    [20] I.F. Akyildiz, X. Wang, and W. Wang,“Wireless mesh networks: a survey”, Computer Networks, 2005, 47(4), pp. 445-487.
    [21] Y.T. Hou, Yi Shi, and H.D. Sherali,“Spectrum Sharing for Multi-Hop Networking with Cognitive Radios”, IEEE Journal on Selected Areas in Communications, 2008, 26(1), pp. 146-155.
    [22] Kai Yang and Xiaodong Wang,“Cross-layer network planning for multi-radio multi-channel cognitive wireless networks”, IEEE Transactions on Communications, 2008, 56(10), pp. 1705-1714.
    [23] T. Yucek and H. Arslan,“A survey of spectrum sensing algorithms for cognitive radio applications”, IEEE Communications Surveys & Tutorials, 2009, 11(1), pp. 116-130.
    [24] M.P. Olivieri, G. Barnett, A. Lackpour, A. Davis, and P. Ngo,“A scalable dynamic spectrum allocation system with interference mitigation for teams of spectrally agile software defined radios”, 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005, 2005, pp. 170-179.
    [25] F. Weidling, D. Datla, V. Petty, P. Krishnan, and G.J. Minden,“A framework for R.F. spectrum measurements and analysis”, 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005, 2005, pp. 573-576.
    [26] H. Tang,“Some physical layer issues of wide-band cognitive radio systems”, 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005. 2005, pp. 151-159.
    [27] A. Sahai, R. Tandra, S. Mishra, and N. Hoven,“Fundamental design tradeoffs in cognitive radio systems”, International Workshop Technology Policy for Accessing Spectrum, 2006.
    [28] Zhi Quan, S.J. Shellhammer, Wenyi Zhang, and A.H. Sayed,“Spectrum Sensing by Cognitive Radios at Very Low SNR”, IEEE Global Telecommunications Conference, GLOBECOM 2009, 2009, pp. 1-6.
    [29] D. Cabric, A. Tkachenko, and R.W. Brodersen,“Spectrum Sensing Measurements of Pilot, Energy, and Collaborative Detection”, IEEE Military Communications Conference, MILCOM 2006, 2006, pp. 1-7.
    [30] W.A. Gardner,“Signal interception: a unifying theoretical framework for feature detection”, IEEE Transactions on Communications, 1988, 36(8), pp. 897-906.
    [31] D. Cabric and R.W. Brodersen,“Physical layer design issues unique to cognitive radio systems”, IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2005, 2005, Vol. 2, pp. 759-763.
    [32] N.S. Shankar, C. Cordeiro, and K. Challapali,“Spectrum agile radios: utilization and sensing architectures”, 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005, 2005, pp. 160-169.
    [33] W.A. Gardner,“Exploitation of spectral redundancy in cyclostationary signals”, IEEE Signal Processing Magazine, 1991, 8(2), pp. 14-36.
    [34] L.P. Goh, Z. Lei, and F. Chin,“Feature Detector for DVB-T Signal in Multipath Fading Channel”, 2nd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, CrownCom 2007, 2007, pp. 234-240.
    [35] M. Oner and F. Jondral,“Air interface recognition for a software radio system exploiting cyclostationarity”, 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2004, 2004, Vol.3, pp. 1947-1951.
    [36] J. Lunden, V. Koivunen, A. Huttunen, and H.V. Poor,“Spectrum Sensing in Cognitive Radios Based on Multiple Cyclic Frequencies”, 2nd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, CrownCom 2007, 2007, pp. 37-43.
    [37] J.G. Proakis,“Digital Communications”, McGraw-Hill, 2001.
    [38] A. Sahai and D. Cabric,“A tutorial on spectrum sensing: Fundamental limits and practical challenges”, IEEE Symp. New Frontiers Dynamic Spectrum Access Netw, Baltimore, MD: 2005.
    [39] R. Tandra and A. Sahai,“Fundamental limits on detection in low SNR under noise uncertainty”, 2005 International Conference on Wireless Networks, Communications and Mobile Computing, 2005, vol.1, pp. 464-469.
    [40] R. Tandra and A. Sahai,“SNR Walls for Signal Detection”, IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1), pp. 4-17.
    [41] D. Cabric, S.M. Mishra, and R.W. Brodersen,“Implementation issues in spectrum sensing for cognitive radios”, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004, Vol.1, pp. 772-776.
    [42] P.J. Kolodzy,“Interference temperature: a metric for dynamic spectrum utilization”, International Journal of Network Management, 2006, 16(2), pp. 103-113.
    [43] M. Sharma, A. Sahoo, and K.D. Nayak,“Channel modeling based on interference temperature in underlay cognitive wireless networks”, IEEE International Symposium on Wireless Communication Systems. ISWCS’08, 2008, pp. 224-228.
    [44] T.C. Clancy,“On the use of interference temperature for dynamic spectrum access”, Springer Ann.Telecomm., 2009, 64(7), pp. 573-585.
    [45] B. Wild and K. Ramchandran,“Detecting primary receivers for cognitive radio applications”, 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005. 2005, pp. 124-130.
    [46] S.M. Mishra and D. Cabric, et al.“A real time cognitive radio testbed for physical and link layer experiments”, 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005, 2005, pp. 562-567.
    [47] A. Ghasemi and E.S. Sousa,“Collaborative spectrum sensing for opportunistic access in fading environments”, 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005, 2005, pp. 131-136.
    [48] S.M. Mishra, A. Sahai, and R.W. Brodersen,“Cooperative Sensing among Cognitive Radios”, IEEE International Conference on Communications, ICC’06, 2006, pp. 1658-1663.
    [49] J. Unnikrishnan and V.V. Veeravalli,“Cooperative Spectrum Sensing and Detection for Cognitive Radio”, IEEE Global Telecommunications Conference, GLOBECOM’07, 2007, pp. 2972-2976.
    [50] E. Peh and Ying-Chang Liang,“Optimization for Cooperative Sensing in CognitiveRadio Networks”, IEEE Wireless Communications and Networking Conference, WCNC 2007, 2007, pp. 27-32.
    [51] J. Unnikrishnan and V.V. Veeravalli,“Cooperative Sensing for Primary Detection in Cognitive Radio”, IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1), pp. 18-27.
    [52] Jun Ma, Guodong Zhao, and Ye Li,“Soft Combination and Detection for Cooperative Spectrum Sensing in Cognitive Radio Networks”, IEEE Transactions on Wireless Communications, 2008, 7(11), pp. 4502-4507.
    [53] G. Ganesan and Ye Li,“Agility improvement through cooperative diversity in cognitive radio”, IEEE Global Telecommunications Conference, GLOBECOM’05, 2005, pp. 2505-2509.
    [54] Jun Zhao, Haito Zheng, and Guang-Hua Yang,“Distributed coordination in dynamic spectrum allocation networks”, 2005 First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005, 2005, pp. 259-268.
    [55] T. Weiss, J. Hillenbrand, and F. Jondral,“A diversity approach for the detection of idle spectral resources in spectrum pooling systems”, the 48th International Scientific Colloquium, 2003, pp. 37-38.
    [56] J. Hillenbrand, T.A. Weiss, and F.K. Jondral,“Calculation of detection and false alarm probabilities in spectrum pooling systems”, IEEE Communications Letters, 2005, 9(4), pp. 349-351.
    [57] Chunhua Sun, Wei Zhang, and K.B. Letaief,“Cooperative Spectrum Sensing for Cognitive Radios under Bandwidth Constraints”, IEEE Wireless Communications and Networking Conference, WCNC 2007, 2007, pp. 1-5.
    [58] M. Gandetto, A.F. Cattoni, and C.S. Regazzoni,“A distributed approach to mode identification and spectrum monitoring for cognitive radios”, in Proc. SDR Forum Technical Conference,, California, USA: 2005.
    [59] M. Gandetto, A.F. Cattoni, M. Musso, and C.S. Regazzoni,“Distributed cooperative mode identification for cognitive radio applications”, in Proc. International Radio Science Union (URSI), New Delhi, India: 2005.
    [60] M. Gandetto and C. Regazzoni,“Spectrum sensing: A distributed approach for cognitive terminals”, IEEE Journal on Selected Areas in Communications, 2007, 25(3), pp. 546-557.
    [61] Beibei Wang, K. Liu, and T.C. Clancy,“Evolutionary Game Framework for Behavior Dynamics in Cooperative Spectrum Sensing”, IEEE Global Telecommunications Conference, GLOBECOM '08, 2008, pp. 1-5.
    [62] Beibei Wang, K.J. Ray Liu, and T.C. Clancy,“Evolutionary cooperative spectrum sensing game: how to collaborate?”, IEEE Transactions on Communications, 2010, 58(3), pp. 890-900.
    [63] Yonghong Zeng, Choo Leng Koh, and Ying-Chang Liang,“Maximum Eigenvalue Detection: Theory and Application”, IEEE International Conference on Communications, ICC’08, 2008, pp. 4160-4164.
    [64] Kyouwoong Kim and I.A. Akbar, et al.“Cyclostationary Approaches to Signal Detection and Classification in Cognitive Radio”, 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2007, 2007, pp. 212-215.
    [65] Y. Lin, C. He, L. Jiang, and D. He,“A Cyclostationary-Based Spectrum Sensing Method Using Stochastic Resonance in Cognitive Radio”, IEEE International Conference on Communications Workshops (ICC), 2010, pp. 1-5.
    [66] J. Lunden, V. Koivunen, A. Huttunen, and H.V. Poor,“Collaborative Cyclostationary Spectrum Sensing for Cognitive Radio Systems”, IEEE Transactions on Signal Processing, 2009, 57(11), pp. 4182-4195.
    [67] A.M. Tulino and S. Verdú, Random Matrix Theory and Wireless Communications, Hanover, USA: Now Publisher Inc., 2004.
    [68] E. Wigner,“Characteristic vectors of bordered matrices with infinite dimensions”, Annals of Mathematics, vol. 62, 1955, pp. 546-564.
    [69] F.J. Dyson,“Statistical theory of the energy levels of complex systems”, I,J.Math.Phys, 1962, vol. 3, p. 140.
    [70] F.J. Dyson,“Statistical theory of the energy levels of complex systems”, II, J. Math. Phys, 1962, vol. 3, p. 157.
    [71] F.J. Dyson,“Statistical theory of the energy levels of complex systems”, III, J. Math. Phys, 1962, vol. 3, p. 166.
    [72] V.A. Mar?enko and L.A. Pastur,“Distributions of eigenvalues for some sets of random matrices”, Math.USSR-Sbornik, 1967, vol. 1, pp. 457-483.
    [73] X. Mestre,“On the Asymptotic Behavior of the Sample Estimates of Eigenvalues and Eigenvectors of Covariance Matrices”, IEEE Transactions on Signal Processing, 2008, 56(11), pp. 5353-5368.
    [74] N.R. Rao and A. Edelman,“Free Probability, Sample Covariance Matrices, and Signal Processing”, IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006 Proceedings, 2006, p. V.
    [75] Lei Wang and Baoyu Zheng, et al.“Cooperative Spectrum Sensing Using Free Probability Theory”, IEEE Global Telecommunications Conference, GLOBECOM 2009,2009, pp. 1-5.
    [76] Husheng Li and H.V. Poor,“Impact of channel estimation error on multiuser detection via the replica method”, IEEE Global Telecommunications Conference, GLOBECOM’04, 2004, Vol.6, pp. 3636-3640.
    [77] R.R. Müller,“Random matrices, free probability and the replica method”, European Signal Processing Conference, 2004, pp. 189-196.
    [78] D.N.C. Tse and S.V. Hanly,“Linear multiuser receivers: effective interference, effective bandwidth and user capacity”, IEEE Transactions on Information Theory, 1999, 45(2), pp. 641-657.
    [79] S. Shamai and S. Verdu,“The impact of frequency-flat fading on the spectral efficiency of CDMA”, IEEE Transactions on Information Theory, 2001, 47(4), pp. 1302-1327.
    [80] S. Verdu and S. Shamai,“Spectral efficiency of CDMA with random spreading”, IEEE Transactions on Information Theory, 1999, 45(2), pp. 622-640.
    [81] Lei Wang and Baoyu Zheng, et al,“Cooperative MIMO Spectrum Sensing Using Free Probability Theory”, 5th International Conference on Wireless Communications, Networking and Mobile Computing, WiCom’09, 2009, pp. 1-4.
    [82] A. Zanella, M. Chiani, and M.Z. Win,“On the marginal distribution of the eigenvalues of wishart matrices”, IEEE Transactions on Communications, 2009, 57(4), pp. 1050-1060.
    [83] A.B.de Monvel, A. Khorunzhy, and V. Vasilchuk,“Limiting eigenvalue distribution of random matrices with correlated entries”, Markov Processes and Related Fields, 1996, 2(2), pp. 607-636.
    [84] B. Niederhauser,“Norms of certain random matrices with dependent entries”, Random Operators and Stochastic Equations, 2003, 11(1), pp. 83-101.
    [85] D. Voiculescu,“Addition of certain non-commuting random variables”, J.Funct.Analysis, 1986, vol. 66, pp. 323-346.
    [86] O. Ryan and M. Debbah,“Free Deconvolution for Signal Processing Applications”, IEEE International Symposium on Information Theory, ISIT 2007, 2007, pp. 1846-1850.
    [87] O. Ryan and M. Debbah,“Channel Capacity Estimation Using Free-Probability Theory”, IEEE Transactions on Signal Processing, 2008, 56(11), pp. 5654-5667.
    [88] O. Ryan and M. Debbah,“Free Deconvolution for MIMO Capacity Estimation”, Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, ACSSC 2007, 2007, pp. 72-76.
    [89] R. Couillet and M. Debbah,“Free deconvolution for OFDM multicell SNR detection”, IEEE 19th International Symposium on Personal, Indoor and Mobile RadioCommunications, PIMRC 2008, 2008, pp. 1-5.
    [90] D. Guo and S. Verdu,“Multiuser Detection and Statistical Physics”, http://www.princeton.edu/~verdu/reprints/GuoVer02mdsm.pdf, 2002.
    [91] T. Tanaka,“A statistical-mechanics approach to large-system analysis of CDMA multiuser detectors”, IEEE Transactions on Information Theory, 2002, 48(11), pp. 2888-2910.
    [92] Yonghong Zeng and Ying-Chang Liang,“Maximum-Minimum Eigenvalue Detection for Cognitive Radio”, IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2007, 2007, pp. 1-5.
    [93] Yonghong Zeng and Ying-Chang Liang,“Covariance Based Signal Detections for Cognitive Radio”, 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2007, 2007, pp. 202-207.
    [94] L.S. Cardoso, M. Debbah, P. Bianchi, and J. Najim,“Cooperative spectrum sensing using random matrix theory”, 3rd International Symposium on Wireless Pervasive Computing, ISWPC 2008, 2008, pp. 334-338.
    [95] Yonghong Zeng and Ying-chang Liang,“Eigenvalue-based spectrum sensing algorithms for cognitive radio”, IEEE Transactions on Communications, 2009, 57(6), pp. 1784-1793.
    [96]王磊,郑宝玉,李雷,“基于随机矩阵理论的协作频谱感知”,电子与信息学报, 2009, 31(8), pp. 1925-1929.
    [97]王磊,郑宝玉,“基于RMT的协作MIMO频谱感知”,解放军理工大学学报, 2008, 9(6), pp. 616-620.
    [98]刘志文,张杭,孙少凡,“基于特征值的频谱感知算法仿真研究”,系统仿真学报, 2010, 22(12), pp. 2805-2808.
    [99] R.R. Muller and W.H. Gerstacker,“On the capacity loss due to separation of detection and decoding”, IEEE Transactions on Information Theory, 2004, 50(8), pp. 1769-1778.
    [100] Y. Kabashima,“A statistical mechanical approach to cdma multiuser detection: propagating beliefs in a dense graph”, IEEE International Symposium on Information Theory Proceedings, 2003, p. 329.
    [101] D. Guo and S. Verdu,“Replica analysis of large-system CDMA”, IEEE Information Theory Workshop Proceedings, 2003, pp. 22-25.
    [102] K. Takeuchi, M. Vehkapera, T. Tanaka, and R.R. Muller,“Replica analysis of general multiuser detection in MIMO DS-CDMA channels with imperfect CSI”, IEEE International Symposium on Information Theory, ISIT 2008, 2008, pp. 514-518.
    [103] M. Vehkapera, K. Takeuchi, R.R. Muller, and T. Tanaka,“Iterative channel and dataestimation: Framework and analysis via replica method”, IEEE International Symposium on Information Theory, ISIT 2009, 2009, pp. 2689-2693.
    [104] Pangan Ting and Chao-Kai Wen, et al.“BER analysis of the optimum multiuser detection with channel mismatch in MC-CDMA systems”, IEEE Journal on Selected Areas in Communications, 2006, 24(6), pp. 1221-1235.
    [105] F. Penna, R. Garello, and M.A. Spirito,“Probability of Missed Detection in Eigenvalue Ratio Spectrum Sensing”, IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, WIMOB 2009, 2009, pp. 117-122.
    [106] F. Penna, R. Garello, and M. Spirito,“Cooperative spectrum sensing based on the limiting eigenvalue ratio distribution in wishart matrices”, IEEE Communications Letters, 2009, 13(7), pp. 507-509.
    [107] I.M. Johnstone,“On the distribution of the largest eigenvalue in principle components analysis”, The Annals of statistics, 2001, 29(2), pp. 295-327.
    [108] K. Johansson,“Shape fluctuations and random matrices”, Communications in Mathematical Physics, 2000, 209(2), pp. 437-476.
    [109] C.A. Tracy and H. Widom,“On orthogonal and symplectic matrix ensembles”, Communications in Mathematical Physics, 1996, 177(3), pp. 727-754.
    [110] J. Baik, G.B. Arous, and S. Peche,“Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices”, The Annals of Probability, 2005, 33(5), pp. 1643-1697.
    [111] J. Baik and J.W. Silverstein,“Eigenvalues of large sample covariance matrices of spiked population models”, Journal of Multivariate Analysis, 2006, 97(6), pp. 1382-1408.
    [112] C. Montet and D. Serra,“Game Theory and Economics”, Houndmills, asingstoke, Hampshire, New York: Palgrave, 2003.
    [113] C.U. Saraydar, N.B. Mandayam, and D.J. Goodman,“Efficient power control via pricing in wireless data networks”, IEEE Transactions on Communications, 2002, 50(2), pp. 291-303.
    [114] Zhu Han and K.J.R. Liu,“Noncooperative power-control game and throughput game over wireless networks”, IEEE Transactions on Communications, 2005, 53(10), pp. 1625-1629.
    [115] Zhu Han, Zhu Ji, and K.J.R. Liu,“Power minimization for multi-cell OFDM networks using distributed non-cooperative game approach”, IEEE Global Telecommunications Conference, GLOBECOM’04, 2004, Vol.6, pp. 3742-3747.
    [116]程世伦,杨震,张晖,“基于认知无线电系统的新型合作功率控制博弈算法”,通信学报, 2007, 28(8), pp. 54-60.
    [117]程世伦,“基于博弈论的认知无线电功率控制和资源管理技术研究”,博士论文,南京邮电大学, 2008.
    [118] R. Etkin, A. Parekh, and D. Tse,“Spectrum sharing for unlicensed bands”, IEEE Journal on Selected Areas in Communications, 2007, 25(3), pp. 517-528.
    [119] Z. Han, Z. Ji, and K.J.R. Liu,“Fair Multiuser Channel Allocation for OFDMA Networks Using Nash Bargaining Solutions and Coalitions”, IEEE Transactions on Communications, 2005, 53(8), pp. 1366-1376.
    [120] Lili Cao and Haitao Zheng,“Distributed spectrum allocation via local bargaining”, 2005 Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, IEEE SECON 2005, 2005, pp. 475-486.
    [121] J.E. Suris, L.A. DaSilva, Zhu Han, and A.B. MacKenzie,“Cooperative Game Theory for Distributed Spectrum Sharing”, IEEE International Conference on Communications, ICC’07, 2007, pp. 5282-5287.
    [122] Chih-Yu Wang, Kuo-Tung Hong, and Hung-Yu Wei,“Nash Bargaining Solution for Cooperative Shared-Spectrum WLAN Networks”, IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC 2007, 2007, pp. 1-5.
    [123] R. Aumann,“COOPERATIVE GAME THEORY”, http://www.uib.es, 2011.
    [124] Zhaoyang Zhang and Jing Shi, et al.“A Cooperation Strategy Based on Nash Bargaining Solution in Cooperative Relay Networks”, IEEE Transactions on Vehicular Technology, 2008, 57(4), pp. 2570-2577.
    [125] F.F. Digham, M.-S. Alouini, and M.K. Simon,“On the energy detection of unknown signals over fading channels”, IEEE International Conference on Communications, ICC’03, 2003, vol.5, pp. 3575-3579.
    [126]谢可新,韩健,林友联,“最优化方法”,天津:天津大学出版社, 2004.
    [127] Zhi Quan, Shuguang Cui, and A.H. Sayed,“Optimal Linear Cooperation for Spectrum Sensing in Cognitive Radio Networks”, IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1), pp. 28-40.
    [128] Hyoil Kim and K.G. Shin,“Efficient Discovery of Spectrum Opportunities with MAC-Layer Sensing in Cognitive Radio Networks”, IEEE Transactions on Mobile Computing, 2008, 7(5), pp. 533-545.
    [129] Hang Su and Xi Zhang,“Energy-Efficient Spectrum Sensing for Cognitive Radio Networks”, IEEE International Conference on Communications , ICC' 10, 2010, pp. 1-5.
    [130] Xiangwei Zhou and Jun Ma, et al.“Probability-Based Combination for Cooperative Spectrum Sensing in Cognitive Radio Networks”, IEEE International Conference on Communications, ICC’09, 2009, pp. 1-5.
    [131] A. Papoulis, "Probability, Random Variables, and Stochastic Process", New York: McGraw-Hill, 2002.
    [132] Qing Zhao and Lang Tong, et al.“Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework”, IEEE Journal on Selected Areas in Communications, 2007, 25(3), pp. 589-600.
    [133] N. Matloff,“Renewal Theory and Some Applications”, University of California, 2006.
    [134] Z. Chair and P.K. Varshney,“Optimal Data Fusion in Multiple Sensor Detection Systems”, IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(1), pp. 98-101.
    [135] S.K. Jayaweera,“Optimal Bayesian data fusion and low-complexity approximations for distributed DS-CDMA wireless sensor networks in Rayleigh fading”, Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing, 2005, pp. 19-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700