用户名: 密码: 验证码:
金属铜绿色缓蚀剂的光谱电化学及定量构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类环境保护意识的增强和可持续发展思想的深入,对缓蚀剂的开发和应用也提出了新的要求,围绕性能和经济目标研究开发对环境不构成破坏作用即环境友好型缓蚀剂成为未来缓蚀剂的研究发展方向。
     本论文就是以此为基础,对金属铜环境友好型缓蚀剂展开研究:
     氨基酸作为环境友好型缓蚀剂已有研究。我们用电化学交流阻抗技术表征了各种氨基酸在0.6MNaCl溶液中对金属铜的缓蚀性能。研究结果表明氨基酸表现了优良的缓蚀效能,其中半胱氨酸的缓蚀效率最高为63.93%。定量构效关系研究结果表明缓蚀效率和缓蚀剂分子羧羟基上氧原子和羰基上氧原子的电荷量有关。
     组氨酸是典型的碱性氨基酸。我们主要运用电化学方法研究讨论在氯化钠和硝酸钠溶液中组氨酸对金属铜的缓蚀作用,着重考察了电极浸入时间对电极-溶液界面的影响。研究结果表明,缓蚀剂L-组氨酸对于铜电极在NaNO3和NaCl溶液中均具有一定的缓腐蚀效果。金属铜电极浸入溶液中0.5h至4.5h之间,时间越长,金属铜电极表面吸附的缓蚀剂分子就越多,缓蚀膜越致密。
     核酸碱基腺嘌呤作为核酸的重要组成部分也是一种优良的绿色缓蚀剂。我们借助于电化学以及SERS光谱技术,对于以分子自组装技术制备的腺嘌呤分子SAMs应用于金属铜缓蚀的电化学特征和分子吸附结构的光谱表征进行了研究。研究结果表明腺嘌呤自组装单分子膜对金属铜起到了良好的缓蚀作用,尤其在中性溶液中高达99%。在不同的酸碱性溶液中,腺嘌呤分子在铜电极上的吸附构型不同。溶液酸性逐步增强的过程中,伴随着分子的质子化程度的提高,铜表面腺嘌呤分子的吸附构型将逐步由直立转向平躺。这一转变过程通过腺嘌呤的环呼吸全对称伸缩振动的特征谱峰其强度有规律的显著变化而得以表征。
Along with enhanced awareness of environmental protection and sustainable development, there will be new demands on the development and application of corrosion inhibitor. Among them environment-friendly corrosion inhibitors should be the desired ones due to the consideration and need for the purpose of sustainable development our society in the future.
     On base of this, in this paper, we do research as follows on environmentally friendly copper corrosion inhibitor:
     As environmentally friendly corrosion inhibitors, amino acids have been studied here. We use electrochemical AC impedance technology to study copper corrosion in 0.6MNaCl solution with various amino acids. The results show that the amino acids showed excellent corrosion performance, in which cysteine inhibition efficiency up to 63.93%. The calculation results show that the corrosion inhibition efficiency is related with molecular structure.
     Histidine is a typical one of basic amino acids. We discuss the corrosion inhibition of histidine on copper electrode using electrochemical methods in solution of sodium chloride and sodium nitrate. The study focused on the impact of electrode modification time to the electrode/solution interface structue. The results show that the inhibitor L-histidine for copper electrode in the medium NaNO3 /NaCl alleviate some corrosion effects. when copper electrode immersed in solution between 0.5h to 4.5h, the longer the time of immersed the copper electrode surface more of the inhibitor molecule, the more dense membrane corrosion.
     Nucleic acid bases adenine, as an important component of the nucleic acid is also a good green inhibitor. We use molecular self-assembly technology to prepare adenine molecular SAMs. In this research , surface enhanced Raman scattering(SERS)technique is used to obtain the information about conformation and structure changes of adenine molecules adsorbed on copper surface when solution pH was changed.The results obtained here reveal that with increasing of protonation degree of adenine molecules as a result of lowering in solution pH ,the adsorotion configurations of adenine molecules on copper will transfer from its originally vertical adsorption configuration at high pH to a flat adsorption configuration at low pH . This change was characterized by the relative intensity variation of a characteristic band,which is corresponding to the totally symmetrical ring breathing vibration of adenine molecules,with solution pH.
引文
[1]罗正贵,闻荻江.铜的腐蚀与防护研究进展[J].武汉化工学院学报, 2005, 27,(2):80-84.
    [2]Brusic V, Frisch M A, Frankel G S. Copper corrosion with and without inhibitors[J]. J Electrochem Soc, 1991,138 (8):2253-2259.
    [3]Tidblad J, Graedel T E. Gildes model study of aqueous chemistry.Ⅲ. initial SO2 induces atmospheric corrosion of copper[J]. Corro Sci, 1996,38 (12):2201-2224.
    [4]Grant Skennerton, Jason Nairn. Atmospheric corrosion of copper at Heron[J]. Island, Material Leters, 1997,30(5):141-146.
    [5]Barcia O E, Mattos O R, Pebere N, et al. Mass transport study for the electrodissolution of copper in 1M hydrochloric acid solution by impedance [J]. J Electrochem Soc, 1993,140(10):2825-2833.
    [6]Crundwell F K. Anodic dissolution of copper in hydrochloric acid solutions[J]. Electrocim Acta, 1992,37(15):2707-2710.
    [7]El Taib Heakal F, Haruyama S. Impedance studies of the inhibitive effect of benzotriazole on the corrosion of copper in sodium chloride medium[J]. Corros Sci, 1980,20(7):887-898.
    [8]Kester J J, Furtak T E, Bevolo A J. Surface enhanced raman scattering in corrosion science: benzotriazole on copper[J]. J Electrochem Soc, 1982,129 (8):1716-1719.
    [9]Fleischmann M, Hill I R, Mongoli G, et al. Synergetic effect of benzylamine on the corrosion inhibition of copper by benzotriazole[J]. Electrochim Acta, 1983,28 (10):1325-1333.
    [10]Tornkvist C, Thierry D, Bergman J. Photoelectron and infrared reflection absorption spectroscopy of benzotriazole adsorbed on copper and cuprous oxide surfaces [J ]. J Electrochem Soc, 1989,136(1):58-64.
    [11]Brusic V,Frisch M A, Frankel G S. Copper corrosion with and without inhibitors[J]. J Electrochem Soc, 1991,138(8):2253-2259.
    [12]Notoya T, Poling G W. Topographies of thick Cubenzotriazolete films on copper[J]. Corros Sci, 1976,32(8):216-223.
    [13] Cotton J.B, Scholes I.R. Benzotriazole and related compounds as corrosion inhibitors for copper[J]. British Corrosion J, 1967,2:1-5.
    [14] Poling G.W. Reflection Infra-Red studies of films formed by benzotriazole on copper[J]. Corrosion Sci, 1970,10(5):359-370.
    [15] Fang J.L, Cai Z. Tarnish protection for silver electrodeposits[J]. Plating and Surface Finishing, 1988,75(2): 58-61.
    [16] Lewis G. The adsorption of benzotriazole onto cuprous oxide surface: an electrode impedance study[J]. Corrosion, 1978,34(12):424-428.
    [17]曾令梅,武继明.选择最佳铜缓蚀剂有效节水[J].能源研究与应用,2000,3:12-15.
    [18]徐群杰,周国定,陆柱等.交流阻抗法对几种铜缓蚀剂比较研究[J].华东理工大学学报,1998,24(3):324-328.
    [19]徐群杰,周国定,陆柱等.苯并三氮唑与5-羧基苯并三氮唑在NaCl溶液中对铜缓蚀作用的SERS研究[J].华东理工大学学报,2001,21(2):181-185.
    [20]扈显琦,彭乔,张明嘉.海水中铜的缓蚀剂研究[J].四川化工与腐蚀控制,1999,2(3):4-8.
    [21] Ohsawa M,Suetaka W. Spectro-Electrochemical studies of the corrosion inhibition of copper by mercaptobenzothiazole[J]. Corrosion Science,1979,19(10):709-722.
    [22]旷亚非,陈曙,林志成. 2—巯基苯并噻唑对NaCl溶液中铜的缓蚀行为[J].中国腐蚀与防护学报,1995,15(2):129-134.
    [23]钟文英,郑朝华.光谱电化学研究α-巯基苯并噻唑对铜的缓蚀机理[J].无机化学学报,1999,15(6):756-760.
    [24]李风亭,张冰如.2-巯基苯并噻唑在铜表面的吸附状态[J].腐蚀与防护,2002,8(23):344-348.
    [25]蔡宇民,胡翘光,陈茂涛.一种新型实用盐酸缓蚀剂的制备及其性能评价[J].腐蚀与防护,1995,16(2):61-64.
    [26] XUE G, HUANG XY, DONG J, et al. The formation of an effectiveanticorrosion film on copper surfaces from 2-mercaptobenzimidazole solution[J]. J.Electroanal.chem, 1991,31(1-2):139-148.
    [27]严川伟,林海潮,曹楚南. 2-巯基苯并恶唑对铜缓蚀作用的电化学研究[J].中国腐蚀与防护学报,1999,19(6):363-366.
    [28]严川伟,程明,赵珲MBT、BTA和MBO对铜缓蚀性能的电化学研究[J].腐蚀与防护.2000,21(6):255-259.
    [29] L. C. F. Blackman, M. J. S. Dewar, H. Hampson. An investigation of compounds promoting the dropwise condensation of steam[J]. Journal of Applied Chemistry,1957,7(4):160-171.
    [30] K. Suwa, T. Nishimoto, Y. Nagaoka and S. Aida, Bull. Soc. Salt Sci. Jpn. 1961 (15) 153.
    [31]M.Itoh,H.Nishihara,K.Aramaki. A Chemical Modification of Alkanethiol Self-Assembled Monolayers with Alkyltrichlorosilanes for the Protection of Copper Against Corrosion[J]. Journal of the Electrochemical Society,1994,141(8):2018-2023.
    [32]Y.Feng, W.K.Teo, K.S.Siow,et al. Corrosion Protection of Copper by a Self-Assembled Monolayer of Alkanethiol[J].Electochemi Soc,1997,144(1):55-64.
    [33]李德华.绿色化学化工导论[M].北京:科学出版社8-16.
    [34]曾宪光,龚敏,罗宏.环境友好缓蚀剂的研究现状和展望[J].腐蚀与防护,2007 ,28(03): 147-150.
    [35]吴伟明,杨萍,杜海燕等.绿色缓蚀剂氨基酸在抑制金属腐蚀方面的应用[J].表面技术, 2006, 35(06): 51-56.
    [36]黎新,胡立新.脂肪族氨基酸对铝缓蚀机理的研究[J].材料保护, 2000,33(5):3-6.
    [37]张万友,陈月芳,李洵.复配型绿色植物缓蚀剂对盐酸溶液中A3钢的缓蚀作用[J].华北电力技术, 2002,1:9-11.
    [38]徐群杰,龚健,周国定.聚天冬氨酸和钨酸钠复配对模拟水中黄铜的缓蚀作用研究[J].华东电力, 2005,33(10):15-17.
    [39]徐群杰,曹敏,周国定.聚天冬氨酸及其复配对3%NaCl溶液中黄铜的缓蚀作用[J].华北电力技术, 2005,9:1-3.
    [40] N.H. Helal b, M.M. El-Rabiee b, Gh.M. Abd El-Hafez b,et al. Environmentally safe corrosion inhibition of Pb in aqueous solutions[J]. Journal of Alloys and Compounds, 2008,456(1-2):372-378.
    [41] G. Moretti, F.Guidi. Tryptophan as copper corrosion inhibitor in 0.5 M aerated sulfuric acid[J]. Corrosion Science, 2002,44:1995–2011.
    [42] Khaled M. Ismail. Evaluation of cysteine as environmentally friendly corrosion inhibitor for copper in neutral and acidic chloride solutions[J]. Electrochimica Acta, 2007,52:7811–7819.
    [43] Waheed A. Badawya,, Khaled M. Ismail , Ahlam M. Fathi. Corrosion control of Cu–Ni alloys in neutral chloride solutions by amino acids[J]. Electrochimica Acta, 2006,51:4182–4189.
    [44]Crowcock F B. Inhibition of steel corrosion in HC1 by derivatives of cinnamaldehyde[J]. Corrosion,1989,45:1003-1009.
    [45]Crowcock F B. Inhibition of sleel corrosion in HC1 by derivatives of cinnamaldehyde[J]. Corrosion,1989,45:1007-1014.
    [46]Abdul-Allad P G, Al-Madfai S H F. Elucidation of corrosion inhibition mechanism by means of calculated electronic indexes[J]. Corrosion, 1989,45:978-989.
    [47]Wang Hailong. An inhibition model and inhibition equation for methylpyridines by the physico-chemical method[J]. Journal Huazhong University of Science&Technology, 1990,18(6):9-15.
    [48] S. G. Zhang,W. Lei,M. Z. Xia,F. Y. Wang. QSAR study on N-containing corrosion inhibitiors: Quantum chemical approach assisted by topological index[J]. Journal of Molecular Structure: THEOCHEM, 2005,732:173-182.
    [49]扈显琦,梁成浩.交流阻抗技术的发展与应用[J].腐蚀与防护, 2004,25(2):57-60.
    [50]崔晓莉,江志裕.交流阻抗谱的表示及应用[J].上海师范大学学报(自然科学版), 2 0 0 1,30(4):53-61.
    [51]全贞兰,吴培强.铜电极上席夫碱自组装膜的电化学阻抗表征[J].青岛科技大学学, 2006,27(4):291-294.
    [52]A. Guenbour. Corrosion protection of copper by polyaminophenol films[J]. Progress in Organic Coatings, 2000(39):151–155.
    [53]Fleischman M, Hendra P J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chem.Phys.Lett, 1974,26(2):163-166.
    [54]kin D, Guyer K L, Hupp J T,Weaver M J. Structural effect on adsorption at solid electrodes : Halide adsorption on gold surfaces with“rails”[J].J.Electroanal. Chem, 1982,138(5):401-403.
    [55]Moskovits M. Surface-enhanced Raman Spectroscopy[J]. Rev.Mod.Phys, 1985,57(3):783-826.
    [56]Otto A ,Mrozek I ,Grabhorn H,Akemann W. Surface-enhanced Raman scattering[J]. J .Phys.Condensed Matter, 1992,4:1143-1212.
    [57]Corset J , Aubard J. Surface enhanced Raman scattering : new trends and applications[J]. J . Raman Spectrosc. , Special Issue ,1999 ,29(8):1178-1182.
    [58]Melissa F. Mrozek, Sally A, Wasileski, Michael J. Weaver. J. Am. Chem. Soc, 2001, 123 (51):12817–12825.
    [59]SUN Yuhua, CAO Peigen, ZHENG Junwei, et al. Surface-enhanced Raman Spectrum studies of CO Adsorbed on Platinum Electrodes in Non-aqueous Acetonitrile System[J]. Spect roscopy and Spect ral Analysis, 2002 , 22 (1) : 33-35.
    [60]J. Bukowska, A. Kudelski, K. Jackowska. The use of Surface Enhanced Raman Scattering (SERS) to probe the interaction of imidazole with the silver electrode surface [J]. J. Electroanal. Chem., 1991, 309(1-2): 251-261.
    [61]Peigen Cao, Renao Gu, Zhongqun Tian. Surface-Enhanced Raman Spectroscopy Studies on the Interaction of Imidazole with a Silver Electrode in Acetonitrile Solution[J]. J. Phys. Chem. B, 2003, 107 (3):769–777.
    [62]顾伟,刘国坤,吴德印.表面增强拉光谱和电化学方法研究中性条件下咪唑对镍电极的缓蚀作用[J].光谱学与光谱分析,2006,26(6):1067-1070.
    [63]俞汝勤等.化学计量学导论[M].长沙,湖南教育出版社,1991:1-10.
    [64] Lavine. B. K., Brown. S. D. Winning at Chemometrics. Managing the ModernLaboratory , 1998,3(1):9-14.
    [65] Lavine. B.K., Chemometrics. Anal.Chem.1998, 70(12):2098-2288.
    [66] Vandeginste.B.G.M. Handbook of chemometrics and qualimetrics.Chemom. Intell. Lab. Syst.,1994, 25:55-14.
    [67]Brown.S.D,Blank.T.B,Sum.S.T,Weyer.L.G.Chemometrics.Anal.Chem.1994,66:59-315.
    [68] Wenning.R.J.Trends.Anal.Chem.1994,13:57-446.
    [69] Booksh.K.S., Kowalski.B.R. Extension of trilinear decomposition method with an application to the flow probe sensorAnal.Chem.1994,66:94-782.
    [70] Lavine.B.K. Chemom. Anal.Chem.2000,72:91-97.
    [71] Brown.S.D., Blank.T.B., Sum.S.T. Transfer of near-infrared multivariate calibrations without. Standards[J].Anal.Chem.1996,68(12):2 1-53.
    [72]丁亚平等.一种新的化学计量学方法-蚁群虎法[J].化学通报,2002,8:65-66.
    [73]方国桢等.现代光度分析法同时测定混合物中多组份国内新进展[J].冶金分析,1994,14(6):34-48.
    [74]陈冰.我国化学计量学方法在高效毛细管电泳分析中的应用及前景[J].化学世界,2004,5:274-282.
    [75] Balke S T., J. Appl. Polm. Sci.. Appl. Polym. SPmp., 1989, 43:5-15.
    [76]汪海燕,.基于化学计量学在电分析化学中的应用研究综述[J].巢湖学院学报,2005,7(3):100-104.
    [77]倪永年,杜姗.化学计量学在生命科学研究中的应用化学研究与应用[J].2006,18(5):459-465.
    [78]倪永年,汪莉.化学计量学在有机物电分析化学中的应用[J].分析科学学报,2003,19(6):579-583.
    [79] Lennart Eriksson, Patrik L. Andersson, Erik Johansson, Mats Tysklind.Megavariate analysis of environmental QSAR data. Part II - Investigating verycomplex problem formulations using hierarchical, non-linear and batch-wiseextensions of PCA and PLS[J]. Molecular Diversity, 2006,10:187–205;
    [80]周原,梅虎,梁桂兆等。取代基物化参数用于2-苯基吲哚衍生物构效关系的研究。精细化工,2006,23(5):474-478.
    [81]顾云兰,李宝宗,孔德根.邻氨甲酰苯甲酸衍生物的定量结构-活性关系[J].徐州建筑职业技术学院学报, 2005,5(1):32-35.
    [82]齐玉华,许禄,王淑云.量化参数在黄酮类化合物构效关系研究中的应用[J].计算机与应用化学, 2000,17(1):29-32.
    [83]MEI Hu, ZHOU Yuan, LIANG Guizhao, LI Zhiliang.Support vector machine applied in QSAR modeling[J]. Chinese Science Bulletin, 2005, 50(20):2291-2296.
    [84]周鹏,曾晖,周原等.支持向量机用于芳烃类化合物对芳烃受体亲和性QSAR研究[J].环境科学学报,2006,26(1):124-128.
    [85]陆文聪,陈念贻.支持向量机算法用于拮抗药化合物活性的模式识别[J].计算机与应用化学, 2002,19(6):741-744.
    [1]吴伟明,杨萍,杜海燕等.绿色缓蚀剂氨基酸在抑制金属腐蚀方面的应用[J].表面技术, 2006,35(06):51-56.
    [2] N.H. Helal b, M.M. El-Rabiee b, Gh.M. Abd El-Hafez b, W.A. Badawya. Environmentally safe corrosion inhibition of Pb in aqueous solutions[J]. Journal of Alloys and Compounds, 2008,456(1-2):372-378.
    [3]G. Moretti, F.Guidi. Tryptophan as copper corrosion inhibitor in 0.5 M aerated sulfuric acid[J]. Corrosion Science, 2002 ,44:1995–2011.
    [4]Khaled M. Ismail. Evaluation of cysteine as environmentally friendly corrosion inhibitor for copper in neutral and acidic chloride solutions[J]. Electrochimica Acta, 2007,52:7811–7819.
    [5]Waheed A. Badawya,, Khaled M. Ismail , Ahlam M. Fathi. Corrosion control of Cu–Ni alloys in neutral chloride solutions by amino acids[J]. Electrochimica Acta, 2006,51:4182–4189.
    [6]赵永生,庞正智,卢艳华等.咪唑化合物作为铜的盐酸酸洗缓蚀剂的QSPR研究[J].北京化工大学学报, 2003,30(3):55-58.
    [7]M.Scendo. Potassium ethyl xanthate as corrosion inhibitor for copper in acidic chloride solutions [J]. Corrosion Science, 2005, 47(7):1738-1749.
    [8]Saulius Martusevius, Gediminas Niaura, Zita Talaikyte, Valdemaras Razumas. Adsorption of L-histidine on copper surface as evidenced by surface-enhanced Raman scattering spectroscopy[J]. Vibrational Spectroscopy, 1996,10(2):271-280.
    [9]张婷婷,曹晓卫,田培培等.L-甲硫氨酸自组装单分子膜的电化学现场表面增强拉光谱研究[J].光谱学与光谱分析, 2008,28(10):251-252.
    [1]曾宪光,龚敏,罗宏.环境友好缓蚀剂的研究现状和展望[J].腐蚀与防护, 2007,28( 03):147-150.
    [2]吴伟明,杨萍,杜海燕.绿色缓蚀剂氨基酸在抑制金属腐蚀方面的应用[J].表面技术, 2006, 35(06):51-56.
    [3]黎新,胡立新.脂肪族氨基酸对铝缓蚀机理的研究[J].材料保护, 2000,33(5):3-6.
    [4] N.H. Helal b, M.M. El-Rabiee b, Gh.M. Abd El-Hafez b, W.A. Badawya[J]. Environmentally safe corrosion inhibition of Pb in aqueous solutions[J]. Journal of Alloys and Compounds, 2008, 456(1-2):372-378.
    [5]G. Moretti, F.Guidi. Tryptophan as copper corrosion inhibitor in 0.5 M aerated sulfuric acid[J]. Corrosion Science, 2002,44:1995–2011.
    [6] Khaled M. Ismail. Evaluation of cysteine as environmentally friendly corrosion inhibitor for copper in neutral and acidic chloride solutions[J]. Electrochimica Acta, 2007,52:7811–7819.
    [7] Waheed A. Badawya,, Khaled M. Ismail , Ahlam M. Fathi. Corrosion control of Cu–Ni alloys in neutral chloride solutions by amino acids[J]. Electrochimica Acta, 2006,51:4182–4189.
    [8]Saulius Martusevius, Gediminas Niaura, Zita Talaikyte, Valdemaras Razumas. Adsorption of L-histidine on copper surface as evidenced by surface-enhanced Raman scattering spectroscopy[J]. Vibrational Spectroscopy, 1996,10(2):271-280.
    [9]Barcia O E, Mattos O R, Pebere N, et al. Mass transport study for the electrodissolution of copper in 1M hydrochloric acid solution by impedance[J]. J Electrochem Soc, 1993,140(10):28250-2833.
    [10]Crundwell F K . Anodic dissolution of copper in hydrochloric acid solutions[J]. Electrocim Acta, 1992,37 (15) :2707-2710.
    [11] G W Walter. A review of impedance plot methods used for corrosion performance analysis of painted metals[J]. Corrosin science, 1986,26(9): 681-703.
    [12]M.Scendo. Potassium ethyl xanthate as corrosion inhibitor for copper in acidic chloride solutions[J]. Corrosion Science, 2005, 47(7):1738-1749.
    [1]M. Scendo. Inhibition of copper corrosion in sodium nitrate solutions with nontoxic inhibitors[J]. Corrosion Science 2008 ,50(7): 1584–1592.
    [2]M. Scendo. Inhibitive action of the purine and adenine for copper corrosion in sulphate solutions[J]. Corrosion Science. 2007 (49) 2985–3000.
    [3]M. Scendo. The influence of adenine on corrosion of copper in chloride solutions[J]. Corrosion Science , 2008,50(7):2070-2077.
    [4]A.Ulman. Formation and Structure of Self-Assembled Monolayers[J]. Chem.Rev, 1996, 96(4): 1533-1554.
    [5]崔晓莉,江志裕.自组装膜技术在金属防腐蚀中的应用研究[J].腐蚀与防护, 2001,22(8):335-338.
    [6]邢巍,单义斌,郭渡等.亲性含硫和含氮化合物有序单分子膜对碳钢的缓蚀作用[J].电化学, 1996,2(1):24-31.
    [7]陆天虹.表面增强拉光谱及其在化学中的应用[J].腐蚀科学与防护技术, 1995,7(2):102-107.
    [8]Cao xiaowei. Surface values of 2-Aminoethanethiol self-assembled monolayers evaluated by direct observation of counter anion by FT-SERS spectroscopy[J].光散射学报, 2004,15(4):237-243.
    [9]Walter G W. A review of impedance plot methods used for corrosion performance analysis of painted metals[J]. Corrosin science, 1986,26(9): 681-703.
    [10]G-D. Zhou, Z. Ma, R. Tong, T. Notoya. Corrosion inhibition of copper with benzotriazole and tolyltriazole in a 3% NaCl solution[J]. Bulletin of electrochemistry, 1991, (7):60-63.
    [11]Y.J.TAN,S.BAILEY, B.KINSELLA.An Investigation Of The FormationAnd Destruction Of Corrosion Inhibitor Films Using Electrochemical Impedance Spectroscopy (EIS) [J].Corrosion science,1996, 38(9):1545-1561.
    [12]M.Scendo. Potassium ethyl xanthate as corrosion inhibitor for copper in acidic chloride solutions [J]. Corrosion Science, 2005, 47(7):1738-1749.
    [13]童汝亭,周国定.交流阻抗法研究BTA和MBT对铜的缓蚀行为[J].化学研究与应用, 1996,8(3):329-333.
    [14]Xiaoli Cui, Dianlu Jiang, Peng Diao et al. Electrochemical studies for the formation of sodium lauryl sulfate monolayer on an octadecanethiol-coated gold electrode [J]. Colloids Surf A,2000 , 175(1-2) :141-145.
    [15]Eyal Sabatani, Joseph Cohen-Boulakia, Merlin Bruening . Thioaromatic monolayers on gold: a new family of self-assembling monolayers[J]. Langmuir,1993 , 9(11):2974-2981.
    [16]P.R.Carey.Biochemical Application of Raman and Resonance Raman Spectroscopy[M].Academic Press,New York,1992.
    [17]J.Goral,V.Ziehy,Fourier Transfom Raman Studies of materials and compounds of biological importance[J]. Speetrochim. Acta, 1990,46A(2):253-275.
    [18]T.Watanabe,O.Kawanami,H.Katoh,K.Honda,et a1.SERS study of molecular adsorption: Some nucleic acid bases on Ag electrodes,Surf.Sei., 1985,158(1-3):341-351.
    [19]Xiao yijin, Chen yanfeng, Gao xiaoxia.Comparative study of the surface-enhanced near infrared Raman spectra of adenine and DNA on a gold electrode[J]. Speetrochim. Acta, 1999,55A:1209-1218.
    [20]Bernd Giese and Don McNaughton. Surface-enhanced Raman Spectroscopic and density functional theory study of adenine adsorption to silver surfaces[J]. J. Phys. Chem. B, 2002,106 (1):101–112.
    [21]Katrin Kneipp, Ramachandra R. Dasari, Yang Wang. Near-Infrared Surface-Enhanced Raman Scattering (NIR SERS) on Colloidal Silver and Gold[J]. Applied Spectroscopy, 1994,48(8):951-955.
    [22] Sang Kyu Kim, Tai Ha Joo, Se Won Suh, et al. Surface-enhanced Raman scattering (SERS) of nucleic acid components in silver sol: Adenine series[J]. Journal of Raman Spectroscopy, 2005,17(5):381-386.
    [23]王洪华,曹晓卫,黄家隽,章宗穰.溶液酸碱性对腺嘌呤分子吸附构型影响的SERS光谱研究[J].光散射学报.2006 ,18(2):124-129.
    [24]王霆,龙耀庭.核酸碱基的付立叶变换红外拉光谱特征[J].光散射学报, 1994,6(2):86-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700