用户名: 密码: 验证码:
中间产物对干式厌氧消化影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干式厌氧消化较湿式厌氧消化有诸多优点,具有更广阔的商业前景,但是也存在许多问题亟待解决:例如传质问题,启动时间长,产气不稳定等。系统的稳定性取决于参与消化过程的细菌活性,利用荧光原位杂交(FISH)技术检测不同条件下中温干式厌氧消化过程中的特定微生物,探讨干式厌氧消化过程中间产物对产甲烷的影响,分析挥发性脂肪酸(VFA)和相应菌群之间的关系,同时研究该过程中乙酸、丙酸、丁酸对硫酸盐还原菌(SRB)的影响,主要研究结果如下:
     (1)在消化反应器中添加乙酸,每两天添加一次,共8次,发现添加量为10.5g时,能显著增加反应器中产甲烷菌活性,产生更多的沼气,缩短消化反应的启动时间。反应器内食乙酸产甲烷菌的平均丰度高于食氢产甲烷菌,因为在干式厌氧消化前期,食氢产甲烷菌丰度处于较高水平,随着消化反应的进行,食乙酸产甲烷菌逐渐处于主导地位。对过程中乙酸浓度与产甲烷菌丰度进行关联,得到:乙酸浓度在0-25g·L-1范围内与食氢产甲烷菌,食乙酸产甲烷菌丰度均呈负相关,相关系数R2分别为0.8658,0.8074。
     (2)添加丙酸,每两天添加一次,共6次,添加量为4g时,较其他添加量时的产沼气量大,更能促进产甲烷菌的生长。丙酸浓度在0-100g·L-1范围内与食丙酸产氢产乙酸菌丰度呈负相关,相关系数R2=0.8352,丙酸的浓度在0-30g·L-1范围内的食丙酸产氢产乙酸菌丰度处于较高水平。
     (3)添加丁酸,每两天添加一次,共6次,添加量为4.8g时,较其他添加量可显著增加反应器中产甲烷菌的活性。丁酸浓度在0-2.4g.L-1范围内与食丁酸产氢产乙酸菌丰度呈正相关,相关系数R2=0.7229;乙酸浓度在0-30g·L-1与食丁酸产氢产乙酸菌丰度呈正相关,相关系数R2=0.8100,可推知,乙酸浓度与参与该反应微生物丰度的关联性更好。
     (4)在中温干式厌氧消化过程中,分别添加最佳量的乙酸,丙酸,丁酸,并以空白组作对照,研究VFAs对SRB还原速率的贡献,结果显示:丙酸>丁酸>乙酸。利用FISH技术监测添加不同VFAs的反应器内SRB与产甲烷菌(MB)种群的演变,研究表明,各反应器中SRB与MB的活性均为:添加丙酸>添加乙酸>添加丁酸>对照,得出添加一定量的丙酸更有利于激活SRB的活性,促进厌氧消化反应器中丙酸的转化,增强SRB与MB种群间的协同作用,提高厌氧反应器抵御“酸败”的能力。
Dry anaerobic digestion has great commercial prospects, which has much more advantages than wet anaerobic digestion. However, there are still many problems to be solved:such as mass transfer problem, startup time, stable gas, etc. It's worth to note that the stability of the system depends on the activity of bacteria participating in the digestive process. In this work, the specific microorganisms in anaerobic digestion in different conditions were detectde using fluorescence in situ hybridization (FISH). The effect of intermediate to produce methane in dry anaerobic digestion process was explored. Meanwhile, the relationship of VFAs and the corresponding microorganisms was analyzed. In addition, the influence of VFAs, which include acetic acid, propionic acid and butyric acid, to the sulfate reducing bacteria in anaerobic digestion was also investigated. The main results of this study were as follows:
     (1) The optimal amount of acetic acid added was10.5g every other day for eight times till to the stability stage. This could avoid inhibiting the active of microbial community, produce more biogas, and short the startup time of anaerobic digestion. The average population of the H2-utilizing methanogen was more than the acetate-utilizing methanogen. At the start-up of the experiment the population of H2-utilizing methanogen increased to the maximum and decreased sharply. At stable stage the level of H2-utilizing methanogens was very low, in contrast, the population of acetate-utilizing methanogen increased. The relationship of the content of acetic acid with the population of H2-utilizing methanogen and acetate-utilizing methanogen were all negative linear with the coefficient of0.8658and0.8074, respectively, when the content of acetic acid was0-25g·L-1.
     (2) The optimal amount of propionic acid added was10.5g every other day for six times. Under such condition, biogas production quantity was larger than other reactors, which could promote the growth of methanogens. The relationship of the content of propionic acid and the population of Syntrophic propionate-oxidizing bacteria were negative linear with the coefficient of0.8352, when the content of propionic acid was0-100g·L-1. Meanwhile, concentration of propionic acid in0to30g·L-1was accompanied by the higher level of Syntrophic propionate-oxidizing bacteria.
     (3) The optimal amount of butyric acid added was4.8g every other day for six times. This could increase the activity of methane bacteria. The relationship of butyric acid and Syntrophic butyrate-oxidizing bacteria were positive linear with the coefficient of0.7229, when the content of butyric acid was0-2.4g·L-1. The relationship of the content of acetic acid and the population of Syntrophic butyrate-oxidizing bacteria were positive linear with the coefficient of0.8100, when the content of acetic acid was0-30g·L-1. It indicated that the correlation between concentration of acetic acid and the microbial involved in the response was better.
     (4) Added the optimal amount of acetic acid, propionic acid, butyric acid, the contribution of VFAs to reduction rate of SRB was investigated, results showed: acrylic acid> butyric acid> acetic acid. The evolution of populations of SRB and MB was monitored by using FISH technology in the reactor by adding different VFAs, studies showed that the activity of MB and SRB in the reactors was additional butyric acid> additional acetic acid> additional propionic acid> controls. Adding a certain amount of propionic acid was more advantageous to activate the activity of SRB, promote the transformation of propionic acid, enhance synergy of SRB and MB, improve the ability of against the rancidity.
引文
[1]Kelleher B P, Simpson A J, Rogers R E, et al. Effects of natural organic matter from sediments on the growth of marine gas hydrates[J]. Marine Chemistry,2007,103(3): 237~249.
    [2]Shankaranand V S, Ramesh M V, Lonsane B K. Idiosyncrasies of solid-state fermentation systems in the biosynthesis of metabolites by some bacterial and fungal cultures[J]. Process Biochemistry,1992,27(1):33~36.
    [3]Veeken A, Hamelers B. Effect of temperature on hydrolysis rates of selected biowaste components[J]. Bioresource Technology,1999,63(3):249~254.
    [4]Lo Y C, Saratale G D, Chen W M, et al. Isolation of cellulose-hydrolytic bacteria and applications of the cellulolytic enzymes for cellulosic biohydrogen production[J]. Enzyme and Microbial Technology,2009,44(6-7):417~425.
    [5]Kuhner C H, Frank C, Griesshammer A, et al. Sporomusa silvacetica sp. nov, an acetogenic bacterium isolated from aggregated forest soil[J]. International Journal of Systematic Bacteriology,1997,47(2):352~358.
    [6]Schuppert B, Schink B. Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains of Acetobacterium sp.[J]. Archives of Microbiology,1990,153(2):200~204.
    [7]van der Wielen P W J J, Rovers G M L L, Scheepens J M A, et al. Clostridium lactatifermentans sp nov., a lactate-fermenting anaerobe isolated from the caeca of a chicken[J]. International Journal of Systematic and Evolutionary Microbiology,2002,52(3): 921~925.
    [8]Gibreel A, Sandercock J R, Lan J, et al. Fermentation of Barley by Using Saccharomyces cerevisiae:Examination of Barley as a Feedstock for Bioethanol Production and Value-Added Products[J]. Applied and Environmental Microbiology,2009,75(5): 1363~1372.
    [9]Nyanga L K, Nout M, Gadaga T H, et al. Yeasts and lactic acid bacteria microbiota from masau (Ziziphus mauritiana) fruits and their fermented fruit pulp in Zimbabwe[J]. International Journal of Food Microbiology,2007,120(1-2):159~166.
    [10]Canganella F, Kuk S U, Morgan H, et al. Clostridium thermobutyricum:growth studies and stimulation of butyrate formation by acetate supplementation[J]. Microbiological Research, 2002,157(2):149~156.
    [11]Worden R M, Grethlein A J, Jain M K, et al. Production of butanol and ethanol from synthesis gas via fermentation[J]. Fuel,1991,70(5):615~619.
    [12]Lu S G, Imai T, Ukita M, et al. Start-up performances of dry anaerobic mesophilic and thermophilic digestions of organic solid wastes[J]. Journal of Environmental Sciences-China, 2007,19(4):416~420.
    [13]Cho J K, Park S C, Chang H N. Biochemical methane potential and solid-state anaerobic-digestion of Korean food wastes[J]. Bioresource Technology,1995,52(3): 245~253.
    [14]Lissens G, Verstraete W, Albrecht T, et al. Advanced anaerobic bioconversion of lignocellulosic waste for bioregenerative life support following thermal water treatment and biodegradation by Fibrobacter succinogenes[J]. Biodegradation,2004,15(3):173~183.
    [15]Mishima D, Tateda M, Ike M, et al. Comparative study on chemical pretreatments to accelerate enzymatichydrolysis of aquaticmacrophyte biomassused in water purification processes[J]. Bioresource Technology,2006,97(16):2166~2172.
    [16]Petersson A, Liden G. Fed-batch cultivation of Saccharomyces cerevisiae on lignocellulosic hydrolyzate[J]. Biotechnology Letters,2007,29(2):219~225.
    [17]Mosier N, Hendrickson R, Ho N, et al. Optimization of pH controlled liquid hot water pretreatment of corn stover[J]. Bioresource Technology,2005,96(18):1986~1993.
    [18]Ohgren K, Galbe M, Zacchi G. Optimization of steam pretreatment of SO2-impregnated corn stover for fuel ethanol production[J]. Applied Biochemistry and Biotechnology,2005,121: 1055~1067.
    [19]He Y F, Pang Y Z, Liu Y P, et al. Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production[J]. Energy and Fuels,2008,22(4):2775~2781.
    [20]Pang Y Z, Liu Y P, Li X J, et al. Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment[J]. Energy and Fuels,2008,22(4): 2761~2766.
    [21]Bolzonella D, Pavan P, Mace S, et al. Dry anaerobic digestion of differently sorted organic municipal solid waste:a full-scale experience[J]. "Water Science and Technology,2006, 53(8):23~32.
    [22]Forster-Carneiro T, Perez M, Romero L I, et al. Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste:Focusing on the inoculum sources[J]. Bioresource Technology,2007,98(17):3195~3203.
    [23]Martin D J, Potts L G A, Heslop V A. Reaction mechanisms in solid-state anaerobic digestion-I. The reaction front hypothesis[J]. Process Safety and Environmental Protection, 2003,81(B3):171~179.
    [24]Hu Z H, Yu H Q. Application of rumen microorganisms for enhanced anaerobic fermentation of corn stover[J]. Process Biochemistry,2005,40(7):2371~2377.
    [25]Hu Z H, Yu H Q. Anaerobic digestion of cattail by rumen cultures[J]. Waste Management, 2006,26(11):1222~1228.
    [26]Kivaisi A K, Gijzen H J, Dencamp H J M O, et al. Conversion of cereal residues into biogas in a rumen-derived process[J]. World Journal of Microbiology and Biotechnology,1992, 8(4):428~433.
    [27]Kivaisi A K, Mtila M. Production of biogas from water hyacinth (Eichhornia crassipes [Mart.] Solms) in a two-stage bioreactor[J]. World Journal of Microbiology and Biotechnology, 1998,14(1):125~131.
    [28]Kivaisi A K, Eliapenda S. Application of rumen microorganisms for enhanced anaerobic degradation of bagasse and maize bran[J]. Biomass and Bioenergy,1995,8(1):45~50.
    [29]Camp H J M, Verhagen F J M, Kivaisi A K, et al. Effects of lignin on the anaerobic degradation of (lingo) cellulosic wastes by rumen microorganisms[J]. Applied Microbiology and Biotechnology,1988,29:408~412.
    [30]Fernandez J, Perez M, Romero L I. Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW)[J]. Bioresource Technology,2008,99(14):6075~6080.
    [31]Parkin G F, Owen W F. Fundamentals of anaerobic-digestion of waste-water sludges[J]. Journal of Environmental Engineering-ASCE,1986,112(5):867~920.
    [32]Yen H W, Chiu C H. The influences of aerobic-dark and anaerobic-light cultivation on CoQ (10) production by Rhodobacter sphaeroides in the submerged fermenter[J]. Enzyme and Microbial Technology,2007,41(5):600~604.
    [33]Romano R T, Zhang R H. Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor [J]. Bioresource Technology,2008,99(3):631~637.
    [34]Solera R, Romero L I, Sales D. Analysis of the methane production in thermophilic anaerobic reactors:use of autofluorescence microscopy [J]. Biotechnology Letters,2001,23: 1889~1892.
    [35]Ince O, Anderson G K, Kasapgil B. Control of organic loading rate using the specific methanogenic activity test during start-up of an anerobic digestion system[J]. Water Research,1995,29:349~355.
    [36]Macario A J L, Conway De Macario E. Quantitative immunologic analysis of the methanogenic flora of digestors reveals a considerable diversity[J]. Applied and Environmental Microbiology,1988,54:79~86.
    [37]Ahring B K. Methanogenesis in thermophilic biogas reactors[J]. Antonie van Leeuwenhoek, 1995,67:91~102.
    [38]Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. Microbiological Reviews,1995,59: 143~169.
    [39]Raskin L, Rittmann B E, Stahl D A. Competition and coexistence of sulphate-reducing and methanogenic populations in anaerobic bioflims[J]. Applied and Environmental Microbiology,1996,62:3847~3857.
    [40]Head I M, Saunders J R, Pickup R W. Microbial evolution, diversity, and ecology:a decade of ribosomal RNAs analysis of uncultivated microorganisms[J]. Microbial Ecology,1998,35: 1~21.
    [41]Davenport R, Curtis T, Goodfellow M, et al. Quantitative use of fluorescent in situ hybridization to examine relationships between mycolic acid-containing actinomycetes and foaming in activated sludge plants[J]. Applied and Environmental Microbiology,2000,66: 1158~1166.
    [42]Davenport R, Curtis T. Quantitative fluorescence in situ hybridisation (FISH):statistical methods for valid cell counting[J]. Molecular Microbial Ecology Manual, seconded,2004, 7(7):1487~1516.
    [43]Zheng D, Angenent L T, Raskin L. Monitoring granule formation in anaerobic upflow bioreactors using oligonucleotide hybridization probes[J]. Biotechnology and Bioengineering, 2006,94:458~472.
    [44]Delong E F, Wickham G S, Pace N R. Phylogenetic stains:ribosomal RNA-based probes for the identification of single cells[J]. Science,1989,243:1360~1363.
    [45]Raskin L, Stromley J M, Rittmann B E, et al. Group.specific 16S rRNA Hybridization Probes to describe Natural Communities of Methanogens[J]. Applied and Environmental Microbiology,1994,60:1232~1240.
    [46]Raskin L, Poulsen L K, Noguera D R, et al. Quantification of methanogenic groups in anaerobic biological reactors by olignucleotide probe hybridization[J]. Applied and Environmental Microbiology,1994,60:1241~1248.
    [47]Amann R I, Binder B J, Olson R J, et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations[J]. Applied and Environmental Microbiology,1990,56:1919~1925.
    [48]Wagner M, Horn M, Daims H. Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes[J]. Current Opinion in Microbiology,2003,6:302~309.
    [49]Daims H, Ramsing N B, Schleifer K H, et al. Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization[J]. Applied and Environmental Microbiology,2001,67(8):5810-5818.
    [50]Bobrow M N, Harris T D, Shaughnessy K J, et al. Catalyzed reporter deposition, a novel method of signal amplification[J]. Journal of Immunological Methods,1989,25:279~285.
    [51]Pernthaler A, Pemthaler J, Amann R. Fluorescence in situ hybridization and catalysed reporter deposition for the identification of marine bacteria[J], Applied and Environmental Microbiology,2002,68:3094~3101.
    [52]Schmidt J E, Ahring B K. Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors[J]. Biotechnology and Bioengineering,1996,49:229~246.
    [53]Liu Y, Xu H L, Yang S F, et al. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor[J]. Water Research,2003,37:661~673.
    [54]Harmsen H J M, Kengen H M P, Akkermans A D L, et al. Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes[J]. Applied and Environmental Microbiology,1996, 62:1656~1663.
    [55]Sekiguchi Y, Kamagata Y, Nakamura K, et al. Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules[J]. Applied and Environmental Microbiology,1999,65:1280~1288.
    [56]Santegoeds C M, Damgaard L R, Hesselink G, et al. Distribution of sulfate-reducing and methanogenic bacteria in anaerobic aggregates determined by microsensor and molecular analyses[J]. Applied and Environmental Microbiology,1999,65(33):4618~4629.
    [57]Rocheleau S, Greer C W, Lawrence J R, et al. Differentiation of Methanosaeta concilii and Methanosarcina barkeri in anaerobic mesophilic granular sludge by fluorescent in situ hybridization and confocal scanning laser microscopy [J]. Applied and Environmental Microbiology,1999,65(24):2222~2229.
    [58]Saiki Y, Iwabuchi C, Katami A, et al. Microbial analyses by fluorescence in situ hybridisation of well-settled granular sludge in brewery wastewater treatment plants[J]. Journal of Bioscience and Bioengineering,2002,93:601~606.
    [59]Yamada T, Sekiguchi Y, Imachi H, et al. Localization, and physiological properties of filamentousmicrobes belonging to chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules[J]. Applied and Environmental Microbiology,2005,71(12): 7493~7503.
    [60]Calli B, Mertoglu B, Tas N, et al. Investigation of variations in microbial diversity in anaerobic reactors treating landfill leachate[J]. Water Science and Technology,2003,48: 105~112.
    [61]Calli B, Mertoglu B, Inanc B, et al. Effects of high free ammonia concentrations on the performances of anaerobic bioreactors[J]. Process Biochemistry,2005,40(3-4):1285~1292.
    [62]Diaz E E, Stams A J M, Amils R, et al. Phenotypic properties and microbial diversity of methanogenic granules from a full-scale UASB reactor treating brewery wastewater[J]. Applied and Environmental Microbiology,2006,72:4942~4949.
    [63]Roest K, Heilig H G H J, Smidt H, et al. Community analysis of a full-scale anaerobic bioreactor treating paper mill waste water[J]. Systematic and Applied Microbiology,2005, 28(2):175~185.
    [64]Plumb J J, Bell J, Stuckey D C. Populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor[J]. Applied and Environmental Microbiology,2001, 67:3225~3226.
    [65]Luxmy B S, Nakajima F, Yamamoto K. Predator grazing effect on bacterial size distribution and floc size variation in membrane-separation activated sludge[J]. Water Science and Technology,2000,42(78):211~217.
    [66]Rosenberger S, Witzig R, Manz W, et al. Operation of different membrane bioreactors: experimental results and physiological state of the microorganisms[J]. Water Science and Technology,2000,41:269~277.
    [67]Jetten M, Schmid M, van de Pas-Schoonen K, et al. Anammox organisms:Enrichment, cultivation, and environmental analysis[J]. Environmental Microbiology,2005,397:34~57.
    [68]Araujo J C, Brucha G, Campos J R, et al. Monitoring the development of anaerobic biofilms using fluorescent in situ hybridization and confocal laser scanning microscopy[J]. Water Science and Technology,2000,41:69~77.
    [69]Sanz J L, Kochling T. Molecular biology techniques used in wastewater treatment:An overview[J]. Process Biochemistry,2007,42(2):119~133.
    [70]张勇.荧光原位杂交技术检测反应器中微生物实验条件优化的研究[D].苏州:苏州科技学院,2008.
    [71]Amann R I, Krumholz L, Stahl D A. Fluorescent-oligonucleotide probing of whole cells for determinative phylogenetic and environmental studies in microbiology[J]. Journal of Bacteriology,1990,172:762~770.
    [72]Stahl D A. Application of phylogenetically-based probes to microbial ecology[J]. Molecular Ecology,1995(4):535~542.
    [73]Hermie J M, Harmsen H, Kengen M P, et al. Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes[J]. Applied and Environmental Microbiology,1996, 62(5):1656~1663.
    [74]Hermie J M, Harmsen A, Akkermans D L. Population dynamics of propionate-oxidizing bacteria under methanogenic and sulfidogenic conditions in anaerobic granular sludge[J]. Applied and Environmental Microbiology,1996,62(6):2163~2168.
    [75]Hansen K H, Ahring K B, Raskin L. Quantification of syntrophic fatty acid-β-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization[J]. Applied and Environmental Microbiology,1999,65(11):4767~4774.
    [76]许鑫,徐香玲,王爱杰,等.荧光原位杂交法检测厌氧反应器中的硫酸盐还原细菌实验条件优化及应用[J].哈尔滨师范大学自然科学学报,2006,22(6):79~82.
    [77]Montero B, Garcia-Morales J L, Sales D, et al. Analysis of methanogenic activity in a thermophilic-dry anaerobic reactor:Use of fluorescent in situ hybridization[J]. Waste Management,2009,29:1144~1151.
    [78]王爱杰.产酸脱硫反应器中SRB的生态学研究-顶极群落形成与生态因子调控[M].哈尔滨:哈尔滨工业大学,2000.
    [79]DeLong E F, Wickham G S, Pace N R. Phylogenetic stains:ribosomal RNA-based probes for the identification of single microbial cells[J]. Science,1989,243:1360~1363.
    [80]Amann R, Ludwig W, Schleifer K. Phylogenetic Identification and In Situ Detection of Individual Microbial Cells without Cultivation[J]. Microbiological Reviews,1995,59: 143~169.
    [81]Ward D M, Olson G J. Terminal processes in the anaerobic degradation of an algal bacterial mat in a high-sulfate hot spring[J]. Applied and Environmental Microbiology,1980,40: 67~74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700