用户名: 密码: 验证码:
重力式地下滴灌点源入渗特征的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究地下滴灌的点源入渗规律,对提高地下滴灌系统设计、运行管理水平具有重要的理论意义。本文以土壤水分动力学理论为基础,研究多种土壤在不同容重条件下重力式地下滴灌的入渗规律,构建了重力式地下滴灌的土壤水分运动模型。将试验验证与数值模拟相结合,得出如下结论:
     1)对试验所用中壤土和砂壤土不同容重下的土壤水分特征曲线和扩散率进行了测定,并对参数进行了拟合,获得了VG模型的有关参数值,表明VG模型可以很好表征试验土壤水分特征曲线和扩散率随土壤含水量的变化特征。
     2)建立了柱坐标系下重力式地下滴灌三维土壤水分运动模型,利用有限元法求解;通过多组重力式地下滴灌土槽试验,测定其土壤水分入渗动态含水量变化过程,获得土壤水分运动过程及其分布的试验数据。用所建模型对地下滴灌土壤湿润体水分分布进行模拟,将模拟值与实测值进行了对比分析,结果表明:模拟值与实测值误差小,所建模型具有较强适用性,可用于重力式地下滴灌点源入渗和湿润体特征的分析。
     3)利用建立的模型,模拟多种土壤不同灌水技术要素组合下湿润体土壤水分分布和滴孔出流量变化的规律,得出在相同灌水量下,管道埋深对湿润体影响较大;供水压力与滴孔孔径对湿润体影响微弱,因此地下滴灌管道设计时可不考虑其影响,只需根据田块长度和渗水管损失确定重力式地下滴灌的孔径和供水压力;在地下滴灌工程中允许较小的供水压力供水,这样可以减小供水池高度以见少工程投资;供水压力与滴孔孔径对滴孔出流量影响较大,而其它因素对其影响微弱,这些结果可为重力式地下滴灌系统的设计与运行提供参考。
     4)根据已有黄土高原几种典型土壤的水分特征曲线和扩散率数据,对其土壤水分运动参数进行拟合,获得了VG模型的相关参数值,并模拟了不同孔径、不同供水压力条件下重力式地下滴灌点源入渗特征,这些结果对黄土高原推广应用重力式地下滴灌有重要的参考价值。
This paper had deeply studied the soil water movement regulation of the subsurface drip irrigation. It had important academic significance and utilizing value to improve the design precision of Gravity Subsurface Drip Irrigation, extending scientific and technological application of subsurface drip irrigation and guiding the run of the irrigation system. simulated water movement regulation of SDI. The results were shown as follows:
     1) The characteristic curve of soil moisture detention and soil moisture diffusivity of loam and sandy loam of two kinds of density was measured, and the parameters were also simulated. We also abtaind the VG model parameter, This showed VG model can be used very well to express the soil water retention and diffuivity and soil water content curve.
     2) We established a three-dimensional axisymmetric model of soil water movement of GSDI and deduced the solving of finite element, The soil box experiment of gravity type SDI, which was designed with orthogonal included six kinds, measured the dynamic moisture content changes of soil infiltrated water under SDI conditions. We also got the water movement procession and distribution experiment data in soil and simulated the changes of moisture content movement distribution and fluctuation in discharge under SDI using established model in this study, compared that simulated values with measured values, which has analyzed, the results showed that the simulated volumes had little difference from experiment results.The established model can be used to simulate the water soil movement under drip irrigation.
     3) Using the established model, to simulate the effect of irrigation technical elements, which concluded different apertures, different water pressure, different buried depth trickle and different soil density etc. Water pressure and apertures had smaller effects on soil water movement with the same irrigation quantity, so they can be neglected when designing the gravity surface drip irrigation pipes. However, Water pressure and apertures have an evitable influence on trickle discharge rate compared to other factors. We can design water pressure and apertures of the drip irrigation pipes only according to field length and water-head losses of seepage pipes. Smaller water pressure can be also used to lower invest to the project,which could offer definite academic basis for the design and operation of SDI system.The water pressure and apertures had significant effects on the trickle discharge,which could offer definite academic basis for the design and operation of SDI system.
     4) Parameters of the soil water characteristic curve and diffusivity were simulated according to available date of several soil textures in Loess Plateau, by which the VG model parameters were obtained and soil water movement effect had been simulated in different apertures and water pressures. Which provides a reference for the extend application of gravity subsurface drip irrigation in Loess Plateau.
引文
[1]刘真,刘平贵. 我国北方水资源及其可持续利用[J].地下水,2002,24(2):63-64.
    [2]韩洪云.节水农业经济分析[M]. 北京:中国农业出版社,2001.
    [3]黄乾,彭世彰.北方地区节水灌溉现状简述[J].水资源保护,2005,21(2):13-15.
    [4]沈振荣,汪林.节水新概念—真实节水的研究和应用[M]. 北京:中国水利水电出版社,2000.
    [5]吴普特,冯浩,牛文全等. 我国北方地区节水农业技术水平及评价[J].灌溉排水学报,2003, 2(1):26-27.
    [6]钱蕴壁,李英能.节水农业新技术研究[M].郑州:黄河水利出版社,2002.
    [7]马孝义,康绍忠,王凤翔.陕西省果树地下滴灌的应用前景、存在问题与建议[J].干旱地区农业研究,1999,17(2):127-131.
    [8]赵景波,杜娟,黄春长.黄土高原侵蚀期研究[J].中国沙漠,2002,22(3):257-261.
    [9]张琼华,赵景波.黄土高原地区农业可持续发展的用水模式探讨[J].中国沙漠,2006,26(2): 317-321.
    [10]程先军,许迪,张昊.地下滴灌技术发展及应用现状综述[J].节水灌溉,1999,(4):13-15.
    [11]Topp G.C. Measurement of soil water content using TDR: a field evaluation [J]. Soil Sci.Am.J.,1985,(49):19-24.
    [12]Camp C.R., Subsurface drip irrigation:a review[J].Trans.of the ASAE,1998,41(5):2-3.
    [13]康绍忠,李永杰.21 世纪我国节水农业发展趋势及其对策[J].农业工程学报,1997,13(4):1-7.
    [14]雷志栋,谢森传,杨诗秀.十年内农田水利科技若干重大课题的建议[J].中国农业水利水电,1997, (增刊):30-33.
    [15]杨金楼,朱济成,计中孚.畜禽粪水蔬菜渗灌施肥技术[J].上海农业学报,1994,10(增刊):61-66.
    [16]胡笑涛,康绍忠.地下滴灌灌水均匀度研究现状及展望[J].干旱地区农业研究,2000,18(2): 113 -117.
    [17]Warrick A.W., Yitayew M. Trickle lateral hydraulics I : Analytical solution[J].Journal of Irrigation and Drainage Engineering,1988 ,114(2):281-288.
    [18]岳兵.渗灌由来现状与技术问题解决途径浅析[C].第四次全国微观学术研讨会论文集,1996年10月.
    [19]仵峰,宰松梅,丛佩娟.国内外地下滴灌研究及应用现状[J].节水灌溉,2004,(1):25-27.
    [20]Schwankel L.J.,Grattan S.R.,Miyao E.M. Drip irrigation burial depth and seed planting depth effects on tomato germination[C].In Proc. 3rd Nation.Irrigation Sump,1990: 682-690.
    [21]张国祥.地下滴灌(渗灌)的技术状况与建议[J].山西水利科技,1995,11,(4):2-4.
    [22]DeTar W.R.,Brown G.T.,Phene C.J.etal. Real-time irrigation scheduling of potatoes with sprinkler and subsurface drip systems[C]. Prod.Int .Conf.on Evapotran-spiration and Irrigation Scheduling,1996, 812-824.
    [23]何华,康绍忠,曹红霞.地下滴灌埋管深度对冬小麦根冠生长及水分利用效率的影响[J].农业工程学报,2001,17(6):31-33.
    [24]程冬玲,李富先,林性粹.苜蓿田间地下滴灌效应试验研究[J].中国农村水利水电,2004,(5): 1-3.
    [25]Solomon K. Subsurface drip irrigation: Product selection and performance in subsurface drip irrigation: Theory, Practices and Application [M]. CATI Publication 1993,No. 921001.
    [26]Phene.C.J., Beale O.W. High-frequency irrigation water nutrient management in humid regions, Soil Sci.Soc., 1976,(3):430-436.
    [27]仵峰.地下滴灌条件下灌水器水力性能研究[D].北京:中国农业科学院研究生院,2002.
    [28]李道西,罗金耀.地下滴灌土壤水分运动数值模拟[J].节水灌溉,2004,(4):4-7.
    [29]丛佩娟.地下滴灌管网水力特性研究[D].北京:中国农业科学院研究生院,2004.
    [30]Cetin O., Bilgel L. Effects of different irrigation methods on shedding and yield of cotton [J]. Agri. Water Managment, 2002,(54):1-15.
    [31]Phene.C.J., Beale O.W. Maximizing water use efficiency with subsurface drip irrigation [J]. ASAE Paper 922090,Charlotte, NC, 21-24 June.1992b.
    [32]Camp C.R. Subsurface drip irrigation lateral spacing and management for cotton in the southeastern coastal plain [J]. Trans.of the ASAE.1997,40(4): 993-999.
    [33]Mitchell W.H., Tilon. H.D. Underground trickle irrigation: The best system for small farms [J]. Crop Soils, 1982,(34):9-13.
    [34]Ruskin R.,Van Voris Pocatello D.A. Root intrusion protection of buried drip irrigation devices with slow-release herbicides[C]. Proc.3th Nat. Irrigation Symp., 1990,211-216.
    [35]Bresler E. Analysis of trickle irrigation with application to design problems[J]. Irrig.Sci., 1978, 1:13- 17.
    [36]Lafolie F.R.,Guennelon M. The Van Genuchten anlysis of water flow under trickle irrigation: theory and numerical solution [J]. Siol Sci. Soc. Am.J.,1989,(43):1310 -1318.
    [37]Philip J.R. Steady infiltration from buried, surface and perched point and line source in heterogeneous soils:I analysis[J].soil.sci.soc.amer.pro.,1972,(36):268-280.
    [38]Thomas A.W. Comparisons of calculated and measured capillary potentials from line source[R], 1975,30(2):50-68.
    [39]Thomas A.W. Steady infiltration from line source buried in soil[J].Transactions of the ASAE, 1974, 17(1):125-128.
    [40]Dirksen C. Transient and steady flow from subsurface line sources at constant hydraulic head in an isotropic soil [J]. Trans.of the ASAE, 1978,21(5): 913-919.
    [41]Warrick A.W., Lomen D.O. Amoozegar-Farda.Lineaized moisture flow with root extraction for 3 dimensional, steady conditions [J]. Soil Sci.Soc.AmJ,1983,44(5): 911-914.
    [42]Ben-Asher J, Phene C.J. Analysis of surface and subsurface drip irrigation using a numerical mode [M]. Subsurface Drip Irrigation-Theory, Practice and Application. Stjoseph,Mich:Irrigation and Drainage Press, 1993,185-202.
    [43]Philip J.R., Steady infiltration from line source buried discs and other sources [J]. Water Resources Research,28(1):46-52.
    [44]Ben-Asher J., Phene C.J. Analysis of surface and subsurface drip irrigation using a numerical mode [M]. Subsurface Drip Irrigation-Theory, Practice and Application. Stjoseph, Mich:Irrigation&Drainage Press, 1993,185-202.
    [45]Or A.D. Soil water sensor placement and interpretation for drip irrigation management in heterogeneous soil[C]. Proc 5 Int Micro irrigation Congress, 1995,214-221.
    [46]张思聪.渗灌的非饱和土壤水二维流动的探讨[J].土壤学报,1985,22(3):209-222.
    [47]李光永,曾志超,段中锁,等.地埋点源滴灌土壤水分运动规律研究[J].农业工程学报,1996(3): 66-71.
    [48]仵峰,彭贵芳,吕谋超,等.地下滴灌条件下土壤水分运动模型[J].灌溉排水,1996,15(3):24-29.
    [49]李光永,郑耀泉,曾德超.地埋点源非饱和土壤水运动的数值模拟[J].水利学报,1996,(11):47- 51.
    [50]程先军,许迪.地下滴灌土壤水运动和溶质运移的数学模型及验证[J].农业工程学报,2002,(1): 27-30.
    [51]马孝义,谢建波,康银红.重力式地下滴灌土壤水分运动规律的模拟研究[J].灌溉排水学报,2006, 25(6):5-10.
    [52]Brandt A, Bresler E., Ben-Asher. Infiltration from a Trickle source: I. Mathematical Models [J]. Soil Sci. soc. Amer. Proc.1971,35: 675-682.
    [53]刘晓英,杨振刚,王天俊.滴灌条件下土壤水分运动规律的研究[J].水利学报,1990,(1):15-20.
    [54]李恩羊.渗灌条件下土壤水分运动的数值模拟[J].水利学报,1982,(4):20-26.
    [55]付琳.滴灌时土壤侵润状况[J].灌溉排水,1983,(3):36-45.
    [56]Ben-Asher J. Linear and nonlinear models of infiltration from point source soil[J]. Sci.soc.Am., 1978, 42:3-6.
    [57]Thomas A.W., Duke E.L.R, Kruse E .G. Capillary Potential distribution in root zones using subsurface irrigation[J]. Tans.of the ASAE. 1977,20(1): 62-67.
    [58]Philip J.R. General theorematical on steady infiltration from surface sources, with application to Point and tine sources[J]. Soil Sci. Soc. Amer. Proc., 1971,(35): 867-871.
    [59]Pullan A.J., Collins I. F. Two and three-dimensional steady quasi-linear infiltration from buried and surface cavities using boundary element techniques[J]. water Resource Research,1987,(23): 1633-1644.
    [60]Brandt A, Infiltration from a trickle source: I mathematical models[J].Soil Sci. Amer. proc., 1971,(35): 675- 682.
    [61]Warrick A.W. Time-Dependent linearized infiltration.I. Point source[J].Soil Sci. Soc. Amer.Proc., 1974,(38): 383-386.
    [62]Basha H.A. Mutidim entional steady infilt ration with prescribed boundary conditions at the soil surface [J]. Water Resource Res., 1994,30 (7) :2105- 2118.
    [63]Coelho E.F, Or D . A parametric model for two-dimensional water up take by corn roots under drip irrigation [J]. Soil Sci.Soc.Am.J, 1996, 60 (4):1039-1049.
    [64]Or D., Coelho F. E. Soil water dynamics under drip irrigation: transient flow and up take models[J]. Soil Sci.Soc.Am. J ,1996,39 (6) :2017-2025.
    [65]杨文治,邵明安.黄土高原土壤水分研究[M].北京:科学出版社,2000.
    [66]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988.
    [67]单秀枝,魏由庆,严慧峻,等.土壤有机质对土壤水动力学参数的影响[J].土壤学报,1998,35(1): 18-23.
    [68]来剑斌,王全九.土壤水分特征曲线模型比较分析[J].2003,17(1):137-140.
    [69]魏义长,张作新,康玲玲等.土壤持水曲线 Van Genuchten 模型求参的 Matlab 实现[J].土壤学报,2004,41(3):380-386.
    [70]南京土壤研究所,中国土壤[M].科学出版社,1978.
    [71]李玉山,韩仕峰,汪正华.黄土高原土壤水分性质及其分区[J].中国科学院西北水土保持研究所集刊 1985,(2):2-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700