用户名: 密码: 验证码:
深海管道铺设及在位稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国深水油气开采的作业关键技术和国际发达国家相比有一定差距,在富含油气资源的南海深水区至今尚无独立开采能力。海底管道作为深海油气资源运输的最佳方式,其深海铺设安全、服役稳定性和海洋灾害下的安全性控制是其关键技术瓶颈。
     深海油气管道的铺设,服役稳定性,和海洋灾害下的安全性是涉及到管道施工,服役,和极端荷载下安全的三个重要部分,本文的研究和讨论正是围绕这三个环节而展开的。论文从数值、解析和实验的角度,对深海管道铺设提出了完整的分析方法,从数值和实验角度对刚悬链立管服役状态进行了深入研究,并提出了立管动力分析的新方法,对滑坡灾害作用下的稳定性提出了完善的解析分析模型,据此系统地建立了一套深海管道铺设性能,工作稳定性和灾害安全性的分析体系。
     首先,本文针对最常用的两种深海铺管方法s型和J型铺管法,分别建立了一套可以考虑水流和海床刚度的影响的数值计算模型。然后,针对J型铺管法,建立了塑性海床上的静力计算模型,从理论角度揭示管道的受力特性。接着,为深入研究铺管过程中和管道长期服役状态下的管土相互作用机理,尤其是循环荷载作用下土体的强度变化,进行了一系列大比尺室内实验和离心机实验,揭示了管土相互作用规律。最后,针对管道受到海底泥石流和滑坡灾害作用的稳定性和安全进行分析,考虑侧向运动时的土体抗力随着管道重度不同而变化,分别提出了两个针对不同管道重度的解析模型。
     综上所述,本文在管道铺设,服役稳定性,和灾害安全性方面完成了以下工作:
     1.提出了适用于S型和J型铺管法的两种数值计算方法,建立了完善的计算模型。通过计算每个单元水流的作用力考虑水流对管道的影响;通过将海床简化成弹性地基考虑土体与管道的相互作用,采用循环迭代进行求解,极大地提高计算速度,揭示了铺管过程中管道内力,管道埋深及其变化规律。
     2.建立了塑性海床上J型管道铺设的解析计算模型,通过分析不同管道部分的受力状态,得到每部分管道的不同力学控制方程,据此提出了一套塑性海床上海洋管道力学性能分析的计算模型方法。定量分析影响海洋管道埋深变化的各个因素是作用,揭示了管道自重,触地段的应力集中现象,动力铺管效应中土体软化,土体的回弹刚度等对管道埋深的影响。
It is a brutal fact that we still have some way to go in exploitation of deepwater oil and gas compared with developed countries. Until today, we are still unable to exploit the abundant oil and gas in deepwater area of South China Sea. In deepwater, pipeline is the most favorable method in transporting crude oil and gas. The laying process, in service stability and safety in submarine hazards are the most critical key technologies.
     In this work, pipeline installation is investigated through numerical, analytical and experimental ways, and the pipe stability when exposed to landslide or debris flow is analyzed through analytical models, based on which the computational and theoretical analysis system for pipeline installation and its stability are established. The methods presented in this work are simple and fast, suitable for engineering, compared with traditional FEM method.
     The laying process, in service stability and safety in submarine hazards are the three important aspects related to pipeline installation, working behavior, and safety when exposed to extreme loading., which are exactly the focus of this work. Favorable methods for pipeline laying are brought forward based on numerical analysis, analytical analysis and indoor test. Detail investigation on pipeline behavior in service is carried out based on numerical analysis and indoor tests, and a noval way for analysing the dynamic behavior of riser is provided. A noval analytical model for pipeline reaction to submarine landslide is established. Thus, a complete analysis system for invesgating pipeline behavior has been established, which includes all the three vital aspects of the laying process, in service stability and safety in submarine hazards.
     First, a new numerical method for S-lay and J-lay is introduced, which can consider the influence of ocean currents and seabed stiffness. Then, an analytical model for J-lay is established to investigate the pipeline behaviors and pipe-soil interaction during installation. A series of centrifuge tests and large-scale tests are conducted to study the dynamic pipe-soil interaction during laying and service, to reveal the variation of soil strength. The safety and stability of the pipeline exposed to landslide or debris flow is analyzed at the end of this work. As the lateral soil resistance to the pipeline differs with pipe weight, two analytical models are established for two different pipe weights.
     From the above, the main contributions of this work include:
     1. Two numerical methods, as well as the calculation model, for pipeline during S-lay and J-lay are introduced. The influence of the currents on the whole pipeline is considered by aggregating the forces of ocean currents on pipe elements. The pipe-soil interaction is included by simplifying the seabed to a series of springs. Numerical iteration is used to get the final solution, which enables fast calculation. The distributions of internal forces along the pipeline and the variation of pipe embedment are both obtained.
     2. A novel analytical method for J-lay on plastic seabed is presented. The controlling equations of different pipeline parts are established according to their individual loading conditions, based on which the model is established. Moreover, a specific solving method for the analytical model is proposed. The contributions of different factors to pipe embedment is quantitatively analyzed to reveal to influence of pipe weight, load concentration at the TDZ, soil softening and elastic rebound of the seabed.
     3. The mechanism of dynamic pipe-soil interaction is analyzed through centrifuge tests. The tests have considered the variation of different horizontal movement amplitudes and vertical cyclic loads. Different combinations of horizontal and vertical movements are made to investigate the reaction of the seabed soil. Meanwhile, the variation of soil strength is detailly analyzed according to the change of soil resistance during the dynamic pipe-soil interaction process and the change of moisture content.
     4. A large-scale model test is designed and constructed, and a series of tests are carried out to investigate the pipe-soil interaction at the TDZ (touchdown zone). The soil strength, pipe embedment and pore pressure along the pipeline are all detailly analyzed, and the mechanism of pipe-soil interaction is revealed. Moreover, the available pipe-soil interaction models are proved to be unable to predict the real pipe embedment.
     5. The vector-form intrinsic finite element method is successfully used in pipeline analysis. Two pipe-soil interaction models are developed:elastic soil model and elasto-plastic soil model. The overall pipeline from water surface to the seabed is modeled to investigate the pipeline behavior during installation and work. It is found that the plastic deformation of the soil has great impact on both pipeline embedment and the internal force. Besides, the compression in pipeline at the start of dynamic cycles is a serious threat to pipeline safety.
     6. Two analytical models for pipeline with different unit weights are established to investigate the pipeline behaviors when exposed to submarine landslide or debris flow. The loading conditions of pipeline with different unit weights and the initial stress state can both be considered. Moreover, a specific solving method is designed. It is found that the bending strain is very important in the total strain, and the weak point along the pipeline differs with pipe unit weight.
引文
[1]API-RP1111, Design, Construction, Operation, and Maintenance of Offshore Hydrocarbon pipelines (Limit state design),3rd ed, Washington DC, USA:Petroleum Institute; 1999.
    [2]Aubeny, C.P., Dunlap, W.A., Penetration of cylindrical objects in soft mud, Proc. IEEE Oceans, Pp: 2068-2073,2003.
    [3]Aubeny C. P., Shi H. and Murff J.D. Collapse loads for a cylinder embedded in trench in cohesive soil. Int. J. Geomechanics,320-325,2005.
    [4]Aubeny C.P., Biscontin G., and Zhang J., Seafloor interaction with steel catenary risers. Final project report. OTRC, Texa A&M University,1-27,2006.
    [5]Bernitsas M. M., A three-dimensional nonlinear large deflection model for dynamic behavior of risers, pipelines and cables, Journal of ship research,26(1):59-64,1982.
    [6]Berteaux, H.O., Buoy engineering, New York, John Wiley and Sons Inc., pp.104-105,1976.
    [7]Brown R.J. and Palmer A., Developing innovative deep water pipeline construction techniques with physical models. Journal of Offshore Mechanics and Arctic Engineering.129:56-60,2007.
    [8]Brando P., Sebastiani G., Determination of sealines elastic curves and stresses to be expected during operation. OTC.1354,1971.
    [9]Brennodden H., Sveggen O., Wagner D.A., Murff J.D., Full-scale pipe-soil interaction tests, Proc. the 18th offshore technology conference, Houston, Paper OTC 5338,1986.
    [10]Bridge C. D., Howells H.A., Toy N., Parke G., Woods R.. Full scale model tests of a steel catenary riser. In:Int. conf. fluid structure interaction,2003.
    [11]Bridge C. D. and Laver K., Catenary riser touchdown point vertical interaction models. Houston, USA, OTC 16628,2004.
    [12]Bridge C. D. & Howells, A. H., Observations and modeling of steel catenary riser trenches. Proceedings of the International Conference on Offshore and Polar Engineering, Lisbon,803-813,2007.
    [13]Brown R. J., Palmer A., Developing innovative deep water pipeline construction techniques with physical models, Journal of Offshore Mechanics and Arctic Engineering,129:56-60,2007.
    [14]Bruschi R., Bughi S., Spinazze M., Torselletti E., Vitali L., Impact of debris flows and turbidity currents on seafloor structures, Nor. J. Geology,86:317-336,2006.
    [15]Bruton D.A.S., White D.J., Carr M., Cheuk J.C.Y., Pipe-soil interaction during lateral buckling and pipeline walking-the SAFEBUCK JIP, Offshore Technology Conference. OTC 19589,2008.
    [16]Burgess, J.J., The deployment of an undersea cable system in sheared current. In:Proceedings of BOSS'94,2:327-334,1994.
    [17]Callegari M., Lenci S., Torselletti E. and Vitali L., Dynamic models of marine pipelines for installation in deep and ultra-deep waters:analytical and numerical approaches,16th AIMETA congress of theoretical and applied mechanics,1-12,2003
    [18]Calvetti F., di Prisco C., Nova R., Experimental and numerical analysis of soil-pipe interaction, J. Geotech. Geoenviron. Eng.130(2):1292-1299,2004.
    [19]Canals M., Lastras G., Urgeles R., Casamor J. L., Mienert J., Cattaneo A., De Batist M., Haflidason H., Imbo Y., Laberg J. S., Locat J., Long, D., Longva O., Masson D. G., Sultan N., Trincardi F. and Bryn P., Slope failure dynamics and impacts from seafloor and shallow sub-seafloor geophysical data:case studies from the COSTA project. Marine Geology,213(1-4):9-72,2004.
    [20]Carr M., Sinclair F., Bruton D., Pipeline Walking-understanding the field layout challenges, and analytical solutions developed for the SAFEBUCK JIP, Offshore Technology Conference. OTC 17945, 2008.
    [21]Casarella, M. J., Parsons, M. Cable systems under hydrodynamic loading. Marine Technology Society Journal,4(4):27-44,1970.
    [22]Catania S. D., Bree J. Gaudin C., White D. J., Development of a multiple-axis actuator control system. Physical modeling in Geotechnics-Springman, Laue&Seward(eds), Taylor & Francis Group, London, ISBN 978-0-415-59288-8,2010.
    [23]Cathie D. N., Jaeck C., Ballard J.C. Wintgens J. F., Pipeline geotechnics-state-of-the-art. Frontiers in Offshore Geotechnics:ISFOG 2005:95-114,2005.
    [24]Chai Y. T., Varyani K. S., An absolute coordinate formulation for three-dimensional flexible pipe analysis, Ocean engineering,33:23-57,2006.
    [25]Chai Y. T., Varyani K. S., An absolute coordinate formulation for three-dimensional flexible pipe analysis. Ocean Eng.,33,23-58,2006.
    [26]Chatterjee S., Randolph M. F., White D. J., Wang D., Large deformation finite element analysis of vertical penetration of pipelines in seabed. Frontiers in Offshore Geotechnics Ⅱ,785-790,2011.
    [27]Cheuk C. Y., White D. J., Bolton M. D., Large-scale modeling of soil-pipe interaction during large amplitude cyclic movements of partially embedded pipelines. Can. Geotech. J.44,977-996,2007.
    [28]Cheuk, C. Y., White, D. J., Dingle, H. R. C., Upper bound plasticity analysis of a partially-embedded pipe under combined vertical and horizontal loading. Soils and Foundations,48(1):133-140,2008.
    [29]Cheuk C. Y., White. J., Centrifuge modeling of pipe penetration due to dynamic lay effects. Estoril, Portugal, OMAE2008-57923,2008.
    [30]Cheuk C. Y. and White D. J., Modelling the dynamic embedment of seabed pipelinesGeotechnique 61, No.1,39-57,2011.
    [31]Chung J. S., Cheng B. R., and Huttelmaier H. P., Three-dimensional coupled responses of a vertical deep-ocean pipe:Part Ⅱ, offshore and polar engineering,4(4):331-339,1994b.
    [32]Chung S. F., Randolph M. F., Schneider J. A., Effect of Penetration Rate on Penetrometer Resistance in Clay. Journal of Geotechnical and Geoenvironmental Engineering.132:1188-1196,2006.
    [33]Chung J. S., Cheng B. R., and Huttelmaier H. P., Three-dimensional coupled responses of a vertical deep-ocean pipe:Part Ⅰ, offshore and polar engineering,4(4):320-330,1994a.
    [34]Colliat, J. L., Dendani, H., Puech, A. and Nauroy, J. F., Gulf of Guinea deepwater sediments: geotechnical properties, design issues and installation experiences. Proc.2nd Int. Symposium on Frontiers in Offshore Geotechnics, ISFOG, Perth,59-86,2010.
    [35]Croll J. G. A., Bending boundary layers in tensioned cables and rods. Appl. Ocean Res.,22,241-253, 2000.
    [36]Coussot P., Mudflow rheology and dynamics, Balkema, Rotterdam, xvi:255,1997.
    [37]Demars K. R., Design of marine pipelines for areas of unstable sediment, Transp. Engrg. J., 104(1):109-112,1978.
    [38]Dingle H. R. C, White D. J., Gaudin C, Mechanisms of pipe embedment and lateral breakout on soft clay. Can. Geotech. J.,45:636-652,2008.
    [39]Dixon D. A., Rultledge D. R., Stiffened catenary calculation in pipeline laying problem, Journal of Engineering for Industry,90B(1):153-160,1968.
    [40]DNV. Rules for the Design, Construction and Inspection of Submarine Pipelines and Pipeline Risers. Recommended Practice. Det Norske Veritas, Hovik, Norway,1976.
    [41]Edgers L., Karlsrud K., Soil flows generated by submarine sliders-case studies and consequences. In: Proceedings of 3rd Best of Open Source Security (BOSS) Conference. Cambridge,425-437,1982.
    [42]Ehlers, C. J., Chen, J., Roberts, H. H. & Lee, Y. C., The origin of near-seafloor "crust zones" in deepwater. Proc.1st Int. Symposium on Frontiers in Offshore Geotechnics, ISFOG, Perth,927-933, 2005.
    [43]Einav I., Randolph M. F., Combining upper bound and strain path methods for evaluating penetration resistance. Int. J. Numer. methods in Eng,63(14):1991-2016,2005.
    [44]Elizabeth P., Carl M. L., Estimating distributions for extreme response of a catenary riser. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering. OMAE-29547, 2007.
    [45]Gaudin, C., and White, D. J., New centrifuge modelling techniques for investigating seabed pipeline behaviour on Soil Mechanics and Geotechnical Engineering. In Proceedings of the 17th International Conference, Alexandria, Egypt,5-9 October 2009. [CD-ROM].IOS Press, Amsterdam, the Netherlands, 2009.
    [46]Gaudin C., White D.J., Boylan N., Bree J., Brown T., Catania D.S., A miniature high speed wireless data acquisition system for geotechnical centrifuges.-Springman, Laue&Seward(eds), Taylor & Francis Group, London, ISBN 978-0-415-59288-8,2010.
    [47]Georgiadis M., Landslide drag forces on pipelines, Soils Found.,31(1):56-161,1991.
    [48]Gu Y. N., Analysis of pipeline behaviors during laying operation, China Ocean Eng.,3(4):477-486, 1989.
    [49]Guarracino F., Mallardo V., A refined analytical analysis of submerged pipelines in seabed laying, Applied Ocean Research,21:281-293,1999.
    [50]Guo B. Y., Song S. H., Jacob C, Ali G. Offshore Pipelines, Elsevier Inc.,2005
    [51]Hodder M. S., Geotechnical analysis of offshore pipelines and steel catenary risers. Chapter 6, Doctoral thesis,2009.
    [52]Hodder M. S., Byrne B.W.,3D experiments investigating the interaction of a model SCR with the seabed. Appl. Ocean Res.2010,32(2),146-157,2009.
    [53]Hodder M. S. and Cassidy M. J., A plasticity model for predicting the vertical and lateral behavior of pipelines in clay soils. Geotechnique,60(4),247-263,2010.
    [54]Hu H. J. E., Leung C.F., Chow Y.K., Palmer A.C., Centrifuge modelling of SCR vertical motion at touchdown zone. Ocean engineering,38(7),888-899,2011.
    [55]Huang T., and Kang Q. L., Three-dimensional analysis of marine riser with large displacements, International journal of offshore and polar engineering,1 (4):300-306,1991.
    [56]Jayson D., Dlaporte P., Albert J. P., Prevost M. E., Bruton D. and Sinclair F., Greater Plutonio Project-Subsea Flowline Design and Performance. Offshore Pipeline Technology Conference, Ansterdam, 2008.
    [57]Kashani M., and Young R., Installation load consideration in ultra-deepwater pipeline sizing, Journal of transportation engineering,131 (8):632-639,2005.
    [58]Konuk I., Higher order approximations in stress analysis of submarine pipelines, J. Energy resour. technol.102:190-196,1980.
    [59]Kyriakides S., Corona E., Mechanics of Submarine Pipelines. Oxford:Elesiver Science Ltd,2007.
    [60]Langner, C. G., Relationships for deepwater suspended pipe spans. Proc. Offshore Mechanics and Arctic Engineering Symposium.552-558,1984.
    [61]Lenci S., Callegari M., Simple analytical models for the J-lay problem. Acta Mech.,178:23-39,2005.
    [62]Li Z.G., Wang C., He N., Zhao D. Y., An overview of deepwater pipeline laying technology. China Ocean Engineering,22(3):521-532,2008.
    [63]Low H. E., Lunne T., Andersen K. H., Sjursen M. A., Li X. and Randolph M. F., Estimation of intact and remoulded undrained shear strength from penetration tests in soft clays. Geotechnique,60(11): 843-859,2010.
    [64]Lund K. M., Effect of increase in pipeline penetration from installation, Proceedings of the 19th International conference on offshore mechanics and arctic engineering (OMAE), New Orleans, LA, OMAE2000/PIPE-5047,2000.
    [65]Mary C. N., Cheon J. Y., Wright S. G. and Gilbert R. B., Mudslides during hurricane Ivan and assessment of the potential for future mudslides in the gulf of Mexico. Phase Ⅱ project report, Offshore Technology Center,2007.
    [66]Martinez C. E., Goncalves R., Laying modeling of submarine pipelines using contact elements into a corotational formulation. J. offshore Mech. Arctic Eng.,125:145-152,2003.
    [67]Mattiazzo G., Mauro S., Guinzio S. P., A tensioner simulator for use in a pipelaying design tool. Mechatronics,19:1280-1285,2009.
    [68]McDonald, D. N., Sullivan, D. J., Choi, H. S., The Next Generation J-Lay System. International Petroleum Conference and Exhibition of Mexico, Villahermosa, Mexico, SPE39848,1998.
    [69]Merifield, R., White, D. J., Randolph, M. F., The ultimate undrained resistance of partially embedded pipelines. Geotechnique,58(6):461-470,2008.
    [70]Merifield R., White D. and Randolph M. F., Effect of surface heave on response of partially embedded pipelines on clay. Journal of Geotechnical and Geoenvironmental Engineering,135(6):819-829,2009.
    [71]Moussalli, A. H., Offshore Pipeline Design, Analysis, and Methods. Pennwell corporation, Tulsa, Oklahoma, Chapter 3,1981.
    [72]Mulder T. and Alexander J., The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology,48(2):269-299,2001.
    [73]Murff J. D., Wagner MX A., Randolph M. K., Pipe penetration in cohesive soil. Getechnique,39(2): 213-229,1989.
    [74]Nisbet E. G., Piper, D. J. W., Giant submarine landslides. Nature,392:329-330,1998.
    [75]Nourpanah N., Taheri F., A design equation for evaluation of strain concentration factor in concrete coated X65 pipelines. Marine structures,22:758-769,2009.
    [76]O'Brien P. J., MeNamara J. F., and Dunne F. P. E., Three-dimensional nonlinear motions of risers and offshore loading towers. Journal of offshore mechanic and arctic engineering,110:232-237,1988.
    [77]Oliver J., Onate E., A finite element formulation for the analysis of marine pipelines during laying operations. J. pipelines,5:15-35,1985.
    [78]Orcina Ltd., Orcaflex User Manual 2.9, www.orcina.com.UK. June,2009.
    [79]Ovunc B., Geometrical nonlinearity in offshore pipelines, Proceedings of the international conference of pipeline design and installation, Las Vegas,336-350,1982.
    [80]Ovunc B, Design of offshore pipelines, J. Pipelines,2(4):285-295,1982.
    [81]Palmer A. C., Hutchinson G., Ells W. J., Configuration of submarine pipelines during laying operations. Journal of Engineering for Industry ASME,1112-1118,1974.
    [82]Palmer, A.C., King, R.A.,2008, Subsea pipeline engineering, Pennwell corporation, Tulsa, Oklahoma, Chapter 14.
    [83]Palmer A.C. (2008). "Touchdown indentation of the seabed." Appl. Ocean Res.,30,235-238.
    [84]Parker E. J., Traverso C., Moore R., Evans T., Usher N., Evaluation of landslide impact on deepwater submarine pipelines. Offshore technology conference, OTC19459; 2008.
    [85]Pazwash J., Robertson J.M., Forces on bodies in Bingham Fulieds. J. Hydral. Res.,13(1):35-55,1975.
    [86]Perinet, D., Frazer, I., J-lay and steep S-lay:complementary tools for ultradeep water. Houston, Texas, OTC 18669,1-8,2007.
    [87]Perinet D., France A., Frazer I. and UK A., Strain criteria for deep water Strain criteria for deep water pipe laying operations. Offshore technology conference, OTC 19329,2008.
    [88]Plunkett R., Static bending stresses in catenaries and drill strings. Journal of Engineering for Industry, 39B (1):31-36,1967.
    [89]Powers J. T., Finn L. D., Stress analysis of offshore pipelines during installation. First annual offshore technology conference, Houston, Texas, OTC 1071,1969.
    [90]Pulici, M., Trifon, M., Dumitrescu, A., Deep water sealines installation by using J-lay method-The Blue Stream Project. Proceedings of the thirteenth international offshore and polar engineering conference. Honolulu, Haiwaii,38-43,2003.
    [91]Randolph, M.F., Houlsby, G. T., The limiting pressure on a circular pile loaded laterally in cohesive soil. Ge'otechnique 34 (4):613-623,1984.
    [92]Randolph M. F., Jewell R. J., Stone K. J. L., Brown T. A., Establishing a new centrifuge facility. In Proc. International Conference on Centrifuge Modeling. Centrifuge'91, Boulder, Colorado:2-9,1991.
    [93]Randolph M. F. and White D. J., Upper-bound yield envelops for pipelines at shallow embedment in clay. Geotechnique,58(4):297-301,2008.
    [94]Randolph M. F. and Quiggin P., Non-linear hysteretic seabed model for catenary pipeline contact. ASME, Honolulu, Hawaii, USA, OMAE2009-79259,2009.
    [95]Randolph M. F., Quiggin P., Non-linear hysteretic seabed model for catenary pipeline contact. Proc. ASME 28th int. conf. OMAE. OMAE2009-79259,2009.
    [96]Randolph M. F., Seo D., White D.J., Parametric solutions for slide impact on pipelines. J. Geotech. Geoenviron. Eng.,940-949,2010.
    [97]Randolph M. F., White D. J., Interaction forces between pipelines and submarine slides-A geotechnical viewpoint. Ocean Engineering,48:32-37,2012.
    [98]Recommended practice DNV-RP-F108, Fracture control for pipeline installation methods introducing, 2006
    [99]Savik S., Giertsen F. and Berntsen V., Advances in design and installation analysis of pipelines in congested areas with rough seabed topography. ASME, Vancouver, Canada, OMAE2004-51344,2004.
    [100]Seyed F. B., Mathematics of flexible risers including pressure and internal flow effects. Mar. Struct., 25:121-150,1992.
    [101]Shih C., Wang Y. K., Ting E. C., Fundamentals of a vector form intrinsic finite element:Part Ⅲ: Convected material frame and examples [J]. Journal of Mechanics,20(2):133-143,2004.
    [102]Small S. W., Tamburello R. D., Piaseckyj P. J., Submarine pipeline support by marine sediments, Offshore Technology Conf, OTC 1357,309-318,1971.
    [103]Springmann S. P. and Hebert C. L., Deepwater Pipelaying Operations And Techniques Utilizing J-Lay Methods, Offshore Technology Conference, Houston, Texas, OTC7559,1994
    [104]Stewart, D. P., Lateral loading of piled bridge abutments due to embankment construction. PhD thesis, the University of Western Australia, Perth, Australia,1992.
    [105]Steward D. P. and Randolph M. F., T-bar penetration testing in soft clay. J. Geot. Eng. Div., ASCE, 120(12):2230-2235,2010.
    [106]Summers, P. B., and Nyman, D. J., An Approximate Procedure for Assessing the Effects of Mudslides on Offshore Pipelines, ASME J. Energy Resour. Technol.,107(4):426-432,1985.
    [107]Swanson R. C., Jones W. T., Mudslide effects on offshore pipelines, Transp. Engrg. J., 108(6):585-600,1982.
    [108]Ting, E. C., Shih C., Wang Y. K., Fundamentals of a vector form intrinsic finite element:Part Ⅰ. Basic procedure and a plane frame element [J]. Journal of Mechanics,20(2):113-122,2004a.
    [109]Ting E. C., Shih C., Wang Y. K., Fundamentals of a vector form intrinsic finite element:Part Ⅱ: plane solid element [J]. Journal of Mechanics,20(2):23-132,2004b.
    [110]Torselletti, E., Brusci, R., Vitali, L., and, Marchesani, F., Lay challenges in deep waters: Technologies and criteria. Proc.2nd Int. Deepwater Pipeline Technology, Clarion Technical Con/., New Orleans, Louisiana,1999.
    [111]Vaz, M. A., Paten, M. H., Three-dimensional behavior of elastic marine cables in sheared currents. Applied Ocean Research,22:45-53,2000.
    [112]Verley R. L. P. & Lund K. M., A soil resistance model for pipelines placed on clay soils. Proc. Offshore Mechanics and Arctic Engineering Conf, Copenhagen, V:225-232,1995.
    [113]Wanger D. A., Murff J. D., Brennodden H., Sveggen O., Pipe-soil interaction model. J. Waterway, Port, Coastal Ocean Eng,115(2):205-220,1989.
    [114]Wasow, W., Singular perturbations of boundary value problems for nonlinear differential equations of second order. Pure Appl Math,9:93-113,1956.
    [115]Westgate Z. J., Randolph M. F., White D. J. and Li S., The influence of sea state on as-laid pipeline embedment:A case study. Appl. Ocean Res.,32(3):321-331,2010a.
    [116]Westgate Z. J., White D. J., Randolph M. F., Pipeline Laying and Embedment in Soft-grained Soils: Field observations and Numerical Simulations. Offshore Technol. Conf, OTC 20407,2010b.
    [117]White D. J., Randolph M. F., Seabed characterization and models for pipeline-soil interaction. Int. J. offshore and polar eng,17(3),193-204,2007.
    [118]White D.J., Cheuk C.Y., Modelling the soil resistance on seabed pipelines during large cycles of lateral movement, Mar. struct.,21:59-79,2008.
    [119]White D. J., Randolph M. F., Seabed characterization and models for pipeline-soil interaction. Int. J. of offshore and polar eng.,17(3),193-204,2007.
    [120]White D. J., Hodder M., A simple model for the effect on soil strength of episodes of remoulding and reconsolidation. Can. Geotech. J.,47:821-826,2010.
    [121]White D. J., Cathie D. N., Geotechnics for subsea pipelines. Frontiers in Offshore Geotechnics Ⅱ, 87-123,2011.
    [122]Wilkins J. R., J Ray McDermott & Co, Offshore pipeline stress analysis. Offshore technology conference, OTC 1227, Texas,11-19,1970.
    [123]Wilson B. W., Characteristics of anchor cables in uniform ocean currents. A&M college of Texas, Technical Report, No.204-1,1960.
    [124]You J., Biscontin G, Aubeny C. P., Seafloor interaction with steel catenary risers. Proc.8th Int. Offshore and Polar Eng. Conf, Vancouver, BC, Canada,2008.
    [125]Yuan F., Wang L. Z., Guo Z. Y.G. Xie, R.W. Shi, Analytical model for landslide or debris flow impact on pipelines-Part II:embedded pipelines, Appl. ocean res,2011.
    [126]Zakeri A., A literature review on debris flow impact on structures, International center for geohazards (ICG), Oslo, Norway, Dec.31,2006.
    [127]Zakeri A., A potentially devastating offshore geohazard-submarine debris flow impact on pipelines, Report, International center for geohazards (ICG), NGI,2008.
    [128]Zakeri A., Hoeg K. Nadim F., Submarine debris flow impact on pipelines-Part Ⅰ:Experimental investigation. Coast.l eng.,55:1209-1218,2008a.
    [129]Zakeri A., Hoeg K. Nadim F., Submarine debris flow impact on pipelines-Part Ⅱ:Numerical analysis. Coast.l eng.56:1-10,2008b.
    [130]Zakeri A., Review of state-of-the-art:drag forces on submarine pipeline and piles caused by landslide or debris flow impact. J. offshore mech. and arct. Eng.,131(014001):1-8,2009.
    [131]Zakeri A., Submarine debris flow impact on suspended (free-span) pipelines:normal and longitudinal drag forces. Ocean Eng.36 (6-7),489-499,2009.
    [132]Zienkiewicz O. C., Taylor R. L., Finite Element Method [M]. Butterworth-Heinemann,2000.
    [133]Zhu D.S., Cheung Y.K., Optimization of buoyancy of an articulated stinger on submerged pipelines laid with a barge. Ocean Eng.,24(4):301-311,1997.
    [134]丁承先,王仲宇,吴东岳,王仁佐,庄清锵.运动解析与向量式有限元[R].台湾中央大学工学院桥梁工程研究中心,2007.
    [135]梁振庭,深水海底管道铺设受力性能分析,硕士论文,浙江大学,2008。
    [136]吕伟,深水S型托管架设计中的力学问题研究,硕士论文,大连理工大学,2009.
    [137]马珉,吕学谦.深水资源:中国能源可持续发展的重要领域—访中国海洋石油总公司副总工程师曾恒一院士.高科技与产业化,12:16-20,2008.
    [138]宋甲宗,戴英杰,海洋管道铺设时的二维静力分析,大连理工大学学报,39(1):91-94,1999.
    [139]王海期,马嵛, 海底管道铺设过程的静动力分析,海洋工程,4(3):23-40,1986。
    [140]袁林,深海油气管道铺设的非线性屈曲理论分析与数值模拟,硕士论文,浙江大学,2009。
    [141]曾晓辉,柳图春,邢静忠,海底管道铺设的力学分析,力学与实践,24(2):19-21,2002.
    [142]曾晓辉,刑静忠,柳图春,吴应湘, “多作业状态下近海油气管线的力学分析及软件”,中国造船,43(4):45-54,2002.
    [143]甄国强,胡宗武。铺设过程中海底管道的非线性分析,海洋工程,11(3):28-38,1993.
    [144]周俊,深水海底管道S型铺管形态及施工工艺研究,硕士论文,浙江大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700