用户名: 密码: 验证码:
原子平衡电负性在分子设计与分子模拟中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化合物结构-性质/活性定量相关(定量构效关系,Quantitative Structure-property/activity Relationship, QSPR/QSAR)研究,最初是作为生物领域的一个研究分支,是为了适应合理设计生物活性分子的需要而发展起来的。目前它已成为分子设计与目标化合物研发的基础课题和重要环节,也是对化学品进行环境毒性评价的重要方法。它主要应用各种统计学方法和分子结构参数研究化合物的结构与其各种物理化学性质以及生物活性之间的定量关系。本论文从分子设计角度出发,运用原子平衡电负性原理结合分子结构参数来定量估计并预测化合物性质、生物活性及环境毒性。具体研究内容如下:
     1.综述了定量构效关系研究现状、分子设计及分子模拟的基本方法和原理、电负性均衡原理、原子电荷计算方法以及相关方法应用研究的进展。
     2.基于分子图论提出了一种用于表征咪唑啉衍生物缓蚀剂分子局部化学微环境及原子杂化状态的新颖结构描述子:电性连接性指数0Kv、1Kv和咪唑啉环非氢原子平衡总电荷分数MCI,研究其对15种咪唑啉类缓蚀剂抗CO2、H2S腐蚀性能的定量构效关系。结果表明,模型计算值、留一法交互检验预测值的复相关系数分别为0.9764、0.9546,所建模型具有良好的稳定性和优异的外部预测能力;同多元回归方法比较,运用人工神经网络法其复相关系数为0.9848,相关结果得到较大改善。增加咪唑啉环上取代基长度、减小分子支化度和降低咪唑环非氢原子平衡总电荷分数能显著提高咪唑啉衍生物缓蚀剂的缓蚀性能。
     3.在距离矩阵的基础上采用原子的平衡电负性和化学键相对键长校正含有多重键的化合物,提出了两个新颖的拓扑电负性指数YC、WC,同时结合路径数P3对92个碳氢化合物的局部化学微环境进行结构表征,并对化合物的闪点进行了QSPR研究。采用多元线性回归得到训练集模型的复相关系数和标准偏差分别为0.9923和5.28,模型实验值与计算值的平均绝对误差仅3.86K,相对误差1.46%。同时采用内部及外部双重验证的办法对所建模型进行检验,留一法(LOO)检验和训练集、检验集闪点的预测值和实验值较为吻合,结果表明模型具有良好的内部稳定性和外部预测能力。
     4.采用新颖的原子拓扑矢量YC、原子平衡电负性χe、结构信息参数[NHi(i=α、β)]和γ校正参数对63个无环饱和脂肪醇的局部化学微环境进行了结构表征,并对化合物13C NMR化学位移进行了定量结构-波谱关系(QSSR)研究。采用偏最小二乘回归得到模型的复相关系数R和标准偏差S分别为0.9915和2.4827,对353个碳原子13C NMR化学位移的实验值与计算值的平均绝对误差仅为2.01ppm。同时,采用留分法和外检验方法测试模型的内部稳定性和外部预测能力。另外从分子结构出发提出四个分子结构描述符YC、χe、[NHi(i=α、β)],运用多元线性回归方法建立55个醇碳原子13C核磁共振谱的定量结构-波谱关系模型。结果表明,模型复相关系数和标准方差分别为R2=0.9824和S=0.8698。同时采用留一法进行检验,结果表明模型具有良好的稳定性和预测能力,优于目前文献的研究结果。
     5.将距离矩阵与邻接矩阵相结合提出了新颖的表征多环芳烃分子支化度大小的描述子CN和表征多环芳烃分子结构大小的描述子CT,采用多元线性回归方法构建了100种多环芳烃气相色谱保留指数的定量相关模型。所得模型相关系数R=0.9970,交叉验证相关系数RCv=0.9967。随机选出70种多环芳烃化合物作为训练集,其余作为测试集来验证模型的预测能力和稳健性。结果表明:训练集和测试集的复相关系数分别为0.9972和0.9968,定量计算结果与实验测定值符合较好,优于目前文献的研究结果。
     6.采用量子化学描述符建立蛋白同化雄性激素类固醇半波还原电位的定量构效关系模型。描述符由半经验方法计算所得,使用偏最小二乘法(PLS)和反向传播神经网络(BP-ANN)成功建立了线性和非线性相关模型。通过定量结构-电化学定量关系(QSER)研究表明:蛋白同化雄性激素类固醇的描述符和半波还原电位存在显著相关性,相关模型的稳定性和预测能力采用留一法交互检验和外部测试法来完成,该研究可成功用于分析鉴定真正意义上的雄性激素类固醇药物。
Quantitative structure-property/activity relationship (QSPR/QSAR) was originally introduced as a branch in the biological field and developed in response to rational design of bioactivity molecules. At present, QSPR/QSAR research had become a basis topic and important tache for molecular design and R&D of new goal compounds, and was also an important assessment method of environmental toxicity for chemicals. It had been widely used for the prediction of various physicochemical properties and biological activities of organic compounds by using different statistical methods and various kinds of molecular descriptors. In this thesis, based on the molecular design, atomic equilibrium electronegativity and molecular structrural descriptors were utilized to establish the QSPR/QSAR models in order to estimate and predict compound properties, biological activities and environmental toxicties. The main contents and conclusions were given as follows:
     1. In this paper, a brief review of principle, research methods and current status for QSPR/QSAR, molecular design and molecular modelling, atomic equilibrium electronegativity and atomic charge were presented. In this section, the research progress of applications in QSPR/QSAR, molecular design and molecular modelling, equilibrium electronegativity and atomic charge were introduced in detail.
     2. Based on the molecular graphic theory, novel molecular structure descriptors of electrical connectivity index0Kv,1Kv and the imidazoline ring of non-hydrogen atoms balance total charge fraction (MCI) was proposed for expression of local chemical microenvironment and atomic hybridation state. A quantitative structure-property relationship (QSPR) of estimating fifteen imidazoline corrosion inhibitors efficiency (CIE) for anti-corrosion behavior towards hydrogen sulfide and carbon dioxide was established including descriptors0Kv,1Kv and MCI. The results showed that correlation coefficient of modelling calculated and leave-one-out cross-validation (LOO-CV) predicted value were0.9764and0.9546, respectively. The QSPR model was of good stability and external predictive capability. For the same purpose, artificial neural network was applied and the result was improved. The results proposed that increasing substitution length of the imidazoline ring, reducing the molecular branching and lowering the imidazoline ring of non-hydrogen atoms balance total charge fraction had a significant effect.
     3. Two novel topological electro-negativity indices based on distance matrix, named YC and We indices, were put forward and could be used for modelling properties of multiple bond organic compounds by equilibrium electro-negativity of atom and relative bond length of molecular. A quantitative structural property relationship (QSPR) model for estimating flash point of92compounds was developed based on our newly introduced topological electro-negativity indices Yc and WC and path number parameter P3. The model correlation coefficient and standard error for training set in multiple linear regression were0.9923and5.28, respectively. The average absolute error of flash point was only3.86K between experimental values and calculated values, the relative error was1.46%. Furthermore, the model was strictly analyzed by both internal and external validations. The predicted values were obtained in good agreement with experimental values for leave-one-out (LOO) and the training set and validation set. The results showed that this QSPR model was of good stability and powerful prediction ability.
     4. A newly developed topological vector of atom Yc, equilibrium electro-negativity of atom Xs, molecular structural information parameter [NiH(i=α、β)] and y calibration parameter were used to describe the local chemical microenvironment of63acyclic alcoholic compounds. A quantitative structural spectrum relationship (QSSR) was systematically studied between13C NMR chemical shifts of353carbon atoms and their molecular structure descriptors. By partial least regression (PLS), the statistical results indicated that the model correlation coefficient and standard error were0.9915and2.4827, respectively. And the average absolute error was only2.01ppm between the calculated and experimental chemical shifts for353carbon atoms. To validate the estimation stability for internal samples and the predictive capability for external samples of resulting models, leave-molecule-out cross validation and external validation were performed. Compared with the reported result, not only the number of descriptors employed in this paper was much fewer, but also the calculation was much easier. In addition, a quantitative structure-spectrum relationship model was developed to simulate13C NMR spectra on carbinol carbon atoms for55alcohols. The proposed model, using multiple linear regression, contained four descriptors Yc, Xe,[NiH(i=α、β)] solely from the molecular structure of compounds. The statistical results of the final model showed that R2=0.9824and S=0.8698. The model was statistically significant and showed very good stability to data variation using the leave-one-out cross-validation. The comparison with the other approaches also revealed good behaviors of our method in this QSSR study.
     5. Two novel molecular structure descriptors based on distance matrix and adjacency matrix, named CN and CT were proposed which characterized branch vertex and molecular structural size of polycyclic aromatic hydrocarbons (PAHs), respectively. A quantitative structure-retention relationship (QSRR) model for estimating gas chromatography retention indexes of100polycyclic aromatic hydrocarbons was constructed by multiple linear regression (MLR). A satisfactory result was obtained that the correlation coefficients in partial least square and cross validation using leave-one-out were0.9970and0.9967, respectively. In order to verify the prediction ability and stability of the model, the samples were divided into70training set and30test set randomly. The result indicated the correlation coefficients of training set and test set were0.9972and0.9968, respectively. The quantitatively calculated results were in agreement with experimental ones basically. The model was compared with recently proposed QSRR models of the similar data. It was found that the present model was all better than relevant achievements in literatures.
     6. A quantitative structure-electrochemistry relationship (QSER) study of anabolic androgenic steroids had been done on the half-wave reduction potential (E1/2) using quantum and physicochemical molecular descriptors. The descriptors were calculated by semi-empirical method. Successful models were established using partial least square (PLS) regression and back-propagation artificial neural network (BP-ANN). The QSER study results indicated that the descriptors of these derivatives had significant relationship with half-wave reduction potential. The stability and prediction ability of these models were validated using leave-one-out cross-validation and external test set. This study might be helpful in the future successful identification of "real" or "virtual" anabolic androgenic steroids.
引文
[1]王连生,韩朔睽等.分子结构、性质与活性.北京:化学工业出版社,1998.
    [2]Katritzky A R, Kuanar M, Slavov S, et al. Quantitative Correlation of Physical and Chemical Properties with Chemical Structure:Utility for Prediction. Chemical Reviews,2010,110:5714-5789.
    [3]Patra J C, Chua B H. Artificial Neural Network-based Drug Design for Diabetes Mellitus Using Flavonoids. Journal of Computational Chemistry,2011,32(4): 555-567.
    [4]Adcock S A, McCammon J A. Molecular Dynamics:Survey of Methods for Simulating the Activity of Proteins. Chemical Reviews,2006,106:1589-1615.
    [5]唐有祺.展望今后化学之发展.化学通报,1998,7:6-9.
    [6]徐光宪.21世纪理论化学的挑战和机遇.结构化学,2002,21(5):463~469.
    [7]Hansch C, Maloney P P, Fujita T, Muir R M. Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substitution Constants and Partition Coefficients. Nature,1962,194:178-179.
    [8]Free S M, Wilson J W. A Mathematical Contribution to Structure-Activity Studies. J. Med. Chem.,1964,7:395-399.
    [9]Cramer III R D, Patterson D E, Bunce J D. Comparative Molecular Field Analysis (CoMFA).1. Effect of Shape on Binding of Steroids to Carrier Proteins. J. Am. Chem. Soc.,1988,110(18):5959-5967.
    [10]候廷军,徐筱杰.比较分子场分析法研究的最新进展.化学进展,2001,13(6):436-440.
    [11]梁桂兆,梅虎,周原,李志良.计算机辅助药物设计中的多维定量构效关系模型化方法.化学进展,2006,18(1):120~127.
    [12]Roy K K, Bhunia S S, Saxena A K. CoMFA, CoMSIA, and Docking Studies on Thiolactone-Class of Potent Anti-malarials:Identification of Essential Structural Features Modulating Anti-malarial Activity. Chemical Biology & Drug Design, 2011,78(3):483-493.
    [13]Kubinyi H. In Burger's Medicinal Chemistry and Drug Discovery.5th edition vol.1. Wolff M. E., John Wiley son, Inc. New York,1995.
    [14]Santos-filhos O A, Hopfingerb A J. Structure-based QSAR Analysis of a Set of 4-hydroxy-5,6-dihydropyrones as Inhibitors of HIV-1 Protease:an Application of the Receptor-dependent (RD) 4D-QSAR Formalism. J. Chem. Inf. Model., 2006,46(1):345-354.
    [15]Ducki S, Mackenzie G, Lawrence N J, et al. Quantitative Structure-Activity Relationship (5D-QSAR) Study of Combretastatin-like Analogues as Inhibitors of Tubulin Assembly. J. Med. Chem.,2005,48(2):457-465.
    [16]Vedani A, Dobler M. Multidimensional QSAR:Moving from Three-to Five-dimensional Concepts. Quant. Struct-Act. Relat.,2002,21(4):382-390.
    [17]Vedani A, Dobler M.5D-QSAR:The Key for Simulating Induced Fit. J. Med. Chem.,2002,45(11):2139-2149.
    [18]Katritzky A R, Fara D C, Yang H, et al. Quantitative Measures of Solvent Polarity. Chemical Reviews,2004,104:175-198.
    [19]Consonni V, Ballabio D, Todeschini R. Comments on the Definition of the Q2 Parameter for QSAR Validation. J. Chem. Inf. Model.,2009,49:1669-1678.
    [20]Lao Y, Leong H W. Trends in Artificial Intelligence; 7th Pacific Rim International Conference on Artificial Intelligence; Tokyo, Japan, August 2002.
    [21]Gedeck P, Rohde B, Bartels C. QSAR-How Good is it in Practice? Comparison of Descriptor Sets on an Unbiased cross Section of Corporate Data Sets. J. Chem. Inf. Model.,2006,46(5):1924-1936.
    [22]Topliss J G, Edwards R P. Chance Factors in Studies of Quantitative Structure-activity Relationships. J. Med. Chem.,1979,22(10):1238-1244.
    [23]Chemoffice. In CambridgeSoft:2008.
    [24]HyperChem 7.0, Hypercube. Inc:2002.
    [25]Gaussian, Http://www.gaussian.com/.
    [26]SYBYL6.9, Tripos Associates Inc:2003.
    [27]http://cactus.nci.nih.gov/services/translate/.
    [28]席丽丽.计算机辅助药物和蛋白质性质预测研究:[博士学位论文].甘肃:兰州大学,2010.
    [29]Saunders M. Stochastic Exploration of Molecular Mechanics Energy Surfaces. Hunting for the Global Minimum. J. Am. Chem. Soc.,1987,109:3150-3152.
    [30]赵立峰.分子力场方法及其在材料科学中的若干应用问题:[博士学位论文].上海:上海交通大学,2008.
    [31]孙慧.若干离子液体结构与催化机理的理论研究:[博士学位论文].山东:山东大学,2010.
    [32]袁永娜QSPR/QSAR在化学、药物化学和环境科学中的应用研究:[博士学 位论文].甘肃:兰州大学,2010.
    [33]曹晨忠.有机化学中的取代基效应.北京:科学出版社,2003.
    [34]Hammett L P. Some Relations between Reaction Rates and Equilibrium Constants. Chemical Reviews,1935,17:125-136.
    [35]Meijere A de, Kozhushkov S I. The Chemistry of Highly Strained Oligospirocyclopropane Systems. Chemical Reviews,2000,100:93-142.
    [36]Hansch C, Gao H. Comparative QSAR:Radical Reactions of Benzene Derivatives in Chemistry and Biology. Chemical Reviews,1997,97: 2995-3059.
    [37]Todeschini R, Consonni V. Handbook of Molecular Descriptors. Wiley-VCH: Weinheim,2000.
    [38]Zhou C Y, Nie C M, Li S, Li Z H. A Novel Semi-empirical Topological Descriptor Nt and the Application to Study on QSAR/QSPR. J. Comput. Chem., 2007,28:2413-2423.
    [39]Liu G S, Yu J G. QSAR Analysis of Soil Sorption Coefficients for Polar Organic Chemicals:Substituted Anilines and Phenols. Water Res.,2005,39:2048-2055.
    [40]桑鹏.基于表面静电势参数的定量结构-性质/活性关系研究:[硕士学位论文].浙江:浙江大学,2010.
    [41]Katritzky A R, Kulshyn O V, Stoyanova-Slavova I, et al. Antimalarial Activity: A QSAR Modeling Using CODESSA PRO Software. Bioorganic & Medicinal Chemistry,2006,14(7):2333-2357.
    [42]DRAGON, TALETE, Italy, http://www.talete.mi.it/products/dragon_description.
    [43]Shane D, Peterson S D, Schaal W, et al. Improved CoMFA Modeling by Optimization of Settings. J. Chem. Inf. Model,2006,46:355-364.
    [44]Klebe G, Abraham U, Mietzner T. Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. J. Med. Chem.,1994,37(24):4130-4146.
    [45]Silverman B D. Three-dimensional Moments of Molecular Property Fields. J. Chem. Inf. Comput. Sci.,2000,40(6):1470-1476.
    [46]Hansch C, Fujita T. P-σ-π Analysis. A Method for Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc.,1964,86(8):1616-1626.
    [47]Cohen N, Benson S W. Estimation of Heats Formation of Organic Compounds by Additivity Methods. Chemical Reviews,1993,93(7):2419-2438.
    [48]许禄,胡昌玉.应化化学图论.北京:科学出版社,2000.
    [49]Wiener H. Structural Determination of Paraffin Boiling Points. J. Am. Chem. Soc.,1947,69(1):17-20.
    [50]Gutman I, Linert W, Lukovits I, Tomovic Z. The Multiplicative Version of the Wiener Index. J. Chem. Inf. Comput. Sci.,2000,40(1):113-116.
    [51]Yang F, Wang Z D, Huang Y P. Modification of the Wiener Index.2. J. Chem. Inf. Comput. Sci.,2003,43(5):1337-1341.
    [52]丁伟,刘先军,于涛,等.直链烷烃取代衍生物Wiener指数的简便计算方法.物理化学学,2004,20(11):1369~1371.
    [53]王振东,杨海浪,黄运平,等Wiener指数的新定义及其对气相色谱保留指数的相关性研究.分析化学,2005,20(11):1369~1371.
    [54]Randic M. Characterization of Molecular Branching. J. Am. Chem. Soc.,1975, 97(23):6609-6615.
    [55]Randic M. Novel Molecular Descriptor for Structure-property Studies. Chem. Phys. Lett.,1993,211:478-483.
    [56]Yuan H, Yang B L, Yang J M. Predicting Properties of Biodiesel Fuels using Mixture Topological Index. Journal of the American Oil Chemists' Society,2009, 4:375-382.
    [57]Dutt R, Madan A K. Improved Superaugmented Eccentric Connectivity Indices for QSAR/QSPR Part I:Development and Evaluation. Med. Chem. Res.,2010, 19(5):431-447.
    [58]Mu L L, He H M. Prediction of Standard Absolute Entropies for Gaseous Organic Compounds. Chemometrics and Intelligent Laboratory Systems,2012, 112:41-47.
    [59]Hosoya H. Topological Index:a Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons. Bull. Chem. Soc. Jap.,1971,44(9):2332-2339.
    [60]Randic M. Wiener-Hosoya Index. A Novel Graph Theoretical Molecular Descriptor. J. Chem. Inf. Comput. Sci.,2004,44(2):373-377.
    [61]Wang W H. Ordering of Hosoya Indices for Unicyclic Huckel Graphs. Mathematical and Computer Modelling,2012,55(3-4):929-938.
    [62]Bonchev D, Balaban A T, Mekenyan O. Generalization of the Graph Center Concept and Derived Topological Centric Indexes. J. Chem. Inf. Comput. Sci., 1980,20(2):106-113.
    [63]Kumar A, Clement S, Agrawal V P. Structural Modeling and Analysis of an Effluent Treatment Process for Electroplating-A Graph Theoretic Approach. Journal of Hazardous Materials,2010,179(1-3):748-761.
    [64]Gorban A N, Yablonsky G S. Extended Detailed Balance for Systems with Irreversible Reactions. Chemical Engineering Science,2011,66(21):5388-5399.
    [65]Balaban A T. Topological Indices Based on Topological Distance in Molecular Graphs. Pure & Appl. Chem.,1983,55(2):199-206.
    [66]Balaban A T, Khadikar P V, Supuran C T, Thakur M. Study on Supramolecular Complexing Ability vis-a-vis Estimation of pKa of Substitued Sulfonamides: Dominating Role of Balaban Index(J). Bioorganic & Medicinal Chemistry Letter, 2005,15(17):3966-3973.
    [67]Vukicevic D, Beteringhe A, Balaban A T, et al. Statistical Investigation of New Topological Indices Based on the Molecular Path Code. Chemical Physics Letters,2008,464(4-6):155-159.
    [68]Mohajeri A, Shahamirian M. Pi-electron Delocalization in Aza Derivatives of Naphalene and Indole. Computational and Theoretical Chemistry,2011, 976(1-3):19-29.
    [69]Hall L H, Kier L B. Issues in Representation of Molecular Structure:The Development of Molecular Connectivity. Journal of Molecular Graphics and Modelling,2001,20(1):4-18.
    [70]Valderrama J O, Rojas R E. Mass Connectivity Index, a New Molecular Parameter for the Estimation of Ionic Liquid Properties. Fluid Phase Equilibria, 2010,297(1):107-112.
    [71]Oliferenko A A, Tian F F, Karelson M, Katritzky A R. Prediction of Peptide IMS cross Sections from Extended Molecular Connectivity. International Journal of Mass Spectrometry,2011, in Press.
    [72]Yang F, Wang Z D, Huang Y P, et al. Modification of Wiener Index and Its Application. J. Chem. Inf. Comput. Sci.,2003,43(3):753-756.
    [73]Chen O, Lam T K, Merris R. Winer Number as an Immanant of the Laplacian of Molecular Graphs. J. Chem. Inf. Comput. Sci.,1997,37:762-765.
    [74]Randic M. Wiener-Hosoya Index:a Novel Graph Theoretical Molecular Descriptor. J. Chem. Inf. Comput. Sci.,2004,44(2):373-377.
    [75]Randic M. Novel Molecular Descriptor for Structure-property Studies. Chem. Phys. Lett.,1993,211:478-483.
    [76]Klein D J, Lukovits I, Gutman I. On the Definition of the Hyper-wiener Index for Cycle-containing Structures. J. Chem. Inf. Comput. Sci.,1995,36:672-687.
    [77]Karmarker S, Khadikar P V, Agrawal V K, et al. Topological Estimation of Proton-ligand Formation Constants of Potential Antitumour Agent:Salicyl Hydroxamic Acids. Proc. Indian Acad. Sci.,2000,112:43-49.
    [78]Randic M, Jerman-blazic B, GROSSMAN S C, et al. A Rational Approach to the Optimal Design of Drugs. Math. Comput. Modeling,1988,9:571-582.
    [79]Lallrall R S. Topology and Physical Properties of n-alkanes. Current Sci.,1981, 50:668-670.
    [80]Plavis D, Nicolic S, Trinajstic N, et al. On the Harary Index for the Characterization of Chemical Graphs. J. Math. Chem.,1993,12:235-250.
    [81]Kier L B, Hall L H. Molecular Connectivity in Chemistry and Drug Research. Academic Press:New York,1976.
    [82]Kier L B, Hall L H. Molecular Connectivity in Structure-activity Analysis. Research Studies Press Ltd.:New York,1986,82-90.
    [83]冯长君,沐来龙,杨伟华,蔡可迎.用拓扑指数和神经网络研究有机污染物的生物富集因子.化学学报,2008,66(19):2093~2098.
    [84]彭国文,肖芳竹,聂长明,等.手性有机化合物构效关系的量子拓扑学研究.化学学报,2011,69(3):305~310.
    [85]金玲,张新胜.QSAR模型各参数对草酸铅阴极还原反应电流效率的影响.化工学报,2010,61(S1):63~67.
    [86]Kier L B, Hall L H. An Electrotopological State Index for Atoms in Molecules. Pharm. Res.,1990,7(8):801-807.
    [87]Kier L B, Hall L H. The Electrotopological State:Structure Information at the Atomic Level for Molecular Graphs. J. Chem. Inf. Comput. Sci.,1991,31(1): 76-82.
    [88]Kier L B, Hall L H. Molecular Structure Description:The Electrotopological state Index. San Diego:Academic Press,1999.
    [89]Wang L, Liu X H, Shan Z J, et al. Using Electrotopological State Indices to Model the Depuration Rates of Polychlorinated Biphenyls in Mussels of Elliptio Complanata. Journal of Environmental Sciences,2010,22(10):1544-1550.
    [90]王宇,刘树深,赵劲松,等.电拓扑状态预测有机磷酸酯类化合物的气相色谱保留指数.化学学报,2006,64(10):1043~1050.
    [91]彭国文,肖芳竹,聂长明,等.液相链烷烃热导率与其结构定量关系.化工学报,2011,62(3):604~610.
    [92]杜红英.化学信息学新算法及在化学、生物与食品科学中的应用研究:[博士学位论文].甘肃:兰州大学,2009.
    [93]Karelson M, Lobanov V S, Katritzky A R. Quantum-chemical Descriptors in QSAR/QSPR Studies. Chemical Reviews,1996,96(3):1027-1044.
    [94]Rashid Z, Van Lenthe J H. Generation of Kekule Valence Structures and the Corresponding Valence Bond Wave Function. Journal of Computational Chemistry,2010,32(4):698-708.
    [95]Zhu M J, Ge F, Zhu R L, et al. A DFT-based QSAR Study of the Toxicity of Quaternary Ammonium Compounds on Chlorella Vulgaris. Chemosphere,2010, 80:46-52.
    [96]Katritzky A R, Kulshyn O V, Stoyanova-Slavova I, et al. Antimalarial Activity: A QSAR Modeling using CODESSA PRO Software. Bioorganic & Medicinal Chemistry,2006,14(7):2333-2357.
    [97]Nozawa D, Okubo T, Ishii T, et al. Structure-activity Relationships of Novel Piperazines as Antagonists for the Melanocortin-4 Receptor. Bioorg. Med. Chem.,2007,15:1989-2005.
    [98]Zuman P. Substituent Effects in Organic Polarography. Plenum Press, New York, 1967.
    [99]Adan R A, Szklarczyk A W, Oosterom J, et al. Characterization of Melanocortin Receptor Ligands on Cloned Brain Melanocortin Receptors and on Grooming Behavior in the Rat. Eur. J. Pharmacol.,1999,378:249-258.
    [100]Vergoni A V, Bertolini A, Wikberg J E, et al. Selective Melanocortin MC4 Receptor Blockage Reduces Immobilization Stress-induced Anorexia in Rats. Eur. J. Pharmacol.,1999,369:11-15.
    [101]Hadjipavlou-Litina D, Garg R, Hansch C. Comparative Quantitative Structure-Activity Relationship Studies on Non-Benzodiazepine Compounds Binding to Benzodiazepine Receptor. Chem. Rev.2004,104(9):3751-3794.
    [102]Rucker C, Riicker G, Meringer M. y-Randomization and Its Variants in QSPR/QSAR. J. Chem. Inf. Model.,2007,47:2345-2357.
    [103]Jurs P C, Bakken G A, McClelland H E. Computational Methods for the Analysis of Chemical Sensor Array Data from Volatile Analytes. Chem. Rev., 2000,100:2649-2678.
    [104]Ren Y Y, Zhao B W, Chang Q, Yao X J. QSPR Modeling of Nonnionic Surfactant Cloud Point:An Update. Journal of Colloid and Interface Science, 2011,358(1):202-207.
    [105]Talevi A, Goodarzi M V, Ortiz E, et al. Prediction of Drug Intestinal Absorption by New Linear and Nonlinear QSPR. European Journal of Medicinal Chemistry,2011,46(1):218-228.
    [106]Shahlaei M, Madadkar-Sobhani A, Saghaie L, et al. Application of an expert system based on Genetic Algorithm-Adaptive Neuro-Fuzzy Inference System (GA-ANFIS) in QSAR of cathepsin K inhibitors. Expert Systems with Applications,2012,39(6):6182-6191.
    [107]刘焕香.基于支持向量机方法的QSAR/QSPR在化学、生物及环境科学中的应用研究:[博士学位论文].甘肃:兰州大学,2005.
    [108]梁逸曾,俞汝勤.化学计量学.北京:高等教育出版社,2003.
    [109]杨善升.基于数据挖掘的若干化工过程优化和化合物构效关系研究:[博士学位论文].上海:上海大学,2008.
    [110]Xu J, Wang L, Wang L X, et al. QSPR Study of Setschenow Constants of Organic Compounds Using MLR, ANN, and SVM Analyses. Journal of Computational Chemistry,2011,32(15):3241-3252.
    [111]Famini G R, Penski C A, Wilson L Y. Using Theoretical Descriptors in Quantitative Structure-activity Relationships:Some Physicochemical Properties. J. Phys. Org. Chem.,1992,5:395-408.
    [112]戴益民.典型化学品的结构参数表征及其分子模拟研究:[硕士学位论文].湖南:南华大学,2006.
    [113]聂长明,廖力夫,等.计算化学.北京:北京理工大学出版社,2010.
    [114]Hawkins D M, Basak S C, Shi X. QSAR with Few Compounds and Many Features. J. Chem. Inf. Comput. Sci.,2001,41:663-670.
    [115]Hawkins D M, Yin Y A. A Faster Algorithm for Ridge Regression of Reduced Rank Data. Comput. Stat. Data Anal.,2002,40:253-262.
    [116]王连生,韩朔睽.分子结构性质与活性.北京:化学工业出版社,1997.
    [117]Eriksson L, Andersson P, Johansson E, et al. Megavariate Analysis of Environmental QSAR data. Part Ⅱ-investigating Very Complex Problem Formulations using Hierarchical, Non-linear and Batch-wise Extensions of PCA and PLS. Mol. Diversity.,2006,10(2):187-205.
    [118]Dabrowska M, Starek M, Skucinski J. Lipophilicity Study of Some Non-steroidal Anti-inflammatory Agents and Cephalosporin Antibiotics:A Review. Talanta,2011,86:35-51.
    [119]Gu C G, Goodarzi M, Yang X L, et al. Predictive Insight into the Relationship between AhR Bingding Property and Toxicity of Polybrominated Diphenyl Ethers by PLS Derived QSAR. Toxicology Letters,2012,208(3):269-274.
    [120]Zupan J, Gasteiger J. Neural Networks for Chemists:an Introduction. VCH-Verlag:Weinheim,1993.
    [121]Hopfield J J. Neurons with Graded Response Have Collective Computational Properties like Those of Two-State Neurons. Proc. Natl. Acad. Sci.,1984,81: 3088-3092.
    [122]Haykin S. Neural Networks. A Comprehensive Foundation. Perarson Prentice Hall:New Delhi,2006.
    [123]Karelson M, Dobchev D A. Using Artificial Neural Networks to Predict Cell-penetrating Compounds. Expert Opinion on Drug Discovery,2011,6(8): 783-796.
    [124]Durcekova T, Boronova K, Mocak J, et al. QSRR Models for Potential Local Anaesthetic Drugs using High Performance Liquid Chromatography. Journal of Pharmaceutical and Biomedical Analysis,2012,59:209-216.
    [125]Qin Y, Deng H F, Yan H, Zhong R G. An Accurate Nonlinear QSAR Model for the Antitumor Activities of Chloroethylnitrosoureas using Neural Networks. Journal of Molecular Graphics and Modeling,2011,29(6):826-833.
    [126]Consonni V, Ballabio D, Todeschini R. Comments on the Definition of the Q2 Parameter for QSAR Validation. J. Chem. Inf. Model.2009,49:1669-1678.
    [127]许禄,邵学广.化学计量学方法.北京:科技出版社,2004.
    [128]Eriksson L, Johansson E, Muller M, et al. On the Selection of the Training Set in Environmental QSAR Analysis When Compounds are Clustered. J. Chemometrics.,2000,14(5-6):599-616.
    [129]Tropsha A, Gramatica P, Gombar V. The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR. QSAR Comb. Sci.,2003,22:69-77.
    [130]Tropsha A, Golbraikh A. Predictive Quantitative Structure-Activity Relationships Modeling:Development and Validation of QSAR Models. Chapman & Hall/CRC:London, UK,2010.
    [131]刘江燕,武书彬.化学图文设计与分子模拟计算.广东:华南理工大学出版社,2009.
    [132]Leach A R. Molecular Modelling Principles and Applications(Second Edition). Associated Companies Throughout the World:Beijing,2001.
    [133]Lin Y W, Nie C M, Liao L F. Probing the Weak Interactions between Amino Acids and Carbon Monoxide. Chin. Chem. Lett.,2008,19:119-122.
    [134]孙慧.若干离子液体结构与催化机理的理论研究:[博士学位论文].山东:山东大学,2010.
    [135]Lopes J N C, Padua A A H. Using Spectroscopic Data on Imidazolium Cation Conformations to Test a Molecular Force Field for Ionic Liquids. J. Phys. Chem. B.,2006,110:7485-7489.
    [136]Lopes J N C, Padua A A H. Molecular Force Field for Ionic Liquids Composed of Triflate of Bistriflylimide Anions. J. Phys. Chem. B.,2004,108: 16893-16898.
    [137]Lopes J N C, Padua A A H. Molecular Force Field for Ionic Liquids III: Imidazolium, Pyridinium, and Phosphonium Cations, Chloride, Bromide, and Dicyanamide Anions. J. Phys. Chem. B.,2006,110:19586-19592.
    [138]Lin Y W, Nie C M, Liao L F. Folding Behaviors of Apocytochrome b5 and Its Mutants:Insights from High Temperature Molecular Dynamics Simulations. J. Molecular Structure:THEOCHE.,2009,910:154-160.
    [139]van Gunsteren W F, Berendsen H J C. A Leap-frog Algorithm for Stochastic Dynamics. Mol. Sim.,1988,1:173-185.
    [140]Kong L T. Phonon Dispersion Measured Directly from Molecular Dynamics Simulations. Computer Physics Commuications,2011,182(10):2201-2207.
    [141]Goetz A, Lanig H, Gmeiner P, Clark T. Molecular Dynamics Simulations of the Effect of the G-Protein and Diffusible Ligands on the|32-Adrenergic Receptor. Journal of Molecular Biology,2011,414(4):611-623.
    [142]Ghatee M H, Moosavi F, Zolghadr A R. Molecular Dynamics Simulation Studies of Some New Aspects of Structural and Dynamical Properties of n-butyl Formate at Varying Temperature. Journal of Molecular Liquids,2012, 167:5-13.
    [143]Ozmutlu S, Ozmutlu H C, Buyuk B. A Monte-Carlo Simulation Application for Automatic New Topic Identification of Search Engine Transaction Logs. Simulation Modelling Practice and Theory,2008,16(5):519-538.
    [144]Dewar M J S, Jie C, Yu J. The First of a New Series of General Purpose Quantum Mechanical Molecular Models. Tetrahedron,1993,49:5003-5038.
    [145]Acikkalp E, Yildiz K, Yarligan S, et al. Semiempirical Gas Phase Study on Tautomerizm of 2-hydroxy Amino and Mercapto Benzimidazoles. Journal of Molecular Structure:THEOCHEM.,2001,536(2-3):155-160.
    [146]Zauer E A, Zauer O A. Enthalpies of Formation of Nitro-, Nitroxy-, and Nitrosoadamantanes. Russian Journal of General Chemistry.2010,80(10): 1663-1665.
    [147]陈学勇,韦朝海,邓秀琼,等.硝基芳烃对梨形四膜虫毒性的定量构效关系解析.化学学报,2011,69(21):2618~2626.
    [148]施介华,肖科科,吕圆圆.α-氯丙酸乙酯对映体与p-环糊精的主客体相互作用.物理化学学报,2009,25(7):1273~1278.
    [149]Bodor N, Dewar M J S. Ground States of -bonded Molecules-VIII:MINDO Calculations for Species Involved in Nitration by Acetyl Nitrate. Tehrahedron, 1969,25(24):5777-5784.
    [150]Singh, M. K.; Dominy, B. N. The Evolution of Cefotaximase Activity in the TEM β-Lactamase. Journal of Molecular Biology,2012,415(1):205-220.
    [151]Dewar, M. J. S.; Thiel, W. Ground States of Molecules 38. The MNDO Method. Approximations and Parameters. Journal of the American Chemical Society, 1977,99:4899-4907.
    [152]Dewar M J S, Zoebisch E G, Healy E F, Stewart J J P. AM1:A New General Purpose Quantum Mechanical Model. Journal of the American Chemical Society,1985,107:3902-3909.
    [153]Matsuura A, Sato H, Sotoyama W, et al. AM1, PM3, and PM5 Calculations of the Absorption Maxima of Basic Organic Dyes. Journal of Molecular Structure: THEOCHEM,2008,860(1-3):119-127.
    [154]Labidi N S, Djebaili A. AM1 and DFT Study of Polarizability of Nitrogen Containing Octatetraene with Donor Substituents:Comparative Investigation. Journal of Saudi Chemical Society,2010,14(2):191-195.
    [155]许秀芳,尚贞锋,李瑞芳,赵学庄.C50(D5h)衍生物-异质富勒烯C48P2的分子行为理论研究.高等学校化学学报,2009,30(6):1219~1226.
    [156]葛明兰,熊杰明,王利生.有机化合物在离子液体中的无限稀释活度系数理论预测.科学通报,2009,54(10):1419~1423.
    [157]Stewart J J P. Optimisation of Parameters for Semi-empirical Methods Ⅰ. Method. Journal of Computational Chemistry,1989,10:209-220.
    [158]Hehre W J, Radom L, Schleyer P R, Pople J A. Ab initio Molecular Orbital Theory. John Wiley & Sons:New York,1986.
    [159]Palumbo M, Abe T, Kocer C, et al. Ab initio and Thermodynamic Study of the Cr-Re System. Calphad,2010,34(4):495-503.
    [160]陈志达.量子化学的第二次革命.大学化学,1999,14:3-6.
    [161]Sanderson R T. An Interpretation of Bond Lengths and a Classification of Bonds. Science,1951,114:670-672.
    [162]Bratsch S G. Electronegativity Equalization with Pauling Units. J. Chem. Edu., 1984,61:588-589.
    [163]Sanderson R T. Revised Mulliken Electronegativities. J. Chem. Edu.,1988,65: 227-231.
    [164]Smith D W. A Group Electronegativity Method with Pauling Units. J. Chem. Edu.,1990,67:559-231.
    [165]卢天,陈飞武.原子电荷计算方法的对比.物理化学学报,2012,28(1):1-18.
    [166]Jensen F. Introduction to Computational Chemistry,2nd ed.; John Wiley & Sons:West Susses,2007.
    [167]Sanville E, Kenny S D, Smith R, Henkelman G. An Improved Grid-based Algorithm for Bader Charge Allocation. J. Comput. Chem.,2007,28:899-908.
    [168]Chaves J, Barroso J M, Bultinck P, Carbo-Dorca R. Toward an Alternative Hardness Kernel Matrix Structure in the Electronegativity Equalization Method (EEM). Journal of Chemical Information and Modeling,2006,46:1657-1665.
    [169]申涛,杜凤沛,刘婷,等.咪唑甘油磷酸酯脱水酶与含氮杂环磷酸酯类抑制剂作用方式的分子模拟.物理化学学报,2011,27:1831~1838.
    [170]郑文锐,徐菁利,熊瑞.N-O键解离焓的密度泛函理论研究.物理化学学报,2010,26(9):2535~2542.
    [171]Bachrach S M. Population Analysis and Electron Densities from Quantum Mechanics. In Reviews in Computational Chemistry. Lipkowitz, K. B., Boyd, D. B. Eds.; VCH Publishers:New York,1994.
    [172]Besler B H, Merz K M J, Kollman P A. Atomic Charges Derived from Semiempirical Methods. J. Comput. Chem.1990,11:431-439.
    [173]Gasteiger J, Marsili M. Iterative Partial Equalization of Orbital Electronegativity:A Rapid Access to Atomic Charges. Tetrahedron,1980,36: 3219-3228.
    [174]Lu H G, Dai D D, Li L M. Atomic Orbitals in Molecules:General Electronegativity and Improvement of Mulliken Population Analysis. Phys. Chem. Chem. Phys.,2006,8:340-346.
    [175]Liu W, Li L. A Method for Population and Bonding Analyses in Calculations with Extended Basis Sets. Theor. Chem. Acc.,1997,95:81-95.
    [176]Jakalian A, Jack D B, Bayly C I. Fast, Efficient Generation of High-quality Atomic Charge. AM1-BCC Model:Ⅱ. Parameterization and Validation. J. Comput. Chem.,2002,23:1623-1641.
    [177]沈尔忠,杨忠志.密度泛函理论下的分子电负性—Ⅰ.由电负性均衡原理直接计算分子中的原子电荷.中国科学(B辑),1995,25(2):126~131.
    [178]王广昌.分子中原子电荷的一种新的计算方法.化学通报,1994,1:46~50.
    [179]曹晨忠.屏蔽—钻穿常数与取代基效应的定量研究:Ⅲ.原子电荷的计算.科学通报,1993,38(23):2147~2151.
    [180]Labjar N, Lebrini M, Bentiss F, et al. Corrosion Inhibition of Carbon Steel and Antibacterial Properties of Aminotris-(methylnephosnic) Acid. Mater. Chem. Phys.,2010,119:330-336.
    [181]Okafor P C, Zheng Y G. Synergistic Inhibition Behaviour of Methylbenzyl Quaternary Imidazoline Derivative and Iodide Ions on Mild Steel in H2SO4 Solutions. Corros. Sci.,2009,51:850-859.
    [182]Li X H, Deng S D, Fu H. Three Pyrazine Derivatives as Corrosion Inhibitors for Steel in 1.0M H2SO4 Solution. Corros. Sci.,2011,53:3241-3247.
    [183]Larabi L, Harek Y, Benali O, et al. Hydrazid Derivatives as Corrosion Inhibitors for Mild Steel in 1 M HCl. Prog. Org. Coat.,2005,54(3):256-262.
    [184]Lopez D A, Simison N. Inhibitors Performance in CO2 Corrosion. EIS Studies on the Interaction between their Molecular Structure and Steel Microstructure. Corros. Sci.,2005,47(3):735-755.
    [185]Musa A Y, Kadhum A A H, Mohamad A B et al. Electrochemical and Quantum Chemical Calculations on 4,4-dimethyloxazolidine-2-thione as Inhibitor for Mild Steel Corrosion in Hydrochloric Acid. J. Mol. Struct.,2010,96:233-237.
    [186]Liu F G, Du M, Zhang J, et al. Electrochemical Behavior of Q235 Steel in Seawater Saturated with Carbon Dioxide Based on New Imidazoline Derivative Inhibitor. Corros. Sci.,2009,51:102-109.
    [187]李向红,邓书端,付慧.氯化硝基四氮唑蓝对钢在盐酸溶液中的缓释作用.物理化学学报,2011,27(12):2841~2848.
    [188]Suzuki K. The Study of Inhibitor for Sour Gas Service. Corrosion,1982,7: 386-389.
    [189]Jovancicevic V, Ramachandran S, Prince P. Inhibition of CO2 Corrosion of Mild Steel by Imidazoline and Their Precursors. Corros. Sci. Section, NACE, 1999,55(5):449-455.
    [190]Doner A, Solmaz R, Ozcan M, et al. Experimental and Theoretical Studies of Thiazoles as Corrosion Inhibitors for Mild Steel in Sulphuric Acid Solution. Corros. Sci.,2011,53:2902-2913.
    [191]Kardas G, Solmaz R. Electrochemical Investigation of Barbiturates as Green Corrosion Inhibitors for Steel Protection. Corros. Rev.,2006,24:151-171.
    [192]Gece G. The Use of Quantum Chemical Methods in Corrosion Inhibitor Studies. Corrosion Science,2008,50:2981-2992.
    [193]Yadav D K, Maiti B, Quraishi M A. Electrochemical and Quantum Chemical Studies of 3,4-dihydropyrimidin-2(1H)-ones as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solution. Corros. Sci.,2010,52:3586-3598.
    [194]王彬,杜敏,张静.抑制Q235钢C02腐蚀的气液双相咪唑啉衍生物缓蚀剂的缓蚀行为.物理化学学报,2011,27(1):120~126.
    [195]Obi-Egbedi N O, Obot I B. Inhibitive Properties, Thermodynamic and Quantum Chemical Studies of Alloxazine on Mild Steel Corrosion in H2SO4. Corrosion Science,2011,53(1):263-275.
    [196]Vosta J, Eliasek J. Study on Corrosion Inhibition from Aspect of Quantum Chemistry. Corros. Sci.,1971,11:223-229.
    [197]Ma H, Chen S, Liu Z. Theoretical Elucidation on the Inihition Mechanism of Pyridine-pyrazole Compound:a Hartree-Fock Study. J. Mol. Struct. (THEOCHEM),2006,774:19-22.
    [198]Yan Y, Li W H, Cai L, et al. Electrochemical and Quantum Chemical of Purines as Corrosion Inhibitors for Mild Steel in 1 M HCl Solution. Electrochim. Acta,2008,53:5953-5960.
    [199]Arslan T, Kandemirli F, Ebenso E E, et al. Quantum Chemical Studies on the Corrosion Inhibition of Some Sulphonamides on Mild Steel in Acidic Medium. Corros. Sci.,2009,51:35-47.
    [200]Harvey T G, Hardin S G, Hughes A E, et al. The effect of Inhibitors Structure on the Corrosion of AA2024 and AA7075. Corros. Sci.,2011,53:2184-2190.
    [201]Lebrini M, Traisnel M, Lagrenee M, et al. Inhibitive Properties, Adsorption and a Theoretical Study of 3,5-bis(n-pyridyl)-4-amino-1,2,4-triazoles as Corrosion Inhititors for Mild Steel in Perchloric Acid. Corros. Sci.,2008,50:473-479.
    [202]胡松青,胡建春,石鑫,等.咪唑啉衍生物缓蚀剂的定量构效关系及分子设计.物理化学学报,2009,25(12):2524~2530.
    [203]武亚新.电子效应在非共轭有机化合物能量性质估算中的应用:[博士学位论文].湖南:中南大学,2012.
    [204]聂长明.基团电负性.武汉大学学报(自然科学版),2000,46(2):176~180.
    [205]聂长明,戴益民,文松年,等.烷烃加和型性质的拓扑同系递变规律研究.化学学报,2005,63(15):1449~1455.
    [206]Zhou C, Chu X, Nie C. Predicting Thermodynamics Properties with a Novel Semiempirical Topological Descriptor and Path Numbers. J. Phys. Chem. B., 2007,111:10174-10179.
    [207]李忠海,戴益民,文松年,等.原子价壳层电子量子拓扑指数与元素电负性的关系.化学学报,2005,63(14):1348~1356.
    [208]张寒琦,陈铮,林英杰,等.实用化学手册.北京:科学出版社,2001.
    [209]陈德钊.多元数据处理.北京:化学工业出版社,1998.
    [210]禹新良,王学业,高进伟,等.用量子化学参数研究烯烃聚合物定量构效关系.化学学报,2006,64(7):629~636.
    [211]Winkler D A. Network Models in Drug Discovery and Regenerative Medicine. Biotechnology Annual Review,2008,14:143-170.
    [212]Safamirzaei M, Modarress H, Mohsen-Nia M. Modeling the Hydrogen Solubility in Methanol, Ethanol,1-propanol and 1-butanol. Fluid Phase Equilibria,2010,289(1):32-39.
    [213]Gharagheizi F. A QSPR Model for Estimation of Lower Fammability Limit Temperature of Pure Compounds Based on Molecular Structure. J. Hazard. Mater,2009,169(1-3):217-220.
    [214]张军,于维钊,燕友果,等.咪唑啉缓蚀剂在Fe(001)表面吸附行为的分子动力学模拟.物理化学学报,2010,26(5):1385-1390.
    [215]胡松青,胡建春,张军,等.咪唑啉衍生物缓蚀性能的密度泛函理论和分子动力学模拟.石油学报(石油加工),2010,26(2):250~256.
    [216]Lyman W J, Reehl W F, Rosenblatt D H. Handbook of Chemical Property Estimation Methods. McGraw-Hill:New York,1982.
    [217]Pan Y, Jiang J C, Wang Z R. Quantitative Structure-property Relationship Studies for Predicting Flash Points of Alkanes using Group Bond Contribution Method with Back -propagation Neural Network. J. Hazard. Mater.,2007,147: 424-430.
    [218]Liaw H J, Chiu Y Y. A General Model for Predicting the Flash Point of Miscible Mixtures. J. Hazard. Mater.,2006,137:38-46.
    [219]Vazhev V V, Aldabergenov M K, Vazheva N V. Estimation of Flash Points and Molecular Masses of Alkanes from Their IR Spectra. Petrol. Chem.,2006,46: 136-139.
    [220]Albahri T A. Flammability Characteristics of Pure Hydrocarbons. Chem. Eng. Sci.,2003,58:3629-3641.
    [221]Suzuki T, Ohtaguchi K, Koide K. A Method for Estimating Flash Points of Organic Compounds from Molecular Structures. J. Chem. Eng. Jpn.,1991,24: 258-261.
    [222]Dean J A. Lange's Handbook of Chemistry.15th ed. New York:McGraw-Hill Inc,1999.
    [223]Katritzky A R, Petrukhin R, Jain R, Karelson M. QSPR Analysis of Flash Points. J. Chem. Inf. Comput. Sci.,2001,41:1521-1530.
    [224]Katritzky A R, Stoyanova-Slavova I B, Dobchev D A. QSPR Modeling of Flash Points:An Update. J.Mol.Graph. Model.,2007,26:529-536
    [225]Neuvonen H, Neuvonen K. Correlation Analysis of Carbonyl Carbon 13C NMR Chemical Shifts, IR Aabsorption Frequencies and Rate Coefficients of Nucleophilic Acyl Substitutions. A Novel Explanation for the Substituent Dependence or Reactivity. J. Chem. Soc, Perkin Trans.,1999,2:1497-1502.
    [226]Witkowski S, Maciejewsk D, Wawer I.13C NMR Studies of Conformational Dynamics in 2,2,5,7,8-entamethylchroman-6-ol Derivatives in Solution and the Solid State. J. Chem. Soc, Perkin Trans.,2000,2:1471-1476.
    [227]Wuthrich K. The Way to NMR Structures of Proteins. Nat. Struct. Biol.,2001, 8:923-925.
    [228]Grant D M, Paul E G. Carbon-13 Magnetic Resonance II. Chemical Shift Data for the Alkanes. J. Am. Chem. Soc.,1964,86:2984-2990.
    [229]Lindeman L P, Adams J Q. Carbon-13 Magnetic Resonance Rpectrometry Chemical Shifts for the Paraffins Through C9. Anal. Chem.,1971,43: 1245-1252.
    [230]Tong J B, Liu S L, Zhou P, et al. Quantitative Structure Spectroscopy Relationships of Carbon-13 Nuclear Magnetic Resonance Chemical Shifts of Steroids. J. Mol. Graph. Model.,2007,26:86-92.
    [231]Jalali-Heravi M, Shahbazikhah P, Zekavat B, Ardejani M S. Principal Component Analysis- ranking as a Variable Selection Method for the Simulation of 13C Nuclear Magnetic Resonance Spectra of Xanthones Using Artificial Neural Networks. QSAR Comb. Sci.,2007,26:764-772.
    [232]Jaiswal M, Khadikar P. QSAR Study on 13C NMR Chemical Shifts on Carbinol Carbon Atoms. Bioorg. Med. Chem.,2004,12:1793-1798.
    [233]Kahrs O, Brauner N, Gholakov G S, et al. Analysis and Refinement of the Targeted QSPR Method. Comput. Chem. Engin.,2008,32:1397-1410.
    [234]Garkani-Nejad Z, Poshteh-Shirani M. Application of Multivariate Image Analysis in QSPR Study of 13C Chemical Shifts of Naphthalene Derivatives:A Comparative Study. Talanta,2010,83:225-232
    [235]许禄,胡建强.脂肪胺类化合物的13C核磁共振波谱模拟分析化学,2001,29(8):936~940.
    [236]周鹏,周原,梅虎,等.原子电性作用矢量和杂化状态指数用于氨基酸核磁共振谱模拟.分析化学,2006,34(2):200~204.
    [237]仝建波,曾晖,张生万,等.膦类化合物核磁共振谱化学位移预测.分析化学,2006,34(7):1007~1010.
    [238]聂长明,姜赛红,林达,等.一种预测醇化学位移的新方法.波谱学杂志,2008,25(3):379-390.
    [239]宁永成.有机化合物结构鉴定与有机波谱学.北京:科学出版社,2000.
    [240]刘树深,夏之宁,余般梅,李志良.电距矢量及核磁共振碳谱化学位移模拟.波谱学杂志,1999,16(5):429~440.
    [241]常建华,董绮功.波谱原理及解析.北京:科学出版社,2003.
    [242]于德泉,杨峻山,谢晶曦.分析化学手册:核磁共振波谱分析.北京:化学工业出版社,1989.
    [243]Sadtler Standard Carbon-13 NMR Spectra. Sadtler Research Laboratories Division of Bio-Rad Laboratories, INC. Printed in the United States of America,1980.
    [244]李美萍,张生万,寇建仁,等.离子性指数、极化效应指数与醇13C NMR的关系.波谱学杂志,2005,22(2):173-179.
    [245]Roberts J D, Weigert F J, Reich H. Nuclear Magnetic Resonance Spectroscopy. Carbon-13 Chemical Shifts in Acyclic and Alicyclic Alcohols. J. Am. Chem. Soc.,1970,92(5):1338-1349.
    [246]Santiuste J M, Harangi J, Takacs J M. Mosaic Increments for Predicting the Gas Chromatographic Retention Data of the Chlorobenzenes. Journal of Chromatography A,2003,1002(1-2):155-168.
    [247]Ferreira Marcia M C. Polycyclic Aromatic Hydrocarbons:a QSPR Study. Chemosphere,2001,44(2):125-146.
    [248]Liu F P, Liang Y Z, Cao C Z, et al. QSPR Study of GC Retention Indices for Saturated Esters on Seven Stationary Phases Based on Novel Topological Indices. Talanta,2007,72(4):1307-1315.
    [249]Farkas O, Zenkevich I G, Stout F, et al. Prediction of Retention Indices for Identification of Fatty Acid Methyl Esters. Journal of Chromatography A,2008, 1198-1199:188-195.
    [250]Chen H F. Quantitative Predictions of Gas Chromatography Retention Indexes with Support Vector Machines, Radial Basis Neural Networks and Multiple Linear Regression. Analytica Chimica Acta,2008,609(1):24-36.
    [251]Li X R, Lan Z G, Liang Y Z. Analysis of Volatile Chemical Components of Radix Paeoniae Rubra by Gas Chromatography-mass Spectrometry and Chemometric Resolution. Journal of Central South University of Technology, 2007,14(1):57-61.
    [252]王宇,刘树深,赵劲松,等.电拓扑状态预测有机磷酸酯类化合物的气相色谱保留指数.化学学报,2006,64(10):1043~1050.
    [253]刘凤萍,梁逸曾,曹晨忠.拓扑-量子指数醛酮气相色谱保留指数及沸点的定量构效关系.分析化学,2007,35(2):227~232.
    [254]周丽平,夏之宁,李伯玉,等.多环芳烃分子结构的距边矢量表征及其气相色谱保留指数预测.色谱,2001,19(1):25~31.
    [255]Kang J J, Cao C Z, Li Z L. Quantitative Structure-retention Relationship Studies for Predicting the Gas Chromatography Retention Indices of Polycyclic Aromatic Hydrocarbons Quasi-length of Carbon Chain and Pseudo-conjugated System Surface. Journal of Chromatography A,1998,799:361-367.
    [256]李志斌.线性代数,北京:机械工业出版社,2006.
    [257]Lee M L, Novotny M V, Bartle K D. Analytical Chemistry of Polycyclic Aromatic Compounds. New York:AcVmdemic Press,1981.
    [258]邢其毅,裴伟伟,徐瑞秋,等.基础有机化学,第3版.北京:高等教育出版社,2005.
    [259]Needham D E, Wei I C, Seybold P G. Molecular Mounting of the Physical Properties of the Alcanes. Journal of American Chemical Society,1988,110: 4186-4194.
    [260]桂君民,郑继旺.促蛋白合成雄性类固醇的滥用.中国药物依赖性通报,1994,3(4):205~207.
    [261]International Olympic Committee, List of Doping Classes and Methods. International Olympic Committee, Lausanne,1976.
    [262]Incas SE. Current Perspectives on Anabolic Androgenic Steroid Abuse. TIPS, 1993,14:61-68.
    [263]Alvarez-Ginarte Y M, Marrero-Ponce Y, Ruiz-Garcia J A, et al. Applying Pattern Recognition Methods Plus Quantum and Physico-chemical Molecular Descriptors to Analyze the Anabolic Activity of Structurally Diverse Steroids. J. Comput. Chem.,2008,29:317-333.
    [264]http://www.instrument.com.cn/
    [265]Liu J, Yang T, Ladiwala A, et al. High Througput Determination and QSER Modeling of Displacer DC-50 Values for Lon Exchange Systems. Separation Science and Technology,2006,41(14):3079-3107.
    [266]Peyrat-Maillard M N. Determination of the Antioxidant Activity of Phenolic Compounds by Coulometric Detection. Talanta,2000,51:709-716.
    [267]Yang B. Oxidation Potentials of Flavonoids Determined by Flow-through Column Electrolysis. Electrochem.,2001,69:35-41.
    [268]Yang B. Studies on the Electrochemical Behavior of Quercetin and Kaempferol in Neutral Buffer Solution. Anal. Sci.,2001,17:987-989.
    [269]Mazzarino M, Cristina Bragano M, Donati F, et al. Effects of Propyphenazone and Other Non-steroidal Anti-inflammatory Agents on the Synthetic and Endogenous and Rogenic Anabolic Steroids Urinary Excretion and/or Instrumental Detection. Anal Chim Acta,2010,657:60-68.
    [270]O'Hagan D, Rzepa H S. Some Influences of Fluorine in Bioorganic Chemistry. Chem. Commun.,1997,7:645-652.
    [271]Shamsipur M, Siroueinejad A, Hemmateenejad B, et al. Cyclic voltammetric, computational, and Quantitative Structure-electrochemistry Relationship Studies of the Reduction of Several 9,10-anthraquinone Derivatives. J. Electroanal. Chem.,2007,600:345-358.
    [272]Krivenko A G, Kotkin A S, Kurmaz V A. Thermodynamic and Kinetic Characteristics of Intermediates of Electrode Reactions:Determination by Direct and Combined Electrochemical Methods. Russ. J. Electrochem.,2005, 41:122-136.
    [273]Hemmateenejad B, Yazdani M. QSPR Models for Half-wave Reduction Potential of Steroids:A Comparative Study between Feature Selection and Feature Extraction from Subsets of or Entire Set of Descriptors. Anal. Chim. Acta.,2009,634:27-35.
    [274]Hemmateenejad B, Shamsipur M. Quantitative Structure-electrochemistry Relationship Study of Some Organic Compounds Using PC-ANN and PCR. Internet Electron J. Mol. Des.,2004,3:316-334.
    [275]Dean JA. Lang's Handbook of chemistry. McGraw-Hill, Inc,1999.
    [276]Zuman Z. Substituent Effects in Organic Polarography. New York:Plenum Press,1967.
    [277]Hypercube Inc. http://www.hyper.com.
    [278]Todeschini R. Milano Chemometrics QSAR group, http://www.disat.unimib.it /vhm.
    [279]Lukovits I, Shaban A, Kalman E. Thiosemicarbazides and Thiosemicarbazones: Non-linear Quantitative Structure-efficiency Model of Corrosion Inhibition. Electrochim Acta,2005,50:4128-4133.
    [280]Guha R, Serra J R, Jurs PC. Generation of QSAR Sets with a Self-organizing Map. J. Mol. Graph. Model.,2004,23:1-14.
    [281]Ajmani S, Agrawal A, Kulkarni S A. A Comprehensive Structure-activity Analysis of Protein Kinase B-alpha (Aktl) Inhibitors. J. Mol. Graph. Model., 2010,28:683-694.
    [282]Wold S. PLS for Multivariate Linear Modeling, in:H. van de Waterbeemd (Ed.), QSAR-Chemometric Methods in Molecular Design, vol.2, Wiley-VCH, Weinheim, Germany,1995.
    [283]Goodarzi M, Duchowicz P R, Wu C H, et al. New Hybrid Genetic based Support Vector Regression as QSAR Approach for Analyzing Flavonoids-GABA Complexes. J. Chem. Inf. Model.,2009,49:1475-1485
    [284]Goodarzi M, Freitas M P, Wu C H, et al. pKa Modeling and Prediction of a Series of pH Indicators through Genetic Algorithm-least Square Support Vector Regression. Chemom. Intell. Lab. Sys.,2010,101:102-109.
    [285]Roy P P, Roy K. On Some Aspects of Variable Selection for Partial Least Squares Regression Models. QSAR Comb. Sci.,2008,27:302-313.
    [286]Golmohammadi H, Safdari M. Quantitative Structure-property Relationship Prediction of Gas-to-chlorofm Partition Coefficient Using Artificial Neural Network. Microchim. J.,2010,95:140-151.
    [287]Winkler D A. Network Models in Drug Discovery and Regenerative Medicine. Biotechnology Annual Review,2008,14(1):143-170.
    [288]Stojkovic G, Novic M, Kuzmanovski I. Counter-propagation Artificial Neural Networks as a Tool for Prediction of pKBH+ for Series of Amides. Chemom. Intell. Lab. Syst.,2010,102:123-129.
    [289]Wold S, Erikson L. Statistical Validation of QSAR Results. Validation Tools. In Chemometric Methods in Molecular Design, VCH Publisher:Weinhiem (Ger.), 1995.
    [290]Golbraikh A, Tropsha A. QSAR Modeling Using Chirality Descriptors Derived from Molecular Topology. J. Comput. Aided. Mol. Des.,2002,16:357-369.
    [291]Golbraikh A, Tropsha A. Beware of q2! J. Mol. Graphic. Model.,2002,20: 269-276.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700