用户名: 密码: 验证码:
胶粘物盘式热分散机理与能耗建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
废纸已成为我国主要的造纸原料,在废纸制浆造纸过程中胶粘物的处理与控制一直是国内外研究的热点,而作为主要技术手段的热分散技术的分散作用机理的研究则是一个难点。深入了解胶粘物热分散的机理,对降低热分散的能耗、提高废纸制浆热分散处理后的质量具有重要意大。另外,分散也是废纸制浆过程中的碎浆、浮选、打浆、热分散等工段的主要物理作用过程。因此,分散技术的研究与改进提高,有利于废纸造纸和循环利用,从而为实现造纸工业的循环经济提供技术支撑。
     本文针对盘式热分散,采用理论分析、可视化实验和数值模拟相结合的方法研究盘式热分散机内部浆料流场和胶粘物分散混合特性,主要研究胶粘物的分散特性、盘式热分散机工作原理及能耗、胶粘物剥蚀和破裂分散的过程与规律,浆料流场中的剪切作用和空化效应,以及不同结构和运行参数对浆料流场及热分散特性的影响。实验和数值计算所获得的数据与结论对于盘式热分散机的结构设计和优化具有较大的参考价值,本文虽然以热分散过程为主要研究对象,但其研究方法和理论同样适用于制浆造纸过程中其它浆料分散过程。本文的主要研究内容和及创造性成果如下:
     (1)对胶粘物在浆料流场中发生的分散历程,从理论上进行了定性分析。认为盘式热分散是对胶粘物的高剪切作用历程,并可描述为分散混合与分布混合两个主要阶段。
     (2)应用多相流理论,建立了胶粘物粒子受力的数学模型。把胶粘物粒子视为一种团聚体,分析出它在分散混合过程中所承受的各种作用力,从而得到胶粘物粒子受到的分散力Fc为:(?)
     (3)对胶粘物在盘式热分散机工作区域内的分散特性进行了分析,提出盘式胶粘物热分散的基本原理为:作为一种团聚体的胶粘物,在工作区域内因受浆料流场剪切和空化效应作用,会以破裂分散和剥蚀分散两种不同的方式发生分散,并形成不一样的分散效果;剥蚀分散在整个热分散过程中都存在,而破裂分散只有在分散力FC大于胶粘物的聚集强度σc,即Fc >σc时,胶粘物颗粒才会被破裂成多个小颗粒;长时间作用下,剥蚀分散可使胶粘物颗粒不断变小;引起胶粘物颗粒在盘式热分散工作区域内发生破裂分散和剥蚀分散的4种主要作用是破碎作用力、层流剪切力、湍流剪切力和空化效应。
     (4)对胶粘物粒子热分散的能耗进行了分析。以热分散磨片的磨齿作为固相,以高速流态化的纸浆作为液相,利用多相流理论,得出盘式热分散机的能耗为:(?)(5)研制了可模拟多工况情景、且动/静盘片间隙可调的可视化热分散实验装置,设计加工了透明热分散磨片。采用高速摄像技术,对胶粘物在纸浆中的热分散混合过程进行了实验研究。实验较清楚地记录下浆料和胶粘物的流变过程,证明了胶粘物在盘式热分散过程中的破碎与剥蚀分散原理;实验还观察到层流剪切、湍流剪切和空化现象。
     (6)经生产实验表明:虽然废纸浆中胶粘物粒径分布不匀,但经过热分散后,粒径分布会越来越集中,小粒径胶粘物不再变小,大粒径胶粘物的颗粒面积和数量变化最为强烈;盘齿间隙和盘径的大小都会影响到热分散效果,其中间隙的影响最为直接。
     (7)采用FLUENT软件,结合RNG k-ε湍流模型、Discrete Phase模型和Euler-Lagrange方法的颗粒轨道模型,对5种分散片方案下的胶粘物分散过程进行数值模拟,并与高速摄像实验测量结果进行对比,验证了计算模型的可靠性和准确性,并获得了实验手段所不能测量到的盘齿近壁区流场、胶粘物颗粒运动轨迹和压力梯度、湍动能量损失、剪切速率等参数。
     (8)对盘式热分散机内浆料的非定常湍流进行了数值模拟,从不同层面揭示了热分散区内的速度、静压、总压、湍动能、壁面剪切应力场和剪切速率分布规律;并从吸入流场的产生、压力场、速度场、剪切率、湍流强度与能量耗散率等方面分析了湍流场对胶粘物的分散作用与规律;揭示了热分散片结构和运行参数对胶粘物分散效果的影响。
     (9)实验测量和非定常数值计算结果表明,盘齿间隙和盘径是影响热分散效果的2个最明显的因素,随着盘齿间隙的减小或盘径增大,压力梯度和速度梯度均增大,引起热分散发生的湍流剪切、层流剪切、空化效应相应增强,导致热分散作用强度提高。
     (10)非定常数值计算结果还表明,①动盘齿槽内的压力远高于静盘齿槽,动/静盘齿间隙处的压力梯度,沿径向方向持续增大;②浆料经过动/静盘齿槽时,在径向和周向产生较大的压力梯度;③动静盘间形成的空化现象是胶粘物颗粒发生分散作用的一个重要原因;④湍流剪切主要发生在齿槽处,而层流剪切主要发生在动/静盘齿之间;⑤剪切率在整个工作区域是不同的,与半径大小相关,半径越大的地方,剪切率越大,同时存在动/静盘齿间的剪切率>动盘齿槽内的剪切率>静盘齿槽内的剪切率的现象。
In china, the waste paper has become the major paper-making raw materials at the present time. In the process of wastepaper pulping and papermaking, Treatment and control of stickies has always been a focus of investigation by worldwide researchers. But for the heat dispersion technology, a major means of dispersion technology, its dispersion mechanism is very difficult to understand deeply. It is of great significance for understanding of heat dispersion mechanism to reduce the energy consumption of heat dispersion, and improve the quality of waste paper pulp dealt by heat dispersion. On the other hand, the dispersion is also a major physical process and section during wastepaper pulping, such as pulping process, flotation, beating and heat dispersion process. Therefore, Investigation and improvement of dispersion technology is propitious to wastepaper pulping and recycling, and provide technical support for the realization of the paper industry recycling economy. As for disk heat dispersion, both internal slurry flow field and stickies dispersion mixing characteristics are investigated through theoretical analysis, visualization experiments and numerical simulations in this project. The main research content include the rheological properties of stickies, working principle and energy consumption of disc heat disperser, process and disciplinarian of stickies erosion and ruptuer dispersion, shear and cavitation in pulp flow field, and the effects of various structure parameters and operating parameters wake on pulp flow field and heat dispersion characteristics are also analyzed. The data and conclusions from the experimental measurements and numerical simulations are valuable for the design and optimization of the disk heat disperser. Although the heat dispersion process is treat as the main object, its research method and theory can apply equally to other pulp dispersion workshop section of pulping and papermaking process. Main contents and conclusions of the investigation are described in the following:
     (1)The very possibility of stickies dispersion process occurred in pulp flow field is analized theoretically. Analysis results show that high shearing process occurred in disc stickies heat dispersion can be described as two main two main phases, namely dispersion mixing and distribution mixing.
     (2)With the help of multi-phase flow theory, amathematical model stickies particle force is established. As a kind of aggregates, various forces received by stickies particle in the course of dispersion mixing are analyzed. When all of these forces are treated as dispersion force Fc, it can be described Fc as follows :(?)(3)The stickies dispersion characteristics occurred in the working region of Disc heat disperser is analyzed theoretically, and the basic principles of disc type stickies heat dispersion is put forward. It can be described as follows: As a type of aggregate, the stickies dispersion occur in two different way of rupture and erosion under the action of both shear and cavitation inside working region. Two different dispersion way will result in unlike dispersion effect. Erosion dispersion occurs in the whole course of heat dispersion, but rupture dispersion occurs only when dispersion force Fc is more than gathered strength of stickiesσc, namely Fc>σc. When Fc>σc, stickies particles will be broken into multiple smaller particles. under long time action, erosion dispersion changs constantly stickies particle into smaller. The cause of stickies heat dispersion within working region, which occurs in two way of rupture and erosion, is 4 major role. Thry are crushing force, laminar shear stress, turbulent shear stress and cavitation effect respectively.
     (4)Energy consumption of stickies particle heat dispersion is analyzed When heat dispersion grinding teeth is treated as a solid phase, and high speed fluidization pulpas liquid phase, with the help of multi-phase flow theory, the energy consumption model of disc heat disperser is obtained as fellow: (?)
     (5) A set of visualization experiment device is designed and manufactured, which can simulate multiple loading conditions, and its clearance of static and dynamic disk can be adjusted. According to the visualization experimental conditions, a set of transparent heat dispersion disk is also specially designed and manufactured. Using high-speed photography technology, several experiments of stickies heat dispersion mixed process in pulp are carried out. Both pulp and stickies movement process in disc heat disperser is recorded distinctly. Experimental results has proved that rupture and erosion dispersion principle put forward by this dissertation is fit for stickies dispersion occured in disc heat disperser. Experimental results has also recorded laminar shear, turbulent shear and cavitation phenomenon.
     (6) The industry experiments show that although particle size distribution of waste pulp stickies is irregularity, after heat dispersion disposal, particle size distribution will be increasingly concentrated, and small size stickies becomes smaller not any longer, but both surface and quantity of large size stickies particle will change in strong degree. experiments also show that both gap size of grinding teeth and disk dismeter will affect the heat dispersion effect, and the gap influence on stickies disersion is the most direct.
     (7)Combining with RNG k-εturbulence model, Discrete Phase model and particle trajectory model based on Euler-Lagrange method, a series of numerical simulations of stickies dispersion process with FLUENT software are carried out for five types of dispersion disk. The simulations are also compared with the experimental results obtained by high speed photography to validate the reliability of the computational model. The emphases of the numerical simulation are to investigate the flow field near the grinding teeth wall surface, stickies particles trajectories and pressure gradient, turbulence energy loss, shear rate and so on which cannot be got in the experimental measurements.
     (8)The unsteady pulp turbulent flow field inside disc heat disperser are performed by numerical simulation. Simulation results has revealed some distribution rule of physics parameters from different levels, such as velocity, static pressure, total pressure, turbulent kinetic energy, wall shear stress and shear rates distribution. At the same time, the effects of turbulent flow field wake on stickies dispersion and its rule also analyzed from aspect of inhalation flow field, pressure field, velocity field, shear rate, turbulent intensity and energy dissipation rate and so on. Analysis results has revealed the effects of heat dispersion disk structure parameters and operating parameters wake on stickies dispersion performance.
     (9)The results of the experimental measurements and the unsteady numerical simulations indicate that both gap size of grinding teeth and disk dismeter are two most obvious factors affecting stickies heat dispersion effect. With the teeth gap reducing or disk diameter increasing, both pressure gradient and velocity gradient will aggrandize. Correspondingly, turbulent shear, laminar shear and cavitation effect, which arouse stickies heat dispersion, will enhance, and will lead to the effect strength of heat dispersion increasing.
     (10)The results of unsteady numerical simulations also show that:①The pressure inside dynamic teeth channel is far higher than the static teeth channel, and the pressure gradient in the clearance static and dynamic grinding teeth increase continuously along radial direction.②When pulp flows through both static and dynamic teeth channel, a greater pressure gradient will occur along with radial and circumferential direction.③The cavitation phenomenon forming between the gap of static and dynamic disk is one of the important reasons of stickies particle dispersion.④turbulent shear occur mainly in teeth channel, but laminar shear occur mainly in the gap of static and dynamic grinding teeth.⑤The shear rate is various around the whole dispersion region. the bigger the radius, the greater the shear rate. This phenomenon of shearing rate distribution lies in all of the above five types of dispersion disk, namely, the shear rate between the gap of static and dynamic disk> the shear rate in the dynamic teeth channel>the shear rate in the staticdynamic teeth channel.
引文
[1]杨懋暹. 2020年中国造纸工业发展预测[J].中华纸业, 2010, 31(3):8~12
    [2]顾民达.中国造纸工业发展成就及存在问题[J].中华纸业, 2009, 30(3):75~79
    [3] Marko P. Hekkert, Louis A. J. Joosten, Ernst Worrell. Analysis of the paper and wood flow in The Netherlands [J]. Resources Conservation & Recycling, 2000 30(1):29~48
    [4]刘文英,陆根法,毕军,等.我国造纸业发展循环经济构想[J].中国人口?资源与环境, 2004, 14(5):108~111
    [5] [5]刘雷,高省,崔兆杰.制浆造纸循环经济产业链生态稳定性评价[J].中国造纸, 2009, 28(10):45~49
    [6]沈静.世界各国废纸回用概况[J].造纸化学品, 2004, (5):55~56
    [7]卢振华,高玉杰.废纸再生前景展望[J].天津造纸, 2009, (4):26~28
    [8]高玉杰.废纸再生实用技术[M].北京:化学工业出版社, 2003
    [9]牟洪燕.废新闻纸回用过程中阴离子杂质的溶出机制与生物处理研究[D].山东轻工业学院硕士学位论文,济南:山东轻工业学院, 2007
    [10]王秀英.废纸回收利用技术的现状与未来发展方向探讨[J].林业科技情报, 2006, 38(3):110~111
    [11] Sun G.Q., Deng Y.L.. Flotation deinking of old newspaper(ONP) using poly (Diallydimethylammonium chloride)as a single deinking agent[J].Progress in Paper Recycling, 2007, 16(3):32~38
    [12] Mahendra R.D., Jeffrey M.D.. Various approaches to sticks classification[J]. Progress in Paper Recycling, 2007, 16(4):44~48
    [13]李学凤.废新闻纸回用过程中产生的溶解与胶体物质的研究[D].山东轻工业学院硕士学位论文,济南:山东轻工业学院, 2008
    [14]孔洁,王桂荣,王燕蓬.我国废纸回收利用现状及发展前景分析[J].上海造纸, 2009, 40(1):55~59
    [15]顾民达.废纸制浆工艺与技术装备的发展[J].中华纸业, 2009, 30(17):17~22
    [16] Zhang H.J.,He Z.B.,Ni Y.H.,et al.Characteristics of dissolved and colloidal substances in high yield pulp and their impact on filler retention[J].Appita Journal, 2007, 60(5):390~395
    [17]张茵.加大废纸资源的回收利用,实现造纸业可持续发展[J].中华纸业, 2009, 30(19):62~64
    [18]陈嘉翔.废纸回用时发生胶粘物问题的来龙去脉[J].中华纸业, 2003, 24(19):53~56
    [19]李宗全.二次纤维回用过程中胶粘物沉积机理及其控制的研究[D].华南理工大学博士学位论文,广州:华南理工大学, 2005
    [20] Allen, Lawrenee H. Deposition synergy between mechanical and deinked pulps[J]. TAPPI Technology Summit, 2002:485~496
    [21]孙萍萍,秦梦华,傅英娟.关于废纸制浆存在的几个问题[J].上海造纸, 2008, 39(5):10~14
    [43] Geistbeck M. and Wiese H.. Abscheidung von stickies in der flotation[J]. Wochenblatt fur Papier fabrication[J]. 1997, 125(16):733
    [44] Kemper M.. State-of-the-art and new technologies in flotation deinking[J]. Int. J. Mineral Processing. 1999, 56:317~333
    [45]郭秀强.混合办公废纸浆浮选过程对油墨与胶粘物去除效果的研究[D].华南理工大学硕士学位论文,广州:华南理工大学, 2007
    [46] Marguerite S. Sykes, John H. Klungness. Enzymatic removal of stickies contaminants[R]. Tappi Proceedings, pulping conference 1997:687-691
    [47] R. A Stratton. The surface chemistry of flotation of stickies and laser-printed inks[J]. Journal of Pulp and Paper science. 1992, 18(6):221-224
    [48] Altaf H. Basta,詹怀宇,何北海等.新闻纸厂循环用水净化效率的分析[J].中国造纸, 2003, 22(11):1~7
    [49]郭秀强,武书彬,易志伟.浮选脱墨对办公废纸浆胶粘物去除效果的初步评价[J].造纸科学与技术, 2006, 25(6):38~40
    [50] Heise O.U., Kemper M. and Wise H. et al. Removal of residual stickies at Haindl Paper using new flotation technology[J]. Tappi J. 2000, 83(3):73~79
    [51]陈嘉翔.浮选柱在纸板厂用于脱除胶粘物和蜡的试验与应用效果[J].中华纸业, 2009, (18):78~80
    [52] L.H.Allen and M.Douek. Effectiveness of talc for pitch control in kraft pulp manufacture[J]. JPPS, 1993, 19(3):131~136
    [53] M.Douek and L.H.Allen. Some aspects of pitch control with talc in unbleached kraft pulps[J]. JPPS, 1991, 17(5):171~177
    [54] K.A.Hamilton and J.A.Lloyd. Measuring the effectiveness of talc for pitch control[J]. Appita, 1984, 37(9):733~740
    [55] L.H.Allen, W.A.Cavanagh, J.E.Holton et al. New understanding of talc addition may help improve control of pitch[J]. Pulp & paper 1993, 67(3):89~90
    [56] Williams,G.R. Physical chemistry of the adsorption of talc,clay and other additives on the surface of sticky contaminants[C]. Tappi pulping conference, 1987:585~596
    [57] Wilhelm D.K., Makris S.P., Banerjee S. Signature of recalcitrant stickies in recycled manufaeture Journal of Pulp and Paper science. 1993, 19(3):131-136
    [58] Biza P. Talc-A modern solution for pitch and stickies control[J]. Paper Technology, 2001, 42(3):22~24
    [59]何凤鸣,童建平.滑石粉——解决树脂和胶粘物的新办法[J].西南造纸,2002,(5)29~31
    [60]张世民,张志刚.采用滑石粉控制脱墨废纸浆中胶黏物[J].纸和造纸, 2008, 27(6):11~13
    [61] Carey W S; Doherty E A S; Sarraf J T, et al. Aqueous slurry composition, useful to inhibit deposition of organic contaminants in pulp and papermaking systems, comprises clay/clay-like material e.g. talc, and hydrophobically associative polymer e.g. modified
    [43] Geistbeck M. and Wiese H.. Abscheidung von stickies in der flotation[J]. Wochenblatt fur Papier fabrication[J]. 1997, 125(16):733
    [44] Kemper M.. State-of-the-art and new technologies in flotation deinking[J]. Int. J. Mineral Processing. 1999, 56:317~333
    [45]郭秀强.混合办公废纸浆浮选过程对油墨与胶粘物去除效果的研究[D].华南理工大学硕士学位论文,广州:华南理工大学, 2007
    [46] Marguerite S. Sykes, John H. Klungness. Enzymatic removal of stickies contaminants[R]. Tappi Proceedings, pulping conference 1997:687-691
    [47] R. A Stratton. The surface chemistry of flotation of stickies and laser-printed inks[J]. Journal of Pulp and Paper science. 1992, 18(6):221-224
    [48] Altaf H. Basta,詹怀宇,何北海等.新闻纸厂循环用水净化效率的分析[J].中国造纸, 2003, 22(11):1~7
    [49]郭秀强,武书彬,易志伟.浮选脱墨对办公废纸浆胶粘物去除效果的初步评价[J].造纸科学与技术, 2006, 25(6):38~40
    [50] Heise O.U., Kemper M. and Wise H. et al. Removal of residual stickies at Haindl Paper using new flotation technology[J]. Tappi J. 2000, 83(3):73~79
    [51]陈嘉翔.浮选柱在纸板厂用于脱除胶粘物和蜡的试验与应用效果[J].中华纸业, 2009, (18):78~80
    [52] L.H.Allen and M.Douek. Effectiveness of talc for pitch control in kraft pulp manufacture[J]. JPPS, 1993, 19(3):131~136
    [53] M.Douek and L.H.Allen. Some aspects of pitch control with talc in unbleached kraft pulps[J]. JPPS, 1991, 17(5):171~177
    [54] K.A.Hamilton and J.A.Lloyd. Measuring the effectiveness of talc for pitch control[J]. Appita, 1984, 37(9):733~740
    [55] L.H.Allen, W.A.Cavanagh, J.E.Holton et al. New understanding of talc addition may help improve control of pitch[J]. Pulp & paper 1993, 67(3):89~90
    [56] Williams,G.R. Physical chemistry of the adsorption of talc,clay and other additives on the surface of sticky contaminants[C]. Tappi pulping conference, 1987:585~596
    [57] Wilhelm D.K., Makris S.P., Banerjee S. Signature of recalcitrant stickies in recycled manufaeture Journal of Pulp and Paper science. 1993, 19(3):131-136
    [58] Biza P. Talc-A modern solution for pitch and stickies control[J]. Paper Technology, 2001, 42(3):22~24
    [59]何凤鸣,童建平.滑石粉——解决树脂和胶粘物的新办法[J].西南造纸,2002,(5)29~31
    [60]张世民,张志刚.采用滑石粉控制脱墨废纸浆中胶黏物[J].纸和造纸, 2008, 27(6):11~13
    [61] Carey W S; Doherty E A S; Sarraf J T, et al. Aqueous slurry composition, useful to inhibit deposition of organic contaminants in pulp and papermaking systems, comprises clay/clay-like material e.g. talc, and hydrophobically associative polymer e.g. modifiedcellulose ether[P]. US2009229775-A1; WO2009117073-A1, 2009
    [62] Benecke, F; Gantenbein, D; Schoelkopf, J, et al. Organic contaminants in recycled paper: a model study of the adsorbent properties of talc for idealised component suspensions[J]. NORDIC PULP & PAPER RESEARCH JOURNAL, 2009, 24(2):219~224
    [63] Reynolds, J.; Yordan, J. Laboratory and mill experiences with a novel talc for deposit control of pulps rich in anionic trash[C]. 88th Annual Meeting Preprints `B', 2002, B53-6 vol.2|3 vol.(312+202+188)
    [64] Yordan, JL; Maat, P. Application of new analytical tools to determine efficiency of talc as a pitch stickies control agent [C]. 1997 RECYCLING SYMPOSIUM, 1997, pp. 361-366
    [65] Ruszynski P; Armstrong J R. Minimising particle deposits on machines during paper making processes|by adding talc and bentonite to processes to retain deposits on fibre means[P] CA2205277-A; US5798023-A
    [66]魏林.滑石粉对重金属离子的吸附性研究[D].长安大学硕士学位论文,西安:长安大学, 2008
    [67]周林杰.新闻纸废纸浆微胶粘物固定剂的作用行为研究[D].天津科技大学硕士学位论文,天津:天津科技大学, 2006
    [68]张春辉.新闻纸厂过程水中溶胶物质的表征及其稳定性和酶法控制的研究[D].华南理工大学博士学位论文,广州:华南理工大学, 2008
    [69] Glazer J.A. Overview of deposit control[J]. Tappi J. 1991, 74(7):72~74
    [70] Caulkins D and Wildman J. Changes in paper process causing problems in controlling deposits[J]. Pulp and Paper, 1988, 62(6):89~93
    [71] Shetty C.S., Greer C.S. and Laubach G.D. A likely mechanism for pitch deposition control[J]. Tappi J. 1994, 77(10):91~96
    [72] Hubbe M A, Rojas Orlando J, Venditti R A. Control of tacky deposits on paper machines-a review[J]. Nordic Pulp and Paper Research Journal, 2006, 21(2):154
    [73] Karl~Erich Jaeger and Manfred T. Reetz. Microbial lipases form versatile tools for biotechnology[J]. Trends in Biotechnology, 1998, 16(9):396~403
    [74] Kallioinen A., Vaari A., Ratto M., et al. Effects of bacterial treatments on wood extractives[J]. Journal of Biotechnology, 2003, 103(1):67~76
    [75] Chen S., Lin Y, Zhang Y, et al. Enzymatic pitch control at Nanping Paper Mill[J]. Tappi Journal, 2001, 84(4):44~47
    [76] Marie~Josee Rocheleau, B.B.Sithole and L.H.Allen et al. Fungal treatment of aspen for wood resin reduction: effect on aged aspen wood chips at room temperature and at 5℃[J]. Holzforschung, 1999, 53(1):16~20
    [77] Fitzhenry J.W., Hoekstra P.M., Glover D. Enzymatic Stickies Control in MOW, OCC and ONP Furnishes[C]. TAPPI Pulping Conference, Boston, MA, United States: TAPPI Press, 2000:985~988
    [78] Covarrubias, R.M.; Jones, D. Optimyze - enzymatic stickies control developments [C] 91st Annual Meeting Preprints-Book A, Canada, 2005:107~116
    [79] Maria Jose martinez-inigo, Peter lmmerzeel, Ana Gutierrez et al. Biodegradability of extractives in sapwood and heartwood from scots pine by sapstain and white rot fungi[J]. Holzforschung, 1999, 53(3):247~252
    [80] Gutierrez A., Del Rio J.C., Martinez M.J., et al. Fungal degradation of lipophilic extractives in Eucalyptus globulus wood[J]. Applied and Environmental Microbiology, 1999, 65(4):1367~1371
    [81] Blanco, A; Negro, C; Diaz, L, et al. Influence of thermostable lipase treatment of thermomechanical pulp (TMP) on extractives and paper properties[J]. APPITA Journal, 2009, 62(2):113~117
    [82] MacNeil D, Sarja T, Reunanen M, et al. Analysis of stickies in deinked pulp. Part I: Methods for extraction and analysis of stickies[J]. Professional papermaking, 2006, 1: 10
    [83] Ben Y, Dorris G. Deinkability of fresh and aged uncoated groundwood papers. part II: accelerated aging of SCC papers[J]. Progress in paper recycling, 2006, 16(1): 24
    [84]曾细玲,付时雨,俞霁川,李坤,詹怀宇,李小红.生物酶降解纸浆中胶黏物的研究[J].中国造纸, 2009, 28(2):1~4
    [85]张素风,党瑞春.再生纤维热分散系统的性能比较[J].中华纸业, 2005, 26(11):52~54
    [86]侯彦召.胶粘物的定义及其测试方法[J].国际造纸, 2005, 21(4):24~24
    [87]金立忠,刑义东,张精卫.生产新闻纸的废纸处理中分散与搓揉[J].湖南造纸, 2007, (3):12~14
    [88]王国焰,黄建良.双辊热分散系统的开发和应用[J].中国造纸, 2005, 24(6):67~68
    [89]王英.揉搓系统在废纸尘埃去除及胶粘物分散过程中的应用[J].轻工机械, 2009, (3):71~73
    [90]韩志诚,叶伟敏.缓压型免蒸汽、低温热分散机的应用[J].上海造纸, 2002, 33(1):20~27
    [91]赵黎.盘式热分散机的结构原理与应用[J].中国造纸, 2008, 27(10):55~57
    [92]赵黎,董科.盘式热分散机及其系统的开发和应用[J].林业机械与木工设备, 2005, 33(7):15~17
    [93]克瓦纳纸浆设备公司.采用“紧凑热分散”改进回收纤维[J].国际造纸, 19(2):44~48
    [94]马丽,陆洪涛.热分散在废纸制浆系统中的应用[J].中华纸业, 2002, 23(1):39~41
    [95]张浚南.我国造纸工业装备发展概况[J].中国造纸,2 005, 24(8):57~61
    [96]梁钱华.造纸高浓锥形磨浆机的研究与设计[D].陕西科技大学硕士学位论文,西安:陕西科技大学, 2008
    [97]董继先,梁钱华.高浓锥形磨浆机浓度控制系统的研究[J].中国造纸, 2007, 26(7):27~30
    [98]胡菊华.废纸处理及热分散系统在废纸脱墨中作用的探讨[J].湖南造纸, 1996, (3):8~11
    [99]陈港,邹吉超,毕雪峰,余剑梅.废纸脱墨浆的热分散处理和高浓H2O2漂白[J].中国造纸学报, 1997, (12):35~39
    [100]陈嘉翔.国际上对废纸回用时发生胶粘物问题的研究成果和目前的研究方向[J].造纸化学品, 2004, (1):1~4,12
    [101]方辉.同向双螺杆捏合盘混炼段混合性能与接枝反应挤出关系的研究[D].北京:北京化工大学博士学位论文, 2007:13~14
    [102] Dabdi B.Tod, Plastics Compeunding Equipment and Poreessing[M]. Hnaser Publisher, Munihc, 1998
    [103] Z. Atdmor, C. G. Ggogos. Principles of polymer porcessing[M]. John Wiley & Snos Publishers, NEWYORK
    [104]耿孝正.啮合同向双螺杆挤出机在聚合物-聚合物混合(制备共混物和合金)中的应用[J].中国塑料, 1999, 13(12):63~66
    [105]杨海波.啮合同向双螺杆挤出机分散混合性能的数值模拟研究[D].北京:北京化工大学博士学位论文, 2006:5~6
    [106]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社, 2001
    [107]毕超.往复式单螺杆销钉挤出机设计原理及混炼机理研究[D].北京:北京化工大学博士学位论文, 2008:43~46
    [108] Wong T H, Manas-Zloczower I. Two-dimensional dynamic study of the distributive mixing in an internal mixer[J]. International Polymer Processing, 1994, 9:3~10
    [109] Yang H H, Manas-Zloczower I. Analysis of mixing performance in a VIC mixer[J]. International Polymer Processing, 1994, 9:291~302
    [110] Anonymous. POLYSTAT 3.10 User's Guide[R]. Lebanon: Fluent Inc., 2003
    [111] Bolen, W.R., and Cowell, R.E. Intensive mixing[J]. SPE Journal, 1958, 14(8):24~28
    [112] Syang-Peng Rwei, Manas-Zloczower I, Feke D L. Analysis of dispersion of carbon black in polymeric melts and its effect on compound properties[J]. Polymer Engng Sci, 1992, 32(2): 130~135
    [113] Syang-Peng Rwei, Manas-Zloczower I, Feke D L. Observation of carbon black agglomerates dispersion in simple shear flow[J]. Polymer Engineering Science. 1990, 30(12): 701~706
    [114] Syang-Peng Rwei, Manas-Zloczower I, Feke D L. Characterization of agglomerate dispersion by erosion in simple shear flows[J]. Polymer Engineering Science. 1991, 31(8): 558~562
    [115]邵雷霆.剪切取向下粘性聚合物系中团聚体分散的研究[D].杭州:浙江大学硕士学位论文, 2005:13~16
    [116] Adler, P M., Mills, P. M., Motion and rupture of a porous sphere in a linear flow field[J]. J. Rheol, 1979, 23(1): 25~37
    [117] Bohin, F., Manas-Zloczower, I. Kinetics of dispersion for sparse agglomerates in simple shear flows: Application to silica agglomerates in silicone polymers[J]. ChemicalEngineering Science, 1996, 51(23):5193~5204
    [118] Bohin, F., Manas-Zloczower, L, Determination of the infiltration kinetics of polymer into filter agglomerates using transient buoyancy measurements[J]. Powder Technology, 1995, 83(2):159~168
    [119]张海燕.转子连续混炼机转子结构的优化及混炼机理的研究[D].北京:北京化工大学硕士学位论文, 2009:22~23
    [120] I. Manas-Zloczower, Z. Tadmor. Mixing compounding of polymer[M]. Munich Vienna, New York. 1994
    [121]刘慧.四棱VCMT同步转子密炼机混炼机理及实验研究[D].青岛:青岛科技大学硕士学位论文, 2006:14~16
    [122]徐凯,高友生.基于剪切原理的湿法粉碎设备机理研究[J].轻工机械, 2003, (3):21~23
    [123] Robert J. Mcdonough. Mixing for the Process Industries[M]. New York:Van Nostrand Reinhold, 1992
    [124]张勇.新型高剪切均质机的理论分析与设计[D].南京:东南大学硕士学位论文, 2006:10~24
    [125]曾程.锂离子电池浆料高效超细分散装备技术研究[D].南京:东南大学硕士学位论文, 2009:15~26
    [126]赵学端,廖其奠.粘性流体动力学[M].北京:机械工业出版社,1981
    [127]孙锦.基于高速剪切原理的重油乳化技术研究[D].南京:东南大学硕士学位论文, 2008:24~28
    [128]陈品磊,张裕中.高剪切分散装置内空化效应的研究[J].轻工机械, 2009, 27(6):22~25
    [129] Brennen C E. Cavitation and bubble dynamics[M]. New York: Oxford University Press, 1995
    [130] Singhal A K, Vaidya N, Leonard A D. Multi-dimensional simulation of cavitating model of flow using a PDF model for phase change[C]. Vancouver, Canada: ASME FED Meeting, 1997
    [131]刘宇陆.非定常高阶Taylor剪切分散理论[J].水动力学研究与进展,A辑,12(3):372~378
    [132]周海英,雷军,李代叙,申开智.强剪切分散混炼器对聚丙烯流变行为的影响[J].中国塑料,2006,20(7):65~68
    [133]王红杰,吴大鸣,刘颖,张蕾,段雪.载体树脂、分散剂及剪切速率对纳米粉体在高聚物中的分散效果的影响[J].塑料工业,2001,29(6):34~35,39
    [134] L. Xie,C. D. Rielly,W. Eagles, and G. ?zcan-Taskin. Dispersion of nano-particle clusters using mixed flow and high shear impellers in stirred tanks[J]. Trans IChemE,Part A,Chemical Engineering Research and Design,2007,85(A5):676~684
    [135] Yongjin Li,Hiroshi Shimizu. High-shear processing induced homogenous dispersionof pristine multiwalled carbon nanotubes in a thermoplastic elastomer[J]. Polymer,2007,48:2203~2207
    [136] A. B. D. Brown,A. R. Rennie. Images of shear-induced phase separation in a dispersion of hard nanoscale discs[J]. Chemical Engineering Science 2001 ,56:2999~3004
    [137] Calabrese R V,Francis M K,Mishra V P. Measurement and Analysis of Drop Size in a Batch Rotor-Stator Mixer[A]. Derksen J J.10 th European Conference on Mixing[C]. New York: Elsevier Science, 2000, 149~156
    [138] Maa Y F,Hsu C. Liquid-Liquid Emulsification by Rotor/Stator Homogenization[J]. J.Controlled Release, 1996, 38(2/3):219~228
    [139]袁场.剪切型搅拌罐流场分析与结构优化研究[D].南京:东南大学硕士学位论文,2009:3~4
    [140] Myers K J,Reeder M F,Ryan D. Power Draw of a High-shear Homogenizer[J]. Can. J. Chem. Eng, 2001, 79(1):94~99
    [141]陈品磊,张裕中.高剪切分散装置内空化效应的研究[J].轻工机械, 2009, 27(6):22~25
    [142] Doucet L,Ascanio G A,Tanguy P A. Hydrodynamics Characterization of Rotor-Stator Mixer with Viscous Fluids[J]. Chem. Eng. Res. Des., 2005, 83(10):1186~1195
    [143] Padron G A. Measurement and Comparison of Power Draw in Batch Rotor-Stator Mixer[D]. Maryland:University of Maryland, 2001:38~52
    [144]扬造豪.废纸浆的热分散机理和热分散机的应用[J].上海造纸2001, (6) :11-19
    [145]李丽勤.高速摄像目标提取跟踪系统研究与应用[D].北京:中国农业大学博士学位论文, 2004
    [146]陈飞.基于数字图像处理的气液两相流流型智能识别方法[D].东北电力大学硕士学位论文, 2008
    [147]阮秋琦.数字图像处理学[M].北京:电子工业出版社, 2001:325~328
    [148]承子微.燃料乙醇生产用玉米秸秆等超大量湿法粉碎技术研究[D].南京:东南大学硕士学位论文,2008:31~32
    [149]邓晓明.用剪切方法提高纺织用淀粉浆料综合性能的研究[D].无锡:江南大学, 2005
    [150] R.N.Parthasarathy.Analysis of the turbulent boundary layer on a rotating disk[J]. Microsystem Technolgies, 2002, 8:238~241
    [151] Ulrch Teipel(张少波译).废炸药的乳化预处理技术[J].化工装备技术, 1993, 14(4):50~52
    [152] A.W.Pacek, M.Baker, A.T.Utomo. Characterisation of flow pattern in a rotor-stator high shear mixer[R]. Copenhagen:Proceedings of European Congress of Chemical Engineer, 2007, 9:1~16
    [153] A.R.Khopkar,L.Fradette,P.A.Tanguy.Hydrodynamics of a dual shaft mixer with newtonian and non-newtonian fluids[J]. Chem.Eng.Res.Des., 2007, 85(6):863~871
    [154] A.T.Utomo,M Baker,A.W.Pacek.The effectof stator geometry on the flow pattern and energy dissipation rate in a rotor-stator mixer.Doi:10.1016/j.cherd.2008.12.011
    [155]袁场.剪切型搅拌罐流场分析与结构优化研究[D].南京:东南大学硕士学位论文,2009:10~15
    [156]王习魁,张裕中.射流撞击粉碎原理及其关键技术[J].轻工机械, 2004, (4):32~34
    [157]董志勇.射流力学[M].北京:科学出版社, 2005:11~81
    [158] (苏)耶.伊.加尔林斯卡娅,阿德.别祖傅夫合著.超声波及其在食品工业中的应用[M].轻工业部科学研究设计院食品所译,轻工业出版社, 1960
    [159]朱美玲,颜景平,刘志宏.机械法制备超细粉机理和能耗理论研究[J].东南大学学报, 1994, 24(4):1~7
    [160] Yakhot V., Orszag S.A. Renormalization group analysis of turbulence: basic theory[J]. J. Scient. Comput., 1986, 1:3~11
    [161] Yakhot V., Orszag S.A., Thangam S., Speziale C. G., Gatski T. B. Development of turbulence models for shear flows by a double expansion technique[J]. Phys. Fluids A, 1992, 4(7):1510~1520
    [162] Launder B. E., Spalding D. B .The numerical computation of turbulent flows[J]. Comp. Meth. Appl. Mech. Eng., 1974, 3:269~289
    [163]江帆,黄鹏. Fluent高级应用与实例分析[M].北京:清华大学出版社, 2008
    [164] FLUENT6.3 Documentation:User guide[Z]. FLUENT Inc, 2006
    [165]琚选择.除油水力旋流器三维数值模拟研究[D].北京:中国石油大学硕士学位论文, 2008:34~36
    [166]袁场.剪切型搅拌罐流场分析与结构优化研究[D].南京:东南大学硕士学位论文, 2009:28~29
    [167] Launder B E,Spalding D B.The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3:269-289
    [168] Kim S E, Choudhury D.A. Near-wall treatment using wall functions sensitized to pressure gradient[J]. ASME FED Separated and Complex Flow, 1995, 217:273-380.
    [169]田溪岩.薄板坯漏斗形结晶器内电磁连铸过程的数值模拟研究[D].沈阳:东北大学博士学位论文, 2010:28~29
    [170]陶文锉.数值传热学(第2版)[M].西安:西安交通大学出版社, 2001
    [171] Patankar S.V.,Spalding D.B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. Int. J. Heat Mass Transfer, 1972, 15:1787~1806
    [172] Patankar S.V. Numerical heat transfer and fluid flow[M]. New York: McGraw-Hill, 1980:131~134
    [173] Van Doormal J P, Raithby G G. Enhancement of the SIMPLE method for predicting incompressible fluid flows[J]. Numerical Heat Transfer, 1984, 7:147~163
    [174] Issa R I. Solution of the implicitly discretised fluid flow equations by operator-spliting[J]. Comput. Phys., 1986, 62:40~65
    [175]琚选择.除油水力旋流器三维数值模拟研究[D].北京:中国石油大学硕士学位论文, 2008:69~70
    [176]姜雪梅,董守平,张红光等. W/O乳化液分散相液滴破裂的临界条件[J].科技导报, 2007, 25(5):63-65
    [177]张玲玲.叶类物料湿法微细粉碎技术研究[D].南京:东南大学硕士学位论文, 2008:54~57
    [178] Bird,R.B., E.N.Lightfoot, and W.E.Stewart. Transport phenomena[M] .Marcel Dekker, New York, 1960
    [179] H.E.Turner, H.E.Mccarthy. A fundamental analysis of slurry grinding[J]. A. I. Ch. E. Journal, 1996, July 784~789
    [180] Yuh-fun Maa, Chung C. Hsu. Effect of high shear on proteins[J]. Biotechnology and bioengineering, 1996, 51:458~465
    [181] W.Hanselmann, E.Windhab. Flow characteristics and modeling of foam generation in a continuous rotor/stator mixer[J]. Journal of food engineering, 1999, 38:393~405

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700