用户名: 密码: 验证码:
木薯茎秆作为生物质能原料的化学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木薯茎秆是加工固体颗粒燃料和燃料乙醇等多用途的生物质原料。本试验在我国木薯主产区进行生产田取样和正交设计大田试验,研究木薯茎薯比、直燃利用的原料特性(简称燃料特性)及非结构性糖含量随地点、品种及收获时间的变化规律,探讨木薯茎秆资源量评估的方法及其原料品质分级指标,为木薯茎秆利用的工艺设计和产业发展提供理论依据。试验结果如下:
     (1)鲜基的茎薯比(茎秆产量/块根产量)均值为0.63,其95%置信度的区间为0.56-0.70。主栽品种华南205的茎薯比均值为0.58,置信区间为0.52-0.64。茎薯比受生长环境和品种及其交互作用的影响。块根收获指数折茎薯比的折算系数也受生长环境和品种的影响。利用折算系数A'将查阅文献获得的收获指数折为茎薯比的方法可行,当收获指数为0.55-0.63时,可用系数A(0.89-1.1)折算为茎薯比。收获指数与茎薯比呈显著负相关。
     (2)地点因素对木薯茎秆燃料特性(热值(GCV)、去灰分热值(GCVaf)、灰分、N、S、Cl、P、K和Mg含量)的影响最大,品种的影响次之,收获时间的影响最小。茎秆Ca含量受品种的影响最大。偏最小二乘判别分析(PLS-DA)对地点判别的结果显示,引起茎秆燃料特性地点间差异的主要指标为K、灰分、Cl、GCV和GCVaf。其中,K、灰分和Cl含量与土壤理化性质相关,其偏最小二乘线性模型的判别系数R2分别为0.954、0.873和0.789。木薯茎秆灰分含量为1.70-6.69%。用成灰元素的摩尔比及K2O-(CaO+MgO)-P2O5的成分三角坐标图来预测茎秆燃烧时灰分行为,结果表明:木薯茎秆的灰熔点>1500℃,燃烧时底灰熔融结渣的可能性小。茎秆的K和Cl含量分别为1.0-27.8g kg-1和0.2-6.3g kg-1,个别地区(如武鸣和隆安)的茎秆燃烧时会有大量飞灰颗粒产生,易引起颗粒物排放超标、氯化物在换热器表面沉积和腐蚀设备。木薯茎秆的N含量为6.0-21.6g kg-1,燃烧时引起酸性气体排放超标的可能性大。
     (3)木薯茎秆非结构性糖(可溶性糖和淀粉)的含量和产量受地点因素的影响最大,受品种因素的影响次之,收获时间的影响最小。茎秆淀粉含量为干重的14-42%,产量为0.2-2.1t ha-1,平均产量1.2t ha-1,比只收获块根淀粉增加17.9%。加上可溶性糖,茎秆的非结构性糖产量为0.30-0.59t ha-1,可生产燃料乙醇1408-9246L ha-1,比只利用块根加工燃料乙醇增加6.51-52.94%。在块根收获期内,茎秆淀粉含量与块根淀粉含量呈正相关,判别系数为0.573。正相关关系在不同品种间稳定存在。选择块根淀粉含量高的品种,获得高淀粉含量茎秆的几率大。
     (4) PLS-DA对地点判别的结果表明,Cl、K和淀粉含量变化是引起木薯茎秆原料化学特性地点间差异的主要原因。引起同一地区的茎秆原料化学特性品种间差异的主要指标为S、Ca、K、Cl和淀粉含量。若木薯茎秆全部用于加工燃料乙醇和固体颗粒燃料,会造成每公顷14-130kgN、1.05-20kg P、3.85-195kg K和3.15-63.65kg Ca的损失。可持续加工利用木薯茎秆,除考虑原料品质外,还要考虑营养元素K、N和Ca的回收还田,以保持土壤肥力。
Cassava (Manihot esculenta Crantz.) stem is a multipurpose feedstock for solid biofuel and bioenthanol. The current study was composed of a full factorial design experiment (DE;3cultivars x3locations x5harvest times) in2011to examine variations in stem residues index (SRI), fuel characteristic, and non-structural carbohydrate with location, cultivar, and harvest time; and the field surveys (FS) in2008,2010, and2012of validateing the relations found in the DE. The study sites covered the main cassava cultivation area in Guangxi Zhuang Autonomous Region (Guangxi), which has the largest cassava production in China. The general goal was to improve the basic knowledge of cassava stem properties and their variation for the utilisation of existing crop residues in the regions where cassava is cultivated. The results are as follow:
     The average of288plants'SRI (stem production/root production) is0.63and its95%confidence interval is0.56-0.70. The mean SRI of the dominant cultivar South China205(SC205) is0.58and its95%confidence interval ranged from0.52to0.64. SRI was affected by location, cultivar, and their interaction. Location has stronger effects on SRI than cultivar. The95%confidence interval of the coefficient between cassava root harvest index (HI) and SRI was ranged from0.89to1.1, which can be adopted for the calculation when the range of HI is0.55-063. There is a strong negative relationship between HI and SRI.
     Location (growth environment) had the largest effects on most of all the fuel characteristics, excluding Ca, followed by cultivar. Ca content was strongly affected by cultivar. Based on the results of the partial least squares-discriminate analysis (PLS-DA), the variation of stem K, ash, Cl, gross calorific value (GCV), and ash-free gross calorific value (GCVaf) contributed to the variance of the cassava stem fuel characteristic among locations. The K, ash, and Cl contents in cassava stem had strongly correlation with the soil properties and the R2of the particial least square (PLS) models were0.954,0.873, and0.789, respectively. The ash content in cassava stem ranged from2.03%to6.69%, and is rather10times higher than soft wood. However, based the mole ratio between the major-ash forming elements and the ternary diagram analysis of K2O-(CaO+MgO)-P2O5system, cassava stems may have rather high ash-fusion temperatures (mostly>1500℃), suggesting light and limited sintering during combustion, if any. The K and Cl contents of cassava stem ranged1.0-27.8g kg-1and0.2-6.3g kg-1, respectively. Cassava stems from Wuming and Longan exhibit a risk of particle emissions and corrosive Cl-rich deposit when combusted. The N content of cassava stem is6.0-21.6g kg-1and rather higher than soft wood also, it may cause excessive acid gas emission during combustion.
     The location, i.e., growth environment had stronger effects on stem starch, soluble sugar, and starch+sugar (SS) contents and yield than cultivar and harvest time. The stem starch content and the yield ranged of14-42%and0.2-2.06t ha-1, respectively. The average of stem starch yield is1.2t ha-1, gives a17.9%higher than the starch yield which extracted from the root only. The range of stem non-structural sugar yield is0.30-0.59t ha-1, which ended up to1408-9246L ha-1ethanol yield and gave6.51-52.94%higher than the bioethanol yield which produced by the root only. There is significant positive correlation (R2=0.573) between stem and root starch contents. Those positive correlations among cultivars are all significant, that suggests a potential of selecting the cultivar with higher root starch can get higher stem starch content.
     The results of PLS-DA, againsted the dummy variable location, indicate that the variation of the stem Cl, K, and starch contents contributed to the differences of the cassava stem chemical characteristics in locations. Variations of S, Ca, K, Cl, and starch contents gave meaningful information about the differences in cultivars. Using the cassava stem for bioenergy purposes, such as solid biofuel and bioethanol, may cause14-130kg N,1.05-20kg P,3.85-195kg K, and3.15-63.65kg Ca lose per hektare. Therefore, the nutrient elements K, N, and Ca in the cassava stem should be returned to the field for maintaining the soil fertility.
引文
Adler P R, Sanderson M A, Boateng A A, et al. Biomass yield and biofuel quality of switchgrass harvested in fall or spring[J]. AgronomyJournal,2006,98:1518-1525.
    Bapat D W, Kulkarni S V, Bhandarkar V P. Design and operating experience on fluidized bed boiler burning biomass fuels with high alkali ash[A]. Proceedings of the 14th International Conference on Fluidized Bed Combustion[C]. Van couver, Canada,1997.
    Bartels M, Lin W G, Nijenhuis J, et al. Agglomeration in fluid fluidized beds at high temperatures: Mechanisms, detection and prevention[J]. Progress in Energy and Combustion Science,2008,34: 633-666.
    Beale C V, Long S P. Seasonal dynamics of nutrient accumulation and partitioning in the perennial grasses Miscanthus X giganteus and Spartina cynosuroides. Biomass and Bioenergy,1997,12(6): 419-428.
    Benesi I R M, Labuschagne M T, Dixon A G O, et al. Genotype × environment interaction effects on native cassava starch quality and potential for starch use in the commercial sector [J]. ASRIcan Crop Science Journal,2004,12:205-216.
    Benesi I R M, Labuschagne M T, Herselman L, et al. The effect of genotype, location and season on cassava starch extraction[J]. Euphytica,2008,160:59-74.
    Binder J B, Raines R T. Fermentable sugars by chemical hydrolysis of biomass[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(10):4516-4521.
    Bostrom D, Skoglund N, Grimm A, et al. Ash transformation chemistry during combustion of biomass[J]. Energy fuels,2012,26:85-93.
    Brown T R, Brown R C A review of cellulosic biofuel commercial-scale projects in the United States [J]. Biofuels, Bioproducts & Biorefining,2013,7(3):235-245.
    Cadavid L F, El-Sharkawy M A, Acosta A, et al. Long-term effects of mulch, fertilization and tillage on cassava grown in sandy soils in northern Colombia[J]. Field Crops Research,1998,57:45-56.
    Cao Y, Li H, Zhang Y, et al. Structure and properties of novel regenerated cellulose films prepared from cornhusk cellulose in room temperature ionic liquids[J]. Journal of Applied Polymer Science,2010. 116(1):547-554.
    Charmot A, Katz A. Unexpected phosphate salt-catalyzed hydrolysis of glycosidic bonds in model disaccharides cellobiose and maltose[J]. Journal of Catalysis,2010,276(1):1-5.
    Cheng J J, Timilsina G R. Status and barriers of advanced biofuel technologies:A review[J]. Renewable Energy,2011,36:3541-3549.
    Chiaramonyti D, Rizzo AM, Prussi M, et al.2nd generation lignocellulosic bioethanol:is torrefaction a possible approach to biomass pretreatment[J]. Biomass Conversion and Biorefinery,2011,1(1): 9-15.
    Chiaramonti D, Prussi M, Ferrero S, et al. Review of pre-treatment processes for lignocellulosic ethanol production, and development of an innovative method[J]. Biomass and Bioenergy,2012,46: 25-35.
    Chundanwat S P, Venkatesh B, Dale B E. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility[J]. Biotechnol Bioeng,2007,96(11):219-231.
    Dai D, Hu Z Y, Pu G Q, et al. Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China[J]. Energy Conversion and Management,2006 (47):1686-1699.
    Dayton D C, Jenkins B M, Turn S Q, et al. Release of inorganic constituents from leached biomass during thermal conversion[J]. Energy & Fuels,1999(13):860-870.
    Diaz-Ramirez M, Boman C, Sebastian F, et al. Ash characterization and transformation behavior of the fixed-bed combustion of novel crops:Poplar, brassica, and cassava fuels[J]. Energy Fuels,2012, 26:3218-3229.
    El-Sharkawy M A. Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implications for breeding cultivars adapted to seasonally dry and semiarid environments[J]. Brazilian Journal of Plant Physiology,2007,19(4):257-286.
    El-Sharkawy M A, de Tafur S M. Comparative photosynthesis, growth, productivity, and nutrient use efficiency among tall-and short-stemmed rain-fed cassava cultivars[J]. Photosynthetica,2010,48, 173-188.
    FAO. FAOSTAT,2013. Available at:http://faostat.fao.org/(accessed 5 July 2013).
    Fargione J, Hill J, Tilman D, et al. Land Clearing and the Biofuel Carbon Debt[J]. Science,2008,319, 1235-1238.
    Fryda L E, Panopoulos K D, Kakaras E. Agglomeration in fluidized bed gasification of biomass[J]. Powder Technology,2008,181:307-320.
    Gao J, Qian L L, Thelen K D, Hao X M, et al. Corn Harvest Strategies for Combined Starch and Cellulosic Bioprocessing to Ethanol[J]. Agronomy Journal,2011,103,844-850.
    Gakwaya T K. The bending, crushing and buckling strength of cassava (Manihot utilissima) stem cuttings[J]. Discovery and Innovation,1990,2(1):81-84.
    Han M, Kim Y, Kim Y, et al. Bioethanol production from optimized pretreatment of cassava stem. Korean Journal of Chemical Engineering,2011,28(1):119-125.
    Han L P, Steinberger Y, Zhao Y L et al. Accumulation and partitioning of nitrogen, phosphorus, and potassium in different varieties of sweet sorghum. Field Crops Research,2011,120:230-240.
    Howeler R H, Cadavid L F. Accumulation and distribution of dry matter and nutrients during a 12-month growth cycle of cassava[J]. Field Crops Research,1983,7:123-139.
    Howeler R H, Cadavid L F. Short- and long-term fertility trials in Colombia to determine the nutrient requirements of cassava[J]. Fertilizer Research,1990,26:61-80.
    Howeler R H. Nutrient inputs and losses in cassava-based cropping systems-examples from Vietnam and Thailand. Proceedings of an International Workshop on Nutrient Balances for Sustainable Agricultural Production and Natural Resource Management in Southeast Asia.20-22 February 2001, Bangkok, Thailand, pp.1-30.
    Howeler R H. Cassava mineral nutrition and fertilization. In:Cassava:Biology, Production and Utilization, (eds Hillocks RJ, Thresh MJ, Bellotti AC), pp.115-147. CABI Publishing, Wallingford, Oxon, UK.2002.
    Howeler R H, Lutaladio N, Thomas G. Save and Grow:Cassava. Available at: http://www.fao.org/ag/save-and-grow/cassava/(accessed 9 August 2013).
    Islam A K M S, Edwards D G, Asher C J. pH optima for crop growth results of a flowing solution culture experiment with six species[J]. Plant and Soil,1980,54:339-357.
    Janssaon C, Westerbergh A, Zhang J M, et al. Cassava, a potential biofuel crop in (the) People's Republic of China. Applied Energy,2009,86:95-99.
    Javier H A, Antonio J M, Jose A, et al. Straw quality for its combustion in a straw-fired power plant[J]. Biomass and Bioenergy,2001,21 (4):249-258.
    Jenkins B M, Baxter L L, Miles Jr T R, et al. Combustion properties of biomass[J]. Fuel Processing Technology,1998,54(1-3):17-46.
    Klass D L. Biomass for renewable energy, fuels, and chemicals. Academic Press/Elsevier, New York, 1998.
    Kim T H, Lee Y Y. Pretreatment and fractionation of corn stover by ammonia recycle percolation process[J]. Bioresource Technology,2005,96(18):2007-2013.
    Kurakake M, Ide N, Komaki T. Biological pretreatment with two bacterial strains for enzymatic hydrolysis of office paper[J]. Curr Microbiol,2007,54:424-428.
    Lewandowski I, Heinz A. Delayed harvest of miscanthus-Influences on biomass quantity and quality and environmental impacts of energy production[J]. European Journal of Agronomy,2003, (19): 45-63.
    Lewandowski I, Kicherer A. Combustion quality of biomass:practical relevance and experiments to modify the biomass quality of Miscanthus x giganteus[J]. European Journal of Agronomy,1997, (6):163-177.
    Lindstrom E, Sandstrom M, Bostrom D, et al. Slagging Characteristics during Combustion of Cereal Grains Rich in Phosphorus[J]. Energy fuels,2007,21:710-717.
    Lin W G, Johansen K D, Frandsen F. Agglomeration in bio-fuel fired fluidized bed combustors[J]. Chemical Engineering Journal,2003,96:171-185.
    Liao H D, Chen D, Yuan L, et al. Immobilized cellulose by polyvinyl alcohol/Fe2O3 magnetic nanoparticle to degrade microcrystalline cellulose [J]. Carbohyd Polym,2010,82(3):600-604.
    Lopez Molina J, El-Sharkawy M A. Increasing crop productivity in cassava by fertilizing production of planting material. Field Crops Research,1995,44:151-157.
    Miles T R, Miles J T R, Baxter L L, et al. Boiler deposits from firing biomass fuels[J]. Biomass and Bioenergy,1996,10(1):125-138.
    Martin C, Lopez Y, Plasencia Y, et al. Characterisation of agricultural and agro-Industrial residues as raw materials for ethanol production[J]. Chemical and Biochemical Engineering Quarterly,2006, 20 (4):443-447.
    Martin C, Klinke H B, Thomsen A B. Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse[J]. Enzyme and Microbial Technology,2007a,40(3): 426-432.
    Martin C, Alriksson B, Sjode A, et al. Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production[J]. Applied Biochemistry and Biotechnology,2007b, (136-140):339-352.
    Nakviroj C, Paisancharoen K, Boonseng O, et al. Cassava long-term fertility experiments in Thailand. In:CIAT, Cassava research and development in Asia:Exploring new opportunities for an ancient crop. Proceedings of the Seventh Regional Workshop held in Bangkok, Thailang. Oct 28-Nov 1, 2002. Pages:212-223. Love and Lip Press Co. Ltd. Bangkok, Thailand.
    Humbird D, Davis R, Tao L, et al. Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol:dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Report No. NREL/TP-5100-47764. Golden, CO:National Renewable Energy Laboratory, May 2011. http://www.nrel.gov/biomass/pdfs/47764.pdf.
    Neylor R, Liska A J, Burke M B, et al. The Ripple Effect:Biofuels, Food security, and the Environment[J]. Environment,2007,49(9):31-43.
    Nuwamanya E, Chiwona-Karltun L, Kawuki R, et al. Bio-ethanol production from non-food parts of cassava (Manihot esculenta Crantz) [J]. AMBIO,2012,41:262-270.
    Onwueme I C. Cassava in Asia and Pacific. In:Cassava:Biology, production and Utilization, (eds Hillocks RJ, Thresh JM, Beillotti AC), pp.55-78. CABI Publishing, Wallingford, Oxon, UK. 2002.
    Oshim H, Aso K, Harano Y. Microwave treatment of cellulosicmaterials for their enzymatic hydrolysis[J]. Biotechnol Lett,1984,6(5):289-294.
    Pandey A, Soccol C R, Nigam P, et al. Biotechnological potential of agro-industrial residues. Ⅱ: cassava bagasse[J]. Bioresource Technology,2000,74:81-87.
    Pang J F, Wang A Q, Zheng M Y, et al. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures[J]. Chem Commun,2010,46 (37):6935-6937.
    Parrish D J, Fike J H. The biology and agronomy of switchgrass for biofuels[J]. Critical Reviews in Plant Sciences,2005,24:423-459.
    Perlack R D, Wright L L, Turhollow A, et al. Biomass as a feedstock for a bioenergy and bioproducts industry:The technical feasibility of a billion-ton annual supply. In:Tech. Rep. ORNL/TM. Oak Ridge, TN,2006.
    Pordesimoa L O, Hamesb B R, Sokhansanjc S, et al. Variation in corn stover composition and energy content with crop maturity[J]. Biomass and Bioenergy,200528:366-374.
    Rajagopal D, Sexton S E, Roland-Holst D, et al. Challenge of biofuel:filling the tank without emptying the stomach[J]. Environmental Research Letters,2007,(2):1-9.
    Saha B C, Iten L B, Cotta M A, et al. Dilute acid pretreatment, enzymatic saccharificati, and fermentation of rice hulls to ethanol[J]. Biotechnology Progress,2005,21(3):816-822.
    Santhosh Mithra V S, Ravindran C S, Sreekumar J. The development of a cassava growth model in India. In:VII Asia Cassava Research Workshop, (ed. Howeler RH), pp.456-465. CIAT, Bangkok. 2002.
    Santisopasri A, Kurotjanawong K, Chotineeranat S, et al. Impact of water stress on yield and quality of cassava starch[J]. Industrial Crops and Products,2001,13:115-129.
    Searchinger T, Heimlich R, Houghton R A, et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change[J]. Science,2008,319:1238-1240.
    Seiler G J, Campbell L G. Genetic variability for mineral element concentrations of wild Jerusalem artichoke forage. Crop Science,2004,44:289-292.
    Sills D L, Gossett J M. Assessment of commercial hemicellulases for saccharification of alkaline pretreated perennial biomass[J]. Bioresource Technology,2011,102(2):1389-1398.
    Sopheap U, Patanothai A, Aye T M. Nutrient balances for cassava cultivation in Kampong Cham province in Northeast Cambodia[J]. International Journal of Plant Production,2012,6 (1):37-58.
    Sovorawet, Kongkiattikajorn. Bioproduction of Ethanol in SHF and SSF from Cassava Stalks[J]. KKU Research Journal,2012,17(4):565-572.
    Stromberg, B. Fuel Handbook:Varmeforsk[M]. Stockholm,2006.
    Sriroth K, Piyachomkwan K, Santisopasri V, et al. Environmental conditions during root development: Drought constraint on cassava starch quality[J]. Euphytica,2001,120:95-101.
    Tao G C, Lestander T A, Geladi P, et al. Biomass properties in association with plant species and assortments I:a synthesis based on literature data of energy properties [J]. Renewable and Sustainable Energy Reviews,2012a,16:3481-3506.
    Turner M B, Spear S K, Huddleston J G, et al. Ionic liquid salt-induced inactivation and unfolding of cellulase from Trichoderma reesei[J]. Green Chemistry,2003,5(4):443-447.
    Turyagyenda L F, Kizito E B, Baguma Y, et al. Evaluation of Ugandan cassava germplasm for drought tolerance[J]. International Journal of Agriculture and Crop Sciences,2013a,5 (3):212-226.
    Turyagyenda L F, Kizito E B, Ferguson M, et al. Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava. AoB plants,2013b. doi:10.1093/aobpla/plt007, available online at http://www.aobplants.oxfordjournals.org. Accessed on 6 March 2014.
    Vassilev S V, Baxter D, Andersen L K, et al. An overview of the organic and inorganic phase composition of biomass[J]. Fuel,2012,94:1-33.
    Viola E, Cardinale M, Santarcangelo R, et al. Ethanol from eel grass via steam explosion and enzymatic hydrolysis[J]. Biomass and Bioenergy,2008,32(7):613-618.
    Wang X Y, Yang L, Steinberger Y, et al. Field crop residue estimate and availability for biofuel production in China[J]. Renewable and Sustainable Energy Reviews,2013,27:864-875.
    Wilson D M, Heaton E A, Liebman M, et al. Intraseasonal changes in switchgrass nitrogen distribution compared with corn. Agronomy Journal,2013,105(2):285-294.
    Wu Z W, Lee Y Y. Nonisothermal simultaneous saccharification and fermentation for direct conversion of lignocellulosic biomass to ethanol[J]. Applied Biochemistry and Biotechnology,1998,70-72: 479-492.
    Xiong S J, Zhang Y F, Zhuo Y, et al. Variations in fuel characteristics of corn (Zea mays) stovers: General spatial patterns and relationships to soil properties [J]. Renewable Energy,2010,35:1185-1191.
    Yang H, Chen L, Yan Z C, et al. Emergy analysis of cassava-based fuel ethanol in China[J]. Biomass and bioenergy,2011,35:581-589.
    Yoshida S, Forno D A, Cock J H, et al. Laboratory manual for physiological studies of rice[M]. The international rice research institute, Los Banos, Laguna, Philippines.1976.
    Zhang P, Wang W Q, Zhang G L, et al. Senescence—inducible expression of isopenteny transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in Cassava[J]. Journal of integrative plant biology,2010,52 (7):653-669.
    Zhu J, Wan C, Li Y. Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment [J]. Bioresource Technology,2010,101(9):7523-7528.
    Zhu W B, Lestander T A, Orberg H, et al. Cassava stems:A new resource to increase food and fuel production [J]. GCB Bioenergy,2013. doi:10.1111/gcbb.12112.
    Orberg H, Xiong S J, Hedman B. Sino-Swedish Workshop on Biofuel Feedstock (cassava stem) and Future Pellet R&D Cooperation:Cassava Stems-Uppgrading and Refining. Beijing, Febuary 20th, 2012.
    毕于运,高春雨,王亚静,等.中国秸秆资源数量估算[J].农业工程学报,2009,25(12):211-217.
    《BP世界能源统计年鉴(2013年6月)》. http://bp.com/statisticalreview.访问日期:2014-2-19.
    毕于运,王道龙,高春雨,等.中国秸秆资源评价与利用[M].北京:中国农业科学技术出版社,2008.
    陈立胜,潘瑞坚.木薯酒精产业的社会效益和经济效益分析[J].广西轻工业,2007,98:24-25.
    陈静萍,王克勤,彭伟正,等.60Co-γ射线处理稻草秸秆对其纤维质酶解效果的影响[J].激光生物学报,2008,17(1):38-42.
    方佳,濮文辉,张慧坚.国内外木薯产业发展近况[J].中国农学通报,2010,26(16):353-361.
    郭薇,张曾,王萍.酸预处理—酶水解法从木薯杆中提取糖的研究[J].造纸科学与技术,2009,28(3):24-27,57.
    何泽超.纤维素的酶水解及超声波对其加速作用的研究[D].成都:四川大学,2001.
    黄洁等.中国木薯产业化的发展研究与对策[J].中国农学通报,2006,2(5):421-426.
    黄中雄,马艺,陈翠敏.广西南宁市农业气候资源分析与合理利用对策[J].安徽农业科学,2010, 28(3):1309-1312.
    金玉松.发展木薯产业正当时[J].市场分析,2003(11):65.
    乐易林,邵蔚蓝.纤维素乙醇高温发酵的研究进展与展望[J].生物工程学报,2013,29(3):274-284.
    李红雨,罗兴录,刘玉生,等.木薯茎杆粉碎还田对土壤肥力的影响[J].广西农业科学,2009,40(6):705-709.
    李学凤,田沈,潘亚平,等.发酵五碳糖和六碳糖产乙醇的细菌研究进展[J].微生物学通报,2003(6):101-105.
    李一萍,黄洁,刘子凡,等.干旱胁迫对木薯苗光合特性的影响[J].热带作物学报,2013,34(4):685-689.
    黎贞崇.能源作物——甘蔗和木薯的效益比较[J].能源研究与利用,2008,(5):22-25.
    刘吉利,程序,谢光辉,等.收获时间对玉米秸秆产量与燃料品质的影响[J].中国农业科学,2009,42(6):2229-2236.
    刘仁平,金保升,仲兆平.循环流化床燃烧生物质的结渣问题研究[J].锅炉技术,2007,38(5):73-78.
    刘祖听.能源植物菊芋种质资源、生物质产量和化学组分研究[D].北京:中国农业大学,2013.
    罗兴录.木薯新品种新选048选育与应用[J].中国农学通报,2009,25(24):501-505.
    罗兴录,劳天源.木薯品种生长发育及淀粉积累特性研究[J].中国农学通报,2001,17(4):22-24,27.
    马崇熙.对木薯在广西生物质产业中地位的思考[J].广西热带农业,2006(106):24-26.
    马静,孙建昌,安永平,等.宁夏稻米品质性状的主成分及聚类分析.种子,2009,28(12):35-43
    马妙娟.木薯植株的解剖学研究[J].广西农学院学报,1989,8(1):5-9.
    潘雯瑞,任建兴.秸秆生物质燃料燃烧特性分析[J].上海电力学院学报,2010,26(2):131-134.
    覃才殿.木薯茎杆屑代替木屑高效栽培木耳技术[J].农村新技术,2013,8:13-14.
    邵惠芳,等.应用主成分分析和聚类分析评价烤烟叶位间质量差异.西南农业学报,2008,21(6):1159-1163
    沈国章,钟振成,吴占松.生物质燃料在流化床内结渣特性判别指标研究[J].热力发电,2011,40(4):24-28.
    石元春.决胜生物质[M].北京:中国农业大学出版社,2011.
    宋春财,胡浩权.秸秆及其主要组分的催化热解及动力学研究[J].煤炭转化,2003,26(3):91-97.
    宋顺,曾长英,薄维平,等.木薯抗旱相关mRNA表达差异分析[J].热带作物学报,2010,31(10):1763-1768.
    孙智谋,蒋磊,张俊波,刘丽萍.世界各国木质纤维素原料生物转化燃料乙醇的工业化进程[J].酿酒科技,2007(1):91-94.
    孙丽英,田宜水,孟海波,等.中国生物质固体成型燃料CDM项目开发[J].农业工程学报,2011,27(8):304-307.
    陶光灿,谢光辉,Hakan Orberg,等.广西木薯茎杆资源的能源利用[J].中国工程学报,2011,13(2):107-112.
    田宜水.生物质固体成型燃料产业发展现状与展望[J].农业工程技术·新能源产业,2009(3):20-26.
    田沈,徐鑫,孟繁燕,等.木质纤维素乙醇发酵研究进展[J].农业工程学报,2006,22(1):221-224.
    汪峰.广西木薯燃料乙醇生命周期能耗及GHG排放分析[D].南京:南京大学,2012.
    王晓岚,那峙雄.基于燃料特性的秸秆积灰结渣[J].赤峰学院学报(自然科学版),2008,24(1):76-77.
    韦昌联,卢柳忠,黎贞崇.我国木薯乙醇产业发展现状与科技需求[J].酿酒科技,2012(4):1-6.
    韦茂贵.木薯块根淀粉生理机制及细胞学基础研究[D].南宁:广西大学,2011.
    韦茂贵,王晓玉,谢光辉.我国不同地区主要大田作物田间秸秆成熟期[J]:中国农业大学学报,2012a,17(6):20-31.
    韦茂贵,王晓玉,谢光辉.我国各省大田作物田间秸秆资源量及其时间分布[J]:中国农业大学学报,2012b,17(6):32-44.
    伍玉碧.木薯及木薯淀粉的开发利用[J].木薯精细化工,2001,1(8):1-4.
    肖瑞瑞,陈雪莉,王辅臣,等.不同生物质灰的理化特性[J].太阳能学报,2011,32(39):364-369.
    谢光辉,王晓玉,任兰天.中国作物秸秆资源评估研究现状[J].生物工程学报,2010,26(7):855-863.
    谢光辉,韩东倩,王晓玉,等.中国禾谷类大田作物收获指数和秸秆系数[J]:中国农业大学学报,2011a,16(1):1-8.
    谢光辉,王晓玉,韩东倩,等.中国非禾谷类大田作物收获指数和秸秆系数[J]:中国农业大学学报,2011b,16(1):9-17.
    谢光辉,庄会永,危文亮,等.非粮能源植物—生产原理和边际地栽培[M].北京:中国农业大学出版社,2011.
    徐德良,孙军,黄卫疆,等.生物质灰熔融粘结问题分析[J].能源工程,2012(2):43-46.
    余建英,何旭宏.数据统计分析与SPSS应用.北京:人民邮电出版社,2003,291-298
    薛忠,郭向明,黄正明,等.木薯茎杆机械力学特性试验研究[J].中国农机化学报,2014,35(1):83-87.
    严晋跃,赵立欣主编.中国能源作物可持续发展战略研究[M].北京:中国农业出版社,2009.
    杨蕊菊,曾长英,陈新,等.运用新方法鉴定木薯抗旱相关miRNA表达差异[J].热带作物学报,2012,33(3):427-432.
    杨望,杨坚,郑晓婷,等.木薯力学特新测试[J].农业工程学报,2011,27(2):50-54.
    杨昱种,周妍沁,杨鹏,等.纤维素水解研究进展[J].化学研究与应用,2013,25(7):921-928.
    袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术生物质能利用原理与技术[M].北京:化学工业出版社,2004.
    袁展汽,刘仁根,汪瑞清,等.喷施多效唑对木薯产量及生长的影响[J].广东农业科学,2010(2):13-14.
    袁艳文,林聪,赵立欣,等.生物质固体成型燃料抗结渣研究进展[J].可再生能源,2009,27(5):48-51.
    张丹,付莉莉,彭明,等.实时荧光定量PCR检测木薯海藻糖合成酶基因(MeTPSl-3)干旱胁迫下的表达[J].热带作物学报,2013,34(7):1274-1277.
    章慧娟,关东明,王达.优化同步糖化共发酵产乙醇[J].北京农业,2013(13):15-16.
    张杰,李岩,许海明,等.纤维素乙醇发展现状[J].山东科学,2008,21(5):39-42.
    张良,赵雪君,石瑛.马铃薯直链淀粉含量近红外模型的建立[J].作物杂志,2014(2):73-76.
    张无敌,刘士清,何彩云.生物质潜力及其能源转换[J].自然资源,1996(4):22-25.
    赵怀礼,贺延龄.植物纤维废弃物生产酒精燃料的研究[J].西南造纸,2002(4):46-49.
    赵立欣,孟海波,姚宗路,等.中国生物质固体成型燃料技术和产业[J].中国工程科学,2011,13(2):78-82.
    周芳,刘恩世,赵平娟,等.干旱胁迫对苗期木薯内源激素含量的影响[J].干旱地区农业研究,2013,31(5):238-244.
    周海伦,孙健,陈砺,等.木薯茎杆的生物质气化工艺研究.第九届全国化学工艺学术年会论文集,2009:1064-343.
    祝涛,李少白,王瑶.木质纤维素乙醇原料预处理技术的研究进展[J].2013,40(17):108-109,111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700