用户名: 密码: 验证码:
大黄素改善KKAy胰岛素抵抗糖尿病小鼠作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:通过对KKAy糖尿病小鼠进行为期8周的大黄素灌胃治疗,利用生化、RT-PCR、免疫组织化学及免疫印迹法等检验方法,探讨大黄素改善KKAy糖尿病小鼠肝脏、肌肉、脂肪组织胰岛素敏感性及降血糖的作用机制及对PI3K-AKt胰岛素信号转导通路的影响,为中药大黄素治疗糖尿病提供实验依据。
     材料与方法:将SPF级健康雌性KKAy小鼠32只按血糖值随机分为模型组(DM组),大黄素低治疗组(EL组),大黄素按12.5mg/kg·d灌胃,大黄素高治疗组(EH组),大黄素按50mg/kg·d灌胃,.吡格列酮治疗组(PI组),吡格列酮按1.95mg/(kg·d)剂量灌胃,并选10只C57BL/6J小鼠为正常对照组(NC组),连续灌胃给药8周。8周后测定各组小鼠空腹血糖(FPG)、空腹胰岛素(Fins)并计算胰岛素敏感指数(ISI)、总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、(?)低密度脂蛋白胆固醇(LDL-C),游离脂肪酸(FFA),超敏C反应蛋白(hs-CRP)及肿瘤坏死因子-a (TNF-a);应用RT-PCR法测定各组小鼠肝脏过氧化物酶体增殖物激活受体γmRNA (PPARγ mRNA)及葡萄糖转运蛋白2mRNA (GluT-2mRNA)的表达;应用免疫组织化学法测定各组小鼠肝脏过氧化物酶体增殖物激活受体Y (PPAR Y)及葡萄糖转运蛋白2(GluT-2)蛋白的表达;应用RT-PCR法测定各组小鼠骨骼肌、脂肪组织过氧化物酶体增殖物激活受体γmRNA (PPAR γ mRNA)及葡萄糖转运蛋-4mRNA (GluT-4mRNA)的表达;应用免疫组织化学法测定各组小鼠骨骼肌、脂肪组织过氧化物酶体增殖物激活受体γ (PPAR γ)及葡萄糖转运蛋-4(GluT-4)蛋白的表达;应用免疫印迹法(western-blot)测定各组小鼠肝脏、骨骼肌和脂肪组织IRS-1,PI3K, AktSer473, Fox01的蛋白表达。实验结果以均数±标准差(X±s)表示,应用SPSS11.5统计软件进行分析,组间比较用单因素方差分析(One-Way ANOVE),组间两两显著性比较采用LSD法,P<0.05为统计学具有显著性差异。
     结果:
     各组小鼠喂养8周实验结束后,禁食8小时后留取血清进行生化检验,处死各组小鼠,速取部分肝脏、股四头肌和肾周脂肪组织,置入液氮中以备RT-PCR法及western-blot法检测,另取一部分用4%的多聚甲醛固定,石蜡包埋,以备免疫组织化学检测。
     1.与NC组比较,DM组FBG、TG、TC、FFA、hs-CRP及TNF-α明显升高(P<0.05), ISI明显降低(P<0.05);与DM组比较EL、EH、PI组FBG、TG、TC、FFA、hs-CRP及TNF-α明显降低(P<0.05),且成剂量依赖性,ISI明显升高(P<0.05)。
     2.通过对RT-PCR产物电泳结果的观察以及凝胶扫描系统进行吸光度积分分析,与NC组比较,DM组肝脏组织PPAR γ mRNA及GluT-2mRNA的表达丰度明显降低(P<0.05);肌肉、脂肪组织PPAR Y mRNA及GluT-4mRNA的丰度表达明显降低(P<0.05);与DM组比较EL. EH、PI组肝脏组织PPAR γ mRNA及GluT-2mRNA的表达丰度明显升高(P<0.05);骨骼肌、脂肪组织PPAR γ mRNA及GluT-4mRNA的丰度表达明显升高,(P<0.05)。免疫组化染色结果可见,与NC组比较,DM组肝脏组织PPAR γ及GluT-2的表达明显降低(P<0.05);肌肉、脂肪组织PPAR γ及GluT-4的表达明显降低(P<0.05);与DM组比较EL、EH、PI组肝脏组织PPARγ及GluT-2的表达明显升高(P<0.05);骨骼肌、脂肪组织PPARγ及GluT-4的表达明显升高(P<0.05)。
     3.通过对免疫印迹的结果进行吸光度积分分析,胰岛素刺激后,DM组与NC组比较,IRS-1、PI3K、及AktSer473蛋白磷酸化升高倍数明显降低(P<0.05), Fox01明显升高(P<0.05);与DM组比较EL、EH组IRS-1、PI3K及胰岛素刺激后Akt Ser473蛋白磷酸化升高倍数明显升高(P<0.05), Fox01明显降低(P<0.05)。
     结论:
     1.10周龄KKAγ小鼠已经出现血糖升高,经8周高脂高热量饮食喂养后,存在典型的胰岛素抵抗,空腹血糖、血清Fins、TG、TC、FFA、hs-CRP和TNF-α明显升高,血ISI明显降低。
     2.大黄素能够降低KKAγ小鼠空腹血糖、血清Fins、TG、TC、FFA、hs-CRP和TNF-α,升高血ISI,减少炎症反应,高剂量大黄素干预对胰岛素敏感性及相关指标的改善作用优于低剂量组。
     3.模型组小鼠肝脏PPARγ和GluT-2的mRNA和蛋白表达明显下降;大黄素能够上调KKAy小鼠肝脏PPAR γ和GluT-2的mRNA和蛋白表达,改善肝脏的葡萄糖利用不足和过度释放,增强胰岛素敏感性,改善胰岛素抵抗。
     4.模型组小鼠骨骼肌和脂肪组织PPAR y及GluT-4的mRNA和蛋白表达明显下降;大黄素能够上调KKAy小鼠骨骼肌和脂肪组织PPAR γ及GluT-4的mRNA和蛋白表达,从而促进骨骼肌和脂肪组织对葡萄糖的摄取,从而增强胰岛素敏感性,改善胰岛素抵抗。
     5.胰岛素刺激后,模型组与正常对照组比较,小鼠肝脏、骨骼肌及脂肪组织中IRS-1、PI3K、AktSer473蛋白磷酸化表达明显下降,Fox01蛋白表达明显升高;大黄素可以上调KKAy小鼠肝脏、骨骼肌及脂肪组织中IRS-1、PI3K、AktSer473蛋白磷酸化表达,下调Fox01蛋白表达,从PI3K-AKt胰岛素信号传导通路改善胰岛素抵抗。
Purpose:After emodin was given to the type2diabetic KKAy mice for8weeks, we use biochemical method, RT-PCR method, immunohistocemistry method and Western-blot method to test the mechanism of how can emodin improve KKAy diabetes mouse liver, muscle and adipose ti ssue insulin sensitivity and lowering blood sugar. And we study how can emodin affect PI3K/AKt insulin signal transduction pathway. In order to provide the experimental basis of emodin in treatment of diabetes mellitus.
     Materials and Methods:32female KKAy mice of Specific pathogen free (SPF) were divided randomly into four groups:model(DM) group, emodin-low dose group(EL), emodin-high dose group (EH), and pioglitazone group (PI) according to plasma glucose level. We selected10C57BL/6J mice as normal control group(NC)8weeks later, all animals were tested fasting plasma glucose, fasting insulin level for caculating Insulin Sensitivity Index, total cholesterol, total triacylglycerol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, floating fatty acid, high sensitive creaetor protein, tumor necrosis factor-α. The expression of PPARγ and GluT-2in hepatic tissue were determined by immunohistochemistry and RT-PCR. The expression of PPARγ and GluT-4in musle and adipose tissue were determined by immunohistochemistry and RT-PCR. The expressions of IRS-1, PI3K, AktSer473and Fox01in hepatic tissue, musle tissue and adipose tissue were determined by Western-blot. The experimental results were analyzed by statistical software
     Results:
     8weeks later, the experiment was over. The mice were fasting for8hours, and then we used the serum to test biochemical datas. The mice were put to death, we take out partial liver, musle and adipose speedly into the liquid nitrogen for RT-PCR and Western-blot.The other partial liver,musle and adipose wre fixed by paraformaldehyde. Paraffin embedding for Immunohistochemistry.
     1. Compared with normal control group, DM group showed higher fasting plasma glucose, total cholesterol, total triacylglycerol, low-density lipoprotein cholesterol, floating fatty acid, high sensitive creaetor protein, and tumor necrosis factor-α (P<0.05), lower ISI(P<0.05). Compared with DM group, emodin could reduce fasting plasma glucose, total cholesterol, total triacylglycerol, low-density lipoprotein cholesterol, floating fatty acid, high sensitive creaetor protein, and tumor necrosis factor-α (P<0.05). In addition, emodin could improve insulin sensitivity in KKAy diabetic mice(P<0.05). emodin showed dose dependent.
     2. By RT-PCR products and gel electrophoresis results of the observation optical density scanning system integration analysis, the expression of PPARγmRNA and GluT-2mRNA in hepatic tissue of DM group was decreased as compared with NC group (p<0.05). The expression of PPAR y mRNA and GluT-4mRNA in musle tissue and adipose tissue of DM group was decreased too as compared with NC group (p<0.05). Compared with DM group, the expression of PPARγmRNA and GluT-2mRNA in hepatic tissue of EL、EH、PI group was up-regulated (p<0.05) the expression of PPARγmRNA and GluT-4mRNA in musle tissue and adipose tissue of EL、EH、PI group was also up-regulated(p<0.05). Immunohistochemical results showed lower protein expression of PPARγ and GluT-2in hepatic tissue of DM group as compared with normal control group (p<0.05), and showed lower protein expression of PPARγ and GluT-4in musle tissue and adipose tissue of DM group as compared with normal control group (p<0.05). Compared with DM group, the protein expression of PPAR Y and GluT-2in hepatic tissue of EL、EH、PI group was up-regulated (p<0.05); the protein expression of PPARγand GluT-4in musle tissue and adipose tissue of EL、EH、PI group was also up-regulated (p <0.05).
     3.By the results of Western blot analysis of absorbance points, the expression of IRS-1、PI3K、AktSer473in hepatic tissue, musle tissue and adipose tissue of DM group was decreased; the protein expression of Fox01was up-regulated as compared with NC group (p<0.05). Compared with DM group, the protein expression of IRS-1、PI3K、AktSer473in hepatic tissue, musle tissue and adipose tissue of EL、EHgroup was up-regulated (p<0.05); the protein expression of Fox01was decreased (p<0.05).
     Conclusion:
     1.10weeks old KKAy mice have appeared high blood sugar. After8weeks high-fat diet feeding, KKAy mice existed typical insulin resistance. Fasting plasma Glucose, fasting insulin level, total cholesterol, total triacylglycerol, low-density lipoprotein cholesterol, floating fatty acid, high sensitive creaetor protein, tumor necrosis factor-α. increased significantly and the blood insulin sensitivity index. decreased significantly.
     2. emodin can decrease fasting plasma glucose, fasting insulin level, total cholesterol, total triacylglycerol,, low-density lipoprotein cholesterol, floating fatty acid, high sensitive creaetor protein, tumor necrosis factor-α and increase insulin sensitivity.The role of high dose emodin outstripped low dose.
     3. In model group mice, the expression of PPAR γ mRNA and GluT-2mRNA in hepatic tissue are decreased obviously.. Emodin can up-regulate the expression of PPAR γ mRNA and GluT-2mRNA in hepatic tissue of KKAy mice. Emodin can improve liver glucose utilization of inadequate and excessive release and enhance insulin sensitivity and improve insulin resistance.
     4. In model group mice, the expression of PPARγ mRNA and GluT-4mRNA in skeletal muscle and adipose tissue are decreased obviously.Emodin can up-regulate the expression of PPARγ mRNA and GluT-4mRNA in skeletal muscle and adipose tissue of KKAy mice In order to promote skeletal muscle and adipose tissue uptake of glucose and enhance insulin sensitivity and improve insulin resistance.
     5. In model group mice, the protein expression of IRS-1, PI3K and Akt phosphorylation of Ser473in hepatic, skeletal muscle and adipose tissue are decreased obviously. Emodin can up-regulate the protein expression of IRS-1, PI3K and Akt phosphorylation of Ser473and down-regulate the protein expression of Fox01in hepatic, skeletal muscle and adipose tissue of KKAy mice. Emodin can improve insulin resistance from PI3K insulin signal transduction pathway.
引文
[1]Tenenbaum A, Motro M, Fisman EZ. et al. Peroxisome proliferator-activated receptor ligand bezafibrate for prevention of type 2 diabetes mellitus in patients with coronary artery disease[J]. Circulation,2004,109(18):2197-202.
    [2]周丽斌,陈名道.胰岛素增敏剂噻唑烷二酮类药物的研究进展[J].实用糖尿病杂志,2005,(06):58-59.
    [3]张蓉,朱榕峰,徐俊,等.大黄素改善脂多糖引起的胰岛素抵抗机制研究[J].上海中医药杂志,20]0,(08):71-73+79.
    [4]王冰,李宏亮,杨文英.胰岛素信号转导通路与p细胞分泌功能的关系及机制[J].中日友好医院学报,2008,(01):54-56.
    [5]Rotter JI, Rimoin DL. The genetics of the glucose intolerance disorders[J]. Am J Med, 1981,70(1):116-26.
    [6]李慧颖,崔广智,张岩.2型糖尿病胰岛素信号转导途径[J].长春中医药大学学报,2008,(03):325-326.
    [7]Katome T, Obata T, Matsushima R, et al. Use of RNA interference-mediated gene silencing and adenoviral overexpression to elucidate the roles of AKT/protein kinase B isoforms in insulin actions[J]. J Biol Chem,2003,278(30):28312-23.
    [8]Rimm EB,Manson JE, Stampfer MJ, et al. Cigarette smoking and the risk of diabetes in women[J]. Am J Public Health,1993,83(2):211-4.
    [9]Brancati FL, Kao WH, Folsom AR. et al. Incident type 2 diabetes mellitus in African American and white adults:the Atherosclerosis Risk in Communities Study[J]. JAMA,2000,283(17):2253-9.
    [10]郝新生,房忠女.非胰岛素依赖型糖尿病危险因素的研究[J].中国慢性病预防与控制,1999,(04):8-9+22.
    [11]苏联群,王志宏.乌鲁木齐市社区2型糖尿病危险因素非条件Logistic回归分析[J].新疆医学2009,(05):19-23.
    [12]唐晓君,张素华,李革,等.重庆地区社区人群2型糖尿病现况调查[J].中国临床康复,2006,(12):10-12.
    [13]Elbein SC, Hoffman M, Barrett K, et al. Role of the beta 3-adrenergic receptor locus in obesity and noninsulin-dependent diabetes among members of Caucasian families with a diabetic sibling pair[J]. J Clin Endocrinol Metab,1996,81(12):4422-7.
    [14]Permutt MA. Genetics of NIDDM[J]. Diabetes Care,1990,13(11):1150-3.
    [15]巩秋红.李光伟.2005北京国际糖尿病预防高层论坛纪要[J].中华内分泌代谢杂志2006,(01):94-95.
    [16]Hu FB, van DRM, Liu S. Diet and risk of Type Ⅱ diabetes:the role of types of fat and carbohydrate [J]. Diabetologia,2001.44(7):805-17.
    [17]马林茂,王克安,向红丁.2型糖尿病危险因素的Logistic回归分析[J].中国糖尿病杂志1999,(05):7-9.
    [18]van DRM, Rimm EB, Willett WC. et al. Dietary patterns and risk for type 2 diabetes mellitus in U.S. men[J]. Ann Intern Med,2002,136(3):201-9.
    [19]Koppes LL, Dekker JM. Hendriks HF, et al. Moderate alcohol consumption lowers the risk of type 2 diabetes:a meta-analysis of prospective observational studies[J]. Diabetes Care,2005,28(3):719-25.
    [20]顾卫琼.张翼飞.赵红燕,等.肥胖人群中血清瘦素、游离脂肪酸和脂联素水平的相互关系[‘I]. 中华内分泌代谢杂志,2003,(03):15-18.
    [21]刘长锁.游离脂肪酸与胰岛素抵抗[J].中国药理学通报,2005,(02):145-149.
    [22]Liu HY, Collins QF, Xiong Y, et al. Prolonged treatment of primary hepatocytes with oleate induces insulin resistance through p38 mitogen-activated protein kinase[J]. J Biol Chem. 2007.282(19):14205-12.
    [23]王国栋,尹小俭.肥胖与Ⅱ型糖尿病的关系及其防治[J].沈阳体育学院学报,2008,(03):52-56.
    [24]Suarez EC, Boyle SH, Lewis JG, et al. Increases in stimulated secretion of proinflammatory cytokines by blood monocytes following arousal of negative affect:the role of insulin resistance as moderator[J]. Brain Behav Immun,2006.20(4):331-8.
    [25]龙艳.于健.瘦素、肿瘤坏死因子与2型糖尿病患者胰岛素抵抗的关系[J].四川大学学报(医学版).2004,(04):580-581.
    [26]Kern PA, Saghizadeh M, Ong JM, et al. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase[J]. J Clin Invest, 1995.95(5):2111-9.
    [27]Aguirre V. Uchida T, Yenush L, et al. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307)[J]. J Biol Chem. 2000,275(12):9047-54.
    [28]Gandhi GY, Nuttall GA, Abel MD. et al. Intraoperative hyperglycemia and perioperative outcomes in cardiac surgery patients[J]. Mayo Clin Proc,2005.80(7):862-6.
    [29]Yamauchi T, Kamon J, Waki H. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity[J]. Nat Med,2001.7(8):941-6.
    [30]Mesotten D, Swinnen JV, Vanderhoydonc F. et al. Contribution of circulating lipids to the improved outcome of critical illness by glycemic control with intensive insulin therapy[J]. J Clin Endocrinol Metab,2004,89(1):219-26.
    [31]李焱.氧化应激与胰岛素抵抗及其对策[J].实用糖尿病杂志.2007,(03):6-7.
    [32]Liu Y, Michael MD, Kash S. et al. Deficiency of adiponectin receptor 2 reduces diet-induced insulin resistance but promotes type 2 diabetes[J]. Endocrinology,2007.148(2):683-92.
    [33]Steppan CM, Brown EJ. Wright CM, et al. A family of tissue-specific resistin-like molecules[J]. Proc Natl Acad Sci U S A,2001,98(2):502-6.
    [34]Curat CA. Wegner V, Sengenes C. et al. Macrophages in human visceral adipose tissue:increased accumulation in obesity and a source of resistin and visfatin[J]. Diabetologia,2006,49(4):744-7.
    [35]Laudes M, Oberhauser F, Schulte DM. et al. Visfatin/PBEF/Nampt and resistin expressions in circulating blood monocytes are differentially related to obesity and type 2 diabetes in humans[J]. Horm Metab Res,2010.42(4):268-73.
    [36]张旭东,张雷.胰岛素抵抗与2型糖尿病[J].解剖科学进展,2008.(01):92-95.
    [37]谢利芳,许志华,郭凯霞.2型糖尿病胰岛素抵抗研究进展[J].科学技术与工程.2010,(15):3664-3669+3672.
    [38]Valverde AM, Burks DJ, Fabregat I, et al. Molecular mechanisms of insulin resistance in IRS-2-deficient hepatocytes[J]. Diabetes.2003.52(9):2239-48.
    [39]Gaster M, Staehr P, Beck-Nielsen H, et al. GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients:is insulin resistance in type 2 diabetes a slow, type 1 fiber disease?[J]. Diabetes. 2001.50(6):1324-9.
    [40]Morino K, Petersen KF, Dufour S, et al. Reduced mitochondrial density and increased IRS-1 serine phosphoryiation in muscle of insulin-resistant offspring of type 2 diabetic parents[J]. J Clin Invest, 2005,115(12):3587-93.
    [41]Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer[J]. J Cell Physiol,2005,202(3):654-62.
    [42]James DE, Brown R, Navarro J, et al. Insulin-regulatable tissues express a unique insulin-sensitive glucose transport protein[J]. Nature,1988,333(6169):183-5.
    [43]Cohen P, Alessi DR, Cross DA. PDK1, one of the missing links in insulin signal transduction?[J]. FEBS Lett,1997,410(1):3-10.
    [44]赵海燕,王勇,马永平,等.胰岛素信号转导障碍与胰岛素抵抗[J].新医学,2010,(04):267-271.
    [45]宋冰,刘学政.大黄素改善KKAy糖尿病小鼠胰岛素敏感性的实验研究[J].军医进修学院学报.2011,(12):1274-1276.
    [46]Clee SM, Attie AD. The genetic landscape of type 2 diabetes in mice[J]. Endocr Rev, 2007,28(1):48-83.
    [47]Herberg L. Coleman DL. Laboratory animals exhibiting obesity and diabetes syndromes[J]. Metabolism,1977.26(1):59-99.
    [48]郭清华,潘长玉.饮食能量对Kkay及Kk小鼠2型糖尿病发病的影响[J].军医进修学院学报,2005,(02):140-142.
    [49]李淑娟,武海霞,张丹参.大黄及其有效成分药理作用研究进展[J].医学综述,2005,(01):76-78.
    [50]李建丰.加味大黄附子汤治疗糖尿病肾病30例临床报道[J].医药产业资讯,2006,(18):109.
    [51]侯雁,于世家.大黄醇提物对糖尿病大鼠胰岛素敏感性及脂肪细胞因子影响的研究[J].实用糖尿病杂志,2006,(03):45-46.
    [52]阳崇德.大黄素的药理研究进展[J].中国药业,2003,(03):78-79.
    [53]侯晓东,叶丽萍.大黄素的研究现状和展望[J].中国热带医学,2005,(08):1738-1740.
    [54]McGarry JD. Banting lecture 2001:dysregulation of fatty acid metabolism in the etiology of type 2 diabetes[J]. Diabetes.2002,51(1):7-18.
    [55]Murase K, Odaka H. Suzuki M, et al. Pioglitazone time-dependently reduces tumour necrosis factor-alpha level in muscle and improves metabolic abnormalities in Wistar fatty rats[J]. Diabetologia, 1998,41(3):257-64.
    [56]周鹏,王其民.高甘油三酯血症与胰岛素抵抗及糖代谢异常的关系[J].中华内科杂志1998,(07):15-18.
    [57]McGarry JD, Dobbins RL. Fatty acids, lipotoxicity and insulin secretion[J]. Diabetologia, 1999,42(2):128-38.
    [58]Gu Y. Wang G, Pan G, et al. Transport and bioavailability studies of astragaloside Ⅳ. an active ingredient in Radix Astragali [J]. Basic Clin Pharmacol Toxicol.2004,95(6):295-8.
    [59]Doganay S. Evereklioglu C, Er H, et al. Comparison of serum NO. TNF-alpha, IL-1beta. sIL-2R. IL-6 and IL-8 levels with grades of retinopathy in patients with diabetes mellitus[J]. Eye (Lond). 2002,16(2):163-70.
    [60]吴丹荣,庄惠君.彭年春.血清肿瘤坏死因子-α与糖尿病肾病的相关性研究[J].贵州医药,2005,(09):9-12.
    [61]Vuksan V, Stavro MP, Sievenpiper JL. et al. Similar postprandial glycemic reductions with escalation of dose and administration time of American ginseng in type 2 diabetes[J]. Diabetes Care. 2000.23(9):1221-6.
    [62]杨丽娟.大黄素和大黄酸通过激活细胞PPARγ(?)足进葡萄糖摄取.见:母义明,汪保安,主编.内科学内分泌及代谢病学.2007.
    [63]Juge-Aubry C, Pernin A, Favez T, et al. DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5'-flanking region[J]. J Biol Chem,1997,272(40):25252-9.
    [64]Vidal-Puig AJ, Considine RV, Jimenez-Linan M. et al. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids[J]. J Clin Invest,1997.99(10):2416-22.
    [65]Koeffler HP. Peroxisome proliferator-activated receptor gamma and cancers[J]. Clin Cancer Res. 2003,9(1):1-9.
    [66]Wakino S. Kintscher U. Kim S, et al. Peroxisome proliferator-activated receptor gamma ligands inhibit retinoblastoma phosphorylation and G1--> S transition in vascular smooth muscle cells[J]. J Biol Chem.2000.275(29):22435-41.
    [67]Takeda K, Ichiki T, Tokunou T, et al. Peroxisome proliferator-activated receptor gamma activators downregulate angiotensin Ⅱ type 1 receptor in vascular smooth muscle cells[J]. Circulation, 2000.102(15):1834-9.
    [68]Zhou M, Vallega G, Kandror KV, et al. Insulin-mediated translocation of GLUT-4-containing vesicles is preserved in denervated muscles[J]. Am J Physiol Endocrinol Metab,2000.278(6):E1019-26.
    [69]Xu ZK. Chen NG. Ma CY, et al. Role of peroxisome proliferator-activated receptor gamma in glucose-induced insulin secretion[J]. Acta Biochim Biophys Sin (Shanghai).2006,38(1):1-7.
    [70]Eisenberg ML. Maker AV, Slezak LA. et al. Insulin receptor (IR) and glucose transporter 2 (GLUT2) proteins form a complex on the rat hepatocyte membrane[J]. Cell Physiol Biochem, 2005.15(1-4):51-8.
    [71]Jin B. Seong JK. Ryu DY. Tissue-specific and de novo promoter methylation of the mouse glucose transporter 2[J]. Biol Pharm Bull.2005,28(11):2054-7.
    [72]Guillam MT. Hummler E, Schaerer E. et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2[J]. Nat Genet,1997,17(3):327-30.
    [73]Okamoto Y, Tanaka S, Haga Y. Enhanced GLUT2 gene expression in an oleic acid-induced in vitro fatty liver model[J]. Hepatol Res,2002.23(2):138-144.
    [74]Kelley DE. Kuller LH. McKolanis TM. et al. Effects of moderate weight loss and orlistat on insulin resistance, regional adiposity, and fatty acids in type 2 diabetes[J]. Diabetes Care,2004.27(1):33-40.
    [75]Bryant NJ. Govers R, James DE. Regulated transport of the glucose transporter GLUT4[J]. Nat Rev Mol Cell Biol,2002,3(4):267-77.
    [76]Fryer LG, Parbu-Patel A, Carling D. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways[J]. J Biol Chem. 2002.277(28):25226-32.
    [77]Kashyap S, Belfort R. Gastaldelli A. et al. A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes[J]. Diabetes.2003,52(10):2461-74.
    [78]Capaldo B, Napoli R. Di BP. et al. Dual mechanism of insulin action on human skeletal muscle: identification of an indirect component not mediated by FFA[J]. Am J Physiol.1991,260(3 Pt 1):E389-94.
    [79]Hei YJ. Recent progress in insulin signal transduction[J]. J Pharmacol Toxicol Methods. 1998,40(3):123-35.
    [80]Sevilla L. Guma A. Enrique-Tarancon G, et al. Chronic high-fat feeding and middle-aging reduce in an additive fashion Glut4 expression in skeletal muscle and adipose tissue[J]. Biochem Biophys Res Commun.1997,235(1):89-93.
    [81]Zisman A, Peroni OD, Abel ED, et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance[J]. Nat Med,2000,6(8):924-8.
    [82]Brozinick JT Jr, McCoid SC, Reynolds TH, et al. GLUT4 overexpression in db/db mice dose-dependently ameliorates diabetes but is not a lifelong cure[J]. Diabetes,2001,50(3):593-600.
    [83]Watson RT, Pessin JE. Intracellular organization of insulin signaling and GLUT4 translocation[J]. Recent Prog Horm Res,2001,56:175-93.
    [84]Hamm JK, el JAK, Pilch PF, et al. Role of PPAR gamma in regulating adipocyte differentiation and insulin-responsive glucose uptake[J]. Ann N Y Acad Sci,1999,892:134-45.
    [85]Gavrilova O. Marcus-Samuels B, Graham D, et al. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice[J]. J Clin Invest,2000.105(3):271-8.
    [86]Jones JR, Barrick C, Kim KA, et al. Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance[J]. Proc Natl Acad Sci U S A, 2005,102(17):6207-12.
    [87]Liu IM, Tzeng TF, Liou SS, et al. Improvement of insulin sensitivity in obese Zucker rats by myricetin extracted from Abelmoschus moschatus[J]. Planta Med,2007,73(10):1054-60.
    [88]Shao J, Yamashita H, Qiao L, et al. Decreased Akt kinase activity and insulin resistance in C57BL/KsJ-Leprdb/db mice[J]. J Endocrinol,2000,167(1):107-15.
    [89]杨丽娟,于海燕,母义明,等.大黄素通过激活PPARy促进HepG2细胞葡萄糖摄取[J].中华内分泌代谢杂志,2007,(03):264-268.
    [90]Oakes ND. Kennedy CJ, Jenkins AB, et al. A new antidiabetic agent, BRL 49653. reduces lipid availability and improves insulin action and glucoregulation in the rat[J]. Diabetes. 1994.43(10):1203-10.
    [91]Bloomgarden ZT. Insulin resistance:current concepts[J]. Clin Ther.1998.20(2):216-31; discussion 215.
    [92]Kemnitz JW, Elson DF. Roecker EB. et al. Pioglitazone increases insulin sensitivity, reduces blood glucose, insulin, and lipid levels, and lowers blood pressure, in obese, insulin-resistant rhesus monkeys[J]. Diabetes.1994.43(2):204-11.
    [93]迟铖.大黄酸改善糖尿病大鼠胰岛素敏感性的作用和机制.见:母义明.汪保安,主编.内科学内分泌.2008.
    [94]陈小琳.罗格列酮对胰岛素抵抗大鼠骨骼肌细胞膜GLUT4表达的影响.见:毕会民,主编.内科学.2004.
    [95]Sun XJ, Rothenberg P, Kahn CR, et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein[J]. Nature,1991.352(6330):73-7.
    [96]Cho H, Mu J, Kim JK, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta)[J]. Science,2001.292(5522):1728-31.
    [97]Ueki K. Yamamoto-Honda R, Kaburagi Y, et al. Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis[J]. J Biol Chem,1998,273(9):5315-22.
    [98]黄荷,夏宁.Fox01对糖尿病胰腺p细胞的作用[J].内科,2009,(03):404-407.
    [99]Tu X, Wu A, Maiorana A, et al. Subcellular localization of IRS-1 in cell proliferation and differentiation[J]. Horm Metab Res,2003.35(11-12):734-9.
    [100]Tremblay F, Lavigne C, Jacques H, et al. Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C (zeta/lambda) activities[J]. Diabetes,2001,50(8):1901-10.
    [101]Aspinwall CA, Qian WJ, Roper MG, et al. Roles of insulin receptor substrate-1. phosphatidylinositol 3-kinase, and release of intracellular Ca2+ stores in insulin-stimulated insulin secretion in beta-cells[J]. J Biol Chem.2000.275(29):22331-8.
    [102]Leibiger B. Leibiger IB, Moede T. et al. Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic beta cells[J]. Mol Cell. 2001,7(3):559-70.
    [103]王洪涛,王韫秀,宋永喜.胰岛素信号转导障碍与糖尿病的关系[J].实用糖尿病杂志.2007,(01):57-59.
    [104]Hribal ML, Perego L, Lovari S. et al. Chronic hyperglycemia impairs insulin secretion by affecting insulin receptor expression, splicing, and signaling in RIN beta cell line and human islets of Langerhans[J]. FASEB J.2003.17(10):1340-2.
    [105]Tamemoto H, Kadowaki T. Tobe K, et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1[J]. Nature,1994.372(6502):182-6.
    [106]李松林,彭定琼,郭晓蕙,等.胰岛素受体底物和酪氨酸磷酸酶在2型糖尿病大鼠肌肉组织中的蛋白表达及其意义[J].中国预防医学杂志,2007,(05):599-601.
    [107]Araki E, Lipes MA. Patti ME, et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene[J]. Nature,1994.372(6502):186-90.
    [108]彭定琼,陈宇.马红.OLETF大鼠肝脏、肌肉、脂肪组织中胰岛素受体底物1的蛋白表达[J].中华内分泌代谢杂志,2001.(05):28-29.
    [109]梁泉.薛承锐,费乃昕,等.罗格列酮对油酸诱导的慢性胰腺炎大鼠肝脏细胞IR及IRS-1表达的调节[J].天津医科大学学报.2007,(02):177-179.
    [110]Meyer MM LK, Grimmsmann T BH, Klein HH Diabetologia叶华.2型糖尿病患者及其一级亲属和非糖尿病者骨骼肌的胰岛素信号传导[J].中国糖尿病杂志.2003,(02):79-80.
    [111]Sugita H. Fujimoto M. Yasukawa T. et al. Inducible nitric-oxide synthase and NO donor induce insulin receptor substrate-1 degradation in skeletal muscle cells[J]. J Biol Chem. 2005.280(14):14203-11.
    [112]Bjornholm M, Kawano Y. Lehtihet M, et al. Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation[J]. Diabetes,1997,46(3):524-7.
    [113]Kim YB. Nikoulina SE, Ciaraldi TP. et al. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes[J]. J Clin Invest,1999,104(6):733-41.
    [114]Smith U. Axelsen M. Carvalho E. et al. Insulin signaling and action in fat cells:associations with insulin resistance and type 2 diabetes[J]. Ann N Y Acad Sci,1999.892:119-26.
    [115]Krook A. Roth RA, Jiang XJ, et al. Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects[J]. Diabetes,1998,47(8):1281-6.
    [116]洪靖.IRS-1基因与肥胖、2型糖尿病[J].中日友好医院学报,2003,(02):107-109.
    [117]Rondinone CM. Wang LM. Lonnroth P, et al. Insulin receptor substrate (IRS) 1 is reduced and IRS-2 is the main docking protein for phosphatidylinositol 3-kinase in adipocytes from subjects with non-insulin-dependent diabetes mellitus[J]. Proc Natl Acad Sci U S A,1997,94(8):4171-5.
    [118]Alessi DR. Downes CP. The role of PI 3-kinase in insulin action[J]. Biochim Biophys Acta. 1998,1436(1-2):151-64.
    [119]Zierath JR. Krook A, Wallberg-Henriksson H. Insulin action and insulin resistance in human skeletal muscle[J]. Diabetologia,2000,43(7):821-35.
    [120]Garofalo RS, Orena SJ, Rafidi K, et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta[J]. J Clin Invest,2003,112(2):197-208.
    [121]Stambolic V, Suzuki A, de la Pompa JL, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN[J]. Cell,1998,95(1):29-39.
    [122]曾静波.PTEN、FoxO3α与PI3K-Akt通路在胰岛素抵抗发生机制中所起作用的实验研究.见:王姮,金自孟,李玉秀,等.,主编.内分泌代谢学,2007.
    [123]Carvalho E, Rondinone C, Smith U. Insulin resistance in fat cells from obese Zucker rats--evidence for an impaired activation and translocation of protein kinase B and glucose transporter 4[J]. Mol Cell Biochem,2000,206(1-2):7-16.
    [124]Krook A, Kawano Y, Song XM, et al. Improved glucose tolerance restores insulin-stimulated Akt kinase activity and glucose transport in skeletal muscle from diabetic Goto-Kakizaki rats[J]. Diabetes. 1997,46(12):2110-4.
    [125]Kim YB, Peroni OD, Franke TF, et al. Divergent regulation of Aktl and Akt2 isoforms in insulin target tissues of obese Zucker rats[J]. Diabetes,2000.49(5):847-56.
    [126]Vaag A, Henriksen JE, Beck-Nielsen H. Decreased insulin activation of glycogen synthase in skeletal muscles in young nonobese Caucasian first-degree relatives of patients with non-insulin-dependent diabetes mellitus[J]. J Clin Invest,1992,89(3):782-8.
    [127]Totsuka Y, Nagao Y. Horii T, et al. Physical performance and soleus muscle fiber composition in wild-derived and laboratory inbred mouse strains[J]. J Appl Physiol,2003,95(2):720-7.
    [128]Petersen KF, Dufour S. Savage DB, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome[J]. Proc Natl Acad Sci U S A,2007.104(31):12587-94.
    [129]Guilherme A. Virbasius JV, Puri V. et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes[J]. Nat Rev Mol Cell Biol,2008,9(5):367-77.
    [130]Minokoshi Y, Kahn CR, Kahn BB. Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis[J]. J Biol Chem.2003.278(36):33609-12.
    [131]Nakae J. Park BC. Accili D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmannin-sensitive pathway[J]. J Biol Chem. 1999.274(23):15982-5.
    [132]Zhao X. Gan L. Pan H, et al. Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation-and 14-3-3-dependent and -independent mechanisms[J]. Biochem J.2004.378(Pt3):839-49.
    [133]Hall RK, Yamasaki T, Kucera T, et al. Regulation of phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein-1 gene expression by insulin. The role of winged helix/forkhead proteins[J]. J Biol Chem,2000.275(39):30169-75.
    [134]Altomonte J, Richter A. Harbaran S, et al. Inhibition of Foxol function is associated with improved fasting glycemia in diabetic mice[J]. Am J Physiol Endocrinol Metab,2003.285(4):E718-28.
    [135]Samuel VT, Choi CS, Phillips TG, et al. Targeting foxol in mice using antisense oligonucleotide improves hepatic and peripheral insulin action[J]. Diabetes,2006,55(7):2042-50.
    [136]Matsumoto M, Pocai A, Rossetti L. et al. Impaired regulation of hepatic glucose production in mice lacking the forkhead transcription factor Foxol in liver[J]. Cell Metab,2007.6(3):208-16.
    [137]Buteau J. Spatz ML, Accili D. Transcription factor FoxO1 mediates glucagon-like peptide-1 effects on pancreatic beta-cell mass[J]. Diabetes,2006.55(5):1190-6.
    [138]Okamoto H. Hribal ML. Lin HV, et al. Role of the forkhead protein FoxO1 in beta cell compensation to insulin resistance[J]. J Clin Invest,2006,116(3):775-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700