用户名: 密码: 验证码:
匙羹藤总皂苷干预KK-Ay小鼠胰岛素抵抗及作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文由综述部分和实验部分组成,综述部分由2型糖尿病胰岛素抵抗发病机制研究进展、中药活性成分抗糖尿病作用机制研究进展以及匙羹藤现代药理作用研究进展三部分组成。实验部分由匙羹藤总皂苷对KK-Ay小鼠的干预作用、匙羹藤总皂苷对KK-Ay小鼠脂肪组织胰岛素信号通路的影响两部分组成。
     实验部分一匙羹藤总皂苷对KK-Ay小鼠的干预作用
     目的:观察匙羹藤总皂苷对2型糖尿病KK-Ay小鼠血糖、血脂以及胰岛素抵抗的干预作用。方法:以自发型2型糖尿病胰岛素抵抗小鼠(KK-Ay小鼠)为实验对象,将成模KK-Ay小鼠随机分为模型组、吡格列酮组(每天4.05mg/g体重)、匙羹藤总皂苷组A(每天15g生药材/g体重),选取C57BL/6J小鼠随机分为正常组,匙羹藤总皂苷给药组B(每天15g生药材/g体重),进行以下研究:1、每周观察血糖、体重以及摄食量变化情况;2、第4、8周进行口服葡萄糖耐量(OGTT)实验,计算曲线下面积;3、实验结束后,取血清用生化法测定血总胆固醇、甘油三酯、低密度脂蛋白、高密度脂蛋白浓度,用放免法测定空腹血清胰岛素(Fins)浓度,并计算胰岛素敏感指数(ISI)。结果:①在给药过程中,模型组小鼠在8周实验的过程中空腹血糖呈逐渐上升的趋势。与模型组相比,吡格列酮组小鼠空度血糖在给药5周后开始降低(P<0.05,P<0.01)并持续到实验结束,匙羹藤总皂苷组A在给药4周后开始显著降低(P<0.01),并持续到实验结束;与正常组小鼠相比,模型组血糖显著升高(P<0.01),匙羹藤总皂苷组B小鼠血糖没有变化。②在给药过程中,模型组小鼠体重从实验开始到第6周逐渐增高,从第6周到第8周略有下降趋势。与模型组相比,吡格列酮组小鼠体重从第7周开始降低(P<0.05),匙羹藤总皂苷给药组A从第3周开始降低(P<0.05),从第4周开始显著降低,并持续到实验结束;与正常组小鼠相比,模型组小鼠体重明显升高(P<0.01),匙羹藤总皂苷组B小鼠体重没有变化。③与正常组相比,模型组FPG、Fins水平明显升高(P<0.01),ISI明显降低(P<0.01),匙羹藤总皂苷组BFPG、Fins、ISI没有差异性改变;与模型组相比,吡格列酮组FPG、Fins水平降低(P<0.05,P<0.01),ISI升高(P<0.01),匙羹藤总皂苷组AFPG、Fins水平降低(P<0.05),ISI升高(P<0.05)。④药物干预8周后,与正常组相比,模型组小鼠总胆固醇、甘油三酯、高密度脂蛋白、低密度脂蛋白均明显高于(P<0.01),匙羹藤总皂苷给药组B血脂没有差异性变化;与模型组相比,匙羹藤总皂苷组A甘油三酯、低密度脂蛋白有所降低(P<0.05),总胆固醇,高密度脂蛋白水平没有明显改变。⑤第四周:与正常组相比,模型组曲线下面积(AUC)明显升高(P<0.01),匙羹藤总皂苷组B没有差异性改变;与模型组相比,吡格列酮组AUC降低(P<0.05),匙羹藤总皂苷组AAUC明显降低(P<0.01)。第八周:与正常组相比,模型组AUC明显升高(P<0.01),匙羹藤总皂苷组B没有差异性改变;与模型组相比,吡格列酮组AUC明显降低(P<0.01),匙羹藤总皂苷组A AUC明显降低(P<0.01)。结论:匙羹藤总皂苷对具有胰岛素抵抗特征的2型糖尿病KK-Ay小鼠有治疗作用,并推测与改善胰岛素抵抗有关。
     实验部分二匙羹藤总皂苷对KK-Ay小鼠脂肪组织胰岛素信号通路的影响
     目的:探讨匙羹藤总皂苷对2型糖尿病KK-Ay小鼠脂肪组织胰岛素信号通路的影响。方法:以27只自发型2型糖尿病胰岛素抵抗小鼠(KK-Ay小鼠)为实验对象,将成模KK-Ay小鼠随机分为模型组、吡格列酮组(每天4.05mg/g体重)、匙羹藤总皂苷组A(每天15g生药材/g体重),选取9只C57BL/6J小鼠随机分为正常组,进行以下研究:1、采用蛋白免疫印迹法测定脂肪组织中蛋白激酶B (AKT), P-AKT (Ser473), P-AKT (Thr308)、PDK-1蛋白表达量;2、采用实时荧光PCR法测定脂肪组织中PPAR γ mRNA、 APNmRNA、PI3κ-p85mRNA、PTENmRNA、GmT4mRNA、CAPmRNA的表达量。结果:①与正常组相比,模型组脂肪组织PPAR γ mRNA表达量降低(P<0.01);与模型组相比,吡格列酮组、匙羹藤总皂苷组A小鼠脂肪组织PPAR γ mRNA均增加(P<0.05)。②与正常组相比,模型组脂肪组织APNmRNA表达量降低(P<0.05);与模型组相比,吡格列酮组、匙羹藤总皂苷组A小鼠脂肪组织APNmRNA表达量均增加(P<0.01)。③与正常组相比,模型组脂肪组织PI3κ-p85mRNA表达量降低(P<0.05);与模型组相比,匙羹藤总皂苷组A小鼠脂肪组织PI3κ-p85mRNA增加(P<0.05)。④与正常组相比,模型组P-AKT (Thr308)蛋白表达量显著降低(P<0.01);与模型组相比,吡格列酮组小鼠脂肪组织P-AKT (Thr308)蛋白表达量升高(P<0.05),匙羹藤总皂苷组A小鼠脂肪组织P-AKT (Thr308)蛋白表达量显著升高(P<0.01)。与正常组相比,模型组P-AKT (Ser473)蛋白表达量降低(P<0.05);与模型组相比,匙羹藤总皂苷组A小鼠脂肪组织P-AKT (Ser473)蛋白表达量升高(P<0.05)。与正常组相比,模型组AKT第308位Thr磷酸化程度显著降低(P<0.01);与模型组相比,吡格列酮组、匙羹藤总皂苷组A小鼠AKT第308位Thr磷酸化程度均显著升高(P<0.01)。与正常组相比,模型组AKT第473位Ser磷酸化程度显著降低(P<0.01);与模型组相比,匙羹藤总皂苷组A小鼠AKT第473位Ser磷酸化程度显著升高(P<0.01)。⑤与正常组相比,模型组脂肪组织PDK-1蛋白表达量显著增加(P<0.01);与模型组相比,吡格列酮组小鼠脂肪组织PDK-1蛋白表达量降低(P<0.05),匙羹藤总皂苷组A小鼠脂肪组织PDK1蛋白表达量显著降低(P<0.01)。⑥与正常组相比,模型组脂肪组织PTENmRNA表达量没有显著变化,但是与模型组相比,吡格列酮组、匙羹藤总皂苷组A小鼠脂肪组织PTENmRNA降低(P<0.05)。⑦与正常组相比,模型组脂肪组织GluT4mRNA表达量降低(P<0.05),与模型组相比,吡格列酮组、匙羹藤总皂苷组A小鼠脂肪组织GluT4mRNA显著升高(P<0.01)。⑧与正常组相比,模型组脂肪组织CAPmRNA表达量显著降低(P<0.01),与模型组相比,吡格列酮组、匙羹藤总皂苷组A小鼠脂肪组织CAPmRNA显著升高(P<0.01)。结论:匙羹藤总皂苷可通过作用于脂肪组织胰岛素介导的信号通路缓解胰岛素抵抗。
The present work is composed of two parts:The parts of review and experiment. The review is composed of there parts:The progress of insulin resistance in the pathogenesis of type2diabetes; Progress of Anti-diabetes Mechanism of The active ingredients of Chinese medicine; Research on the modern pharmacological of Gymnema sylvestre. The experiment is composed of two parts:The intervention of Gymnema sylvestre total saponins on KK-Ay mice; Effects of Gymnema sylvestre total saponins on KK-Ay mice in signal transduction pathway
     1. The intervention of Gymnema sylvestre total saponins in KK-Ay mice
     Objective:To investigate the effects of Gymnema sylvestre total saponins in T2DM mice. Methods:27KK-Ay mice were divided randomly according to body weight level into Model group, group A of Gymnema sylvestre total saponins、Pioglitazone group and18normal C57BL/6J mice as blank group and group B of Gymnema sylvestre total saponins. Fasting plasma glucose (FPG) and the weights of all mice were tested at every weekend, OGTTs were tested at4th,8th weekend and at the end of the experiment all animals were tested FPG, triglyceride (TG), cholesterol total (TC), low densith lipoprotein (LDL-C), high densith lipoprotein (HDL-C), and fasting insulin level (Fins) for evaluating Insulin Sensitivity Index (ISI). Results:①During the admmistration, fasting blood glucose of the mice in model group showed a rising trend in the8-week course of the experiment. Compared with model group, the FPG of KK-Ay mice after administration of pioglitazone began to decrease form the5th weekend{P<0.05, P<0.01) to the end; after administration of Gymnema sylvestre total saponins, the FPGs began to decrease form the4th weekend (P<0.01) to the end. Compared with blank group, the FPG of C57BL/6J mice after administration of Gymnema sylvestre total saponins showed no changing, the FPG of KK-Ay mice in model group showed higher(.P<0.01).②During the administration, the body weights of the mice in model group showed a rising trend in the8-week course of the experiment. Compared with model group, the body weights of KK-Ay mice after administration of pioglitazone began to decrease form the7th weekend (P<0.05) to the end, after administration of pioglitazone began to decrease form the3th weekend (P<0.05, P<0.01) to the end. Compared with blank group, the body weights of C57BL/6J mice after administration of Gymnema sylvestre total saponins showed no changing, the body weights of KK-Ay mice in model group showed higher(P<0.01).③Compared with blank group, model group FPG the Fins level significantly increased (P <0.01), the ISI was significantly lower (P<0.01), FPG, Fins, ISI in group B of Gymnema sylvestre total saponin showed no changing; compared with model group, the pioglitazone group FPG, Fins level decreased (P<0.05, P<0.01), ISI increased(P<0.01), FPG, FinS of the Gymnema sylvestre total saponin group A were decreased (P<0.05) the ISI were elevated (P<0.05).①After8weeks, compared with the blank group,the levels of total cholesterol, triglycerides, high-density lipoprotein, low-density lipoprotein were significantly higher (P<0.01) in model group, showed no changing in group B of Gymnema sylvestre total saponin. Compared with the model group, the levels of triglyceride and LDL-c in Gymnema sylvestre total saponins A were decreased (P<0.05).②Week4:Compared with blank group, model group AUC was significantly higher (P<0.01), Gymnema sylvestre total saponin group B did not change in difference; compared with the model group, the AUC of pioghtazone group (P<0.05) were lower and the AUC in Gymnema sylvestre total saponins group A were significantly; lower (P<0.01). Week8:Compared with blank group, model group AUC was significantly higher (P<0.01), Gymnema sylvestre total saponin group B did not change in difference; compared with the model group, the AUC of pioghtazone group and Gymnema sylvestre total saponins group A were significantly lower (P<0.01). Conclusion:The Gymnema sylvestre total saponins have a therapeutic effect in type2diabetes, and speculated that the effects were related with the improving of insulin resistance.
     2. The effects of Gymnema sylvestre total saponin on signal pathway in adipose tissue of KK-Ay mice
     Objective:To investigate the molecular mechanism of Gymnema sylvestre total saponin on insulin resistance in adipose tissue of KK-Ay mice Methods:27KK-Ay mice were divided randomly according to body weight level into Model group, group A of Gymnema sylvestre total saponins, Pioghtazone group and9normal C57BL/6J mice as blank group. The expressions of AKT, P-AKT (Ser473), P-AKT (Thr308), PDK-1in adipose tissue were determined using Western blotting. The expressions of AKT, P-AKT (Ser473), P-AKT (Thr308)、PDK-1in adipose tissue were determined using Western blotting. The expressions of PPARγmRNA、APNmRNA、PI3K-p85mRNA、PTENmRNA、GluT4mRNA、CAPmRNA were determined using real-time PCR. Results:①Compared with blank group, the expressions of PPARymRNA in adipose tissue of model group were reduced (P<0.01); compared with model group, the expressions of PPARymRNA in adipose tissue of pioghtazone group and the Gymnema sylvestre the total saponins group A were increased (P <0.05).②Compared with blank group, the expressions of APNmRNA in adipose tissue of model group were reduced (P<0.05); compared with model group, the expressions of APNmRNA in adipose tissue of pioglitazone group and the Gymnema sylvestre the total saponins group A were increased (P<0.01).③Compared with blank group, the expressions of PI3κ-p85mRNA in adipose tissue of model group were reduced (P<0.05); compared with model group, the expressions of PI3κ-p85mRNA in adipose tissue of Gymnema sylvestre the total saponins group A were increased (P<0.05).④Compared with blank group, the expressions of P-AKT (Thr308) in adipose tissue of model group were reduced (P<0.01; compared with model group, the expressions of P-AKT (Thr308) in adipose tissue of pioglitazone group and Gymnema sylvestre the total saponins group A were increased (P <0.05, P<0.01); Compared with blank group, the expressions of P-AKT(Ser473) in adipose tissue of model group were reduced (P<0.05); compared with model group, the expressions of P-AKT (Ser473) in adipose tissue of Gymnema sylvestre the total saponins group A were increased (P<0.05); Compared with blank group, the rates of P-AKT (Thr308)/AKT in adipose tissue of model group were reduced (P<0.01); compared with model group, the rates of P-AKT (Thr308)/AKT in adipose tissue of pioglitazone group and Gymnema sylvestre the total saponins group A were increased (P<0.01); Compared with blank group, the rates of P-AKT (Ser473)/AKT in adipose tissue of model group were reduced (P<0.01); compared with model group, he rates of P-AKT(Ser473)/AKT in adipose tissue of Gymnema sylvestre the total saponins group A were increased (P<0.01).⑤Compared with blank group, the expressions of PDK-1in adipose tissue of model group were increased (P<0.01); compared with model group, the expressions of PDK-1in adipose tissue of pioglitazone group and Gymnema sylvestre the total saponins group A were decreased (P<0.05, P <0.01).⑥Compared with blank group, the expressions of PTENmRNA in adipose tissue of model group showed no changing; compared with model group, the expressions of PTENmRNA in adipose tissue of pioglitazone group and Gymnema sylvestre the total saponins group A were decreased (P<0.05).⑦Compared with blank group, the expressions of GluT4mRNA in adipose tissue of model group were reduced (P<0.05); compared with model group, the expressions of GluT4mRNA in adipose tissue of pioglitazone group and the Gymnema sylvestre the total saponins group A were increased (P<0.01).⑤Compared with blank group, the expressions of CAPmRNA in adipose tissue of model group were reduced (P <0.01); compared with model group, the expressions of CAPmRNA in adipose tissue of pioglitazone group and the Gymnema sylvestre the total saponins group A were increased (P <0.01).Conclusion:Gymnema sylvestre total saponins improved insulin resistance via acting on the signal pathway mediated by insulin in adipose.
引文
[1]王春怡.黄芪散干预2型糖尿病胰岛素抵抗机制及制剂基础研究[D].广州中医药大学,2009.
    [2]中国2型糖尿病防治指南(2010年版)[J].中国糖尿病杂志,2012,(01):81-117.
    [3]王红霞,梁秀芬,张玉敏.我国2型糖尿病的流行病学及危险因素研究[J].内蒙古医学杂志,2006,(02):156-159.
    [4]JieWp, XiangKS, ChenL,et al. Epidenmiologie study on metabolie syndrome innormal and overweight Chinese in Shanghai[J].Diabetes,2000:49(Suppll):A148.
    [5]张旭东,张雷.胰岛素抵抗与2型糖尿病[J].解剖科学进展,2008,(01):92-95.
    [6]李全民,张素华,任伟,等.胰岛素抵抗大鼠葡萄糖-6-磷酸酶的活性及基因表达变化[J].实用医学杂志,2005,(22):2487-2489.
    [7]陈金仲,邵豪.脂代谢紊乱与胰岛素抵抗的相关研究进展[J].中国实用医药,2008,(07):147-149.
    [8]梁真,唐菊英,肖辉盛,严励,程桦.新诊断2型糖尿病病人脂代谢紊乱状态与胰岛素抵抗及胰岛素分泌缺陷[J].临床内科杂志,2004,(06):375-377.
    [9]王芳,王翔.2型糖尿病患者脂代谢紊乱与胰岛素抵抗关系探讨[J].陕西医学杂志,2005,(12):57-58+61.
    [10]杨曦,刘红.胰岛素抵抗、血脂异常与氧化应激[J].实用医学杂志,2007,(15):2440-2442.
    [11]Lingohr MK, Buettner R, Rhodes CJ,et al. Pancreatic beta-cell growth and survival--a role in obesity-linked type 2 diabetes [J]. Trends Mol Med.2002 Aug;8(8):375-84.
    [12]王雪梅.游离脂肪酸与2型糖尿病[J].医学综述,2005,(10):930-932.
    [13]林媛媛,蒙碧辉.游离脂肪酸异常蓄积与骨骼肌胰岛素抵抗[J].广西医科大学学报,2006,(04):683-685.
    [14]Griffin ME, Marcucci MJ, Cline GW,et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade [J]. Diabetes.1999 Jun;48(6):1270-1274.
    [15]Weigert C, Klopfer K, Kausch C,et al. Palmitate-induced activation of the hexosamine pathway in human myotubes:increased expression of GluTamine:fructose-6-phosphate aminotransferase[J]. Diabetes.2003 Mar;52(3):650-6.
    [16]Previs SF, Withers DJ, Ren JM,et al. Contrasting effects of IRS-1 versus IRS-2 gene disruption on carbohydrate and lipid metabolism in vivo [J]. J Biol Chem.2000 Dec 15;275(50):38990-38994.
    [17]Roden M, Price TB, Perseghin G,et al. Mechanism of free fatty acid-induced insulin resistance in humans [J]. J Clin Invest.1996 Jun 15;97(12):2859-2865.
    [18]Anai M, Funaki M, Ogihara T,et al. Altered expression levels and impaired steps in the pathway to phosphatidylinositol 3-kinase activation via insulin receptor substrates 1 and 2 in Zucker fatty rats[J]. Diabetes.1998 Jan;47(1):13-23.
    [19]Xiang A, Uchida Y, Nomura A,et al. Altered expression levels and impaired steps in the pathway to phosphatidylinositol 3-kinase activation via insulin receptor substrates 1 and 2 in Zucker fatty revolvement of thromboxane A(2) in airway mucous cells in asthma-related cough[J]. J Appl Physiol.2002,92(2):763-770.
    [20]Andreelli F, Laville M, Ducluzeau PH,et al. Defective regulation of phosphatidylinositol-3-kinase gene expression in skeletal muscle and adipose tissue of non-insulin-dependent diabetes mellitus patients [J]. Diabetologia,1999,42(3):358-64.
    [21]Watson RT, Pessin JE. Intracellular organization of insulin signaling and GLUT4 translocation [J]. Recent Prog Horm Res.,2001,56:175-93.
    [22]Zisman A, Peroni OD, Abel ED,et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance [J]. Nat Med,2000, 6(8):924-8.
    [23]Wang H, Chen J, Chai J. A study of mRNA expression of glucose transporter gene in rats with diabetes mellitus[J]. Chin Med J (Engl),1995,108(12):892-4.
    [24]Franckhauser S, Munoz S, Elias I,et al. Adipose overexpression of phosphoenolpyruvate carboxykinase leads to high susceptibility to diet-induced insulin resistance and obesity [J]. Diabetes,2006,55(2):273-80.
    [25]万学东,王西明,夏炎枝,等.游离脂肪酸引起肝细胞胰岛素抵抗及其机制的研究[J].上海医学,2005,(11):965-967.
    [26]郭启煜.游离脂肪酸导致胰岛素抵抗的机制[J].国外医学(生理、病理科学与临床分册),2002,(01):80-83.
    [27]Lam TK, Yoshii H, Haber CA,et al. Free fatty acid-induced hepatic insulin resistance:a potential role for protein kinase C-delta [J]. Am J Physiol Endocrinol Metab, 2002,283(4):E682-91.
    [28]Wang H, Chen J, Chai J. A study of mRNA expression of glucose transporter gene in rats with diabetes mellitus[J]. Chin Med J (Engl),1995,108(12):892-4.
    [29]卢雁,韩萍,赵晟,等.游离脂肪酸对肝脏氧化应激及胰岛素抵抗的影响[J].世界华人消化杂志,2009,(23):2405-2408.
    [30]King GL. The role of inflammatory cytokines in diabetes and its complications [J]. J Periodontol.2008,79(8):1527-1534.
    [31]沈岚,陆付耳.炎症反应与2型糖尿病[J].微循环学杂志,2004,(04):63-65+68.
    [32]O'Sullivan LA, Liongue C, Lewis RS,et al.Cytokine receptor signaling through the Jak-Stat-Socs pathway in disease [J]. Mol Immunol,2007,pr;44(10):2497-506.
    [33]Hotamisligil GS. Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes [J]. Diabetes,2005,54 Suppl 2.-S73-8.
    [34]张豫文,洪洁.炎症因子与胰岛素抵抗[J].诊断学理论与实践,2010,(01):90-94.
    [35]Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha:a key component of the obesity-diabetes link[J]. Diabetes,1994,43(11):1271-8.
    [36]Hotamisligil GS. Inflammatory pathways and insulin action[J]. Int J Obes Relat Metab Disord,2003,27 Suppl 3:S53-5.
    [37]Gupta A, Ten S, Anhalt H. Serum levels of soluble tumor necrosis factor-alpha receptor 2 are linked to insulin resistance and glucose intolerance in children [J]. J Pediatr Endocrinol Metab,2005,18(1):75-82.
    [38]Arner P. The adipocyte in insulin resistance:key molecules and the impact of the thiazolidinediones [J]. Trends Endocrinol Metab,2003,14(3):137-145.
    [39]张静漪,刘树琴.肿瘤坏死因子-α与胰岛素抵抗和2型糖尿病[J].国外医学.内分泌学分册,2004,(03):175-177.
    [40]肖燕爽,李巧云,谢远芳,等.2型糖尿病胰岛素抵抗与炎症相关因子的研究[J].实用糖尿病杂志,2012,(01):11-13.
    [41]Lorenzo M, Fernandez-Veledo S, Vila-Bedmar R,et al. Insulin resistance induced by tumor necrosis factor-alpha in myocytes and brown adipocytes [J]. J Anim Sci.2008,86(14 Suppl):E94-104.
    [42]Path G, Bornstein SR, Gurniak M,et al. Human breast adipocytes express interleukin-6 (IL-6) and its receptor system:increased IL-6 production by beta-adrenergic activation and effects of IL-6 on adipocyte function [J]. J Clin Endocrinol Metab,2001,86(5):2281-2288.
    [43]Banks WA, Willoughby LM, Thomas DR,et al. Insulin resistance syndrome in the elderly: assessment of functional, biochemical, metabolic, and inflammatory status [J]. Diabetes Care, 2007,30(9):2369-2373.
    [44]Senn JJ, Klover PJ, Nowak IA,et al. Interleukin-6 induces cellular insulin resistance in hepatocytes [J]. Diabetes,2002,51(12):3391-3399.
    [45]Fasshauer M, Kralisch S, Klier M,et al. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes [J]. Biochem Biophys Res Commun,2003,301(4):1045-1050.
    [46]Arner P. Insulin resistance in type 2 diabetes--role of the adipokines [J]. Curr Mol Med, 2005,5(3):333-339.
    [47]Ruan H, Hacohen N, Golub TR,et al. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory [J]. Diabetes.2002 May;51(5):1319-1336.
    [48]张豫文,洪洁.炎症因子与胰岛素抵抗[J].诊断学理论与实践,2010,(01):90-94.
    [49]Quinn L. Mechanisms in the development of type 2 diabetes mellitus [J]. J Cardiovasc Nurs,2002,16(2):1-16
    [50]Shao J, Yamashita H, Qiao L,et al. Phosphatidylinositol 3-kinase redistribution is associated with skeletal muscle insulin resistance in gestational diabetes mellitus [J]. Diabetes, 2002,51(1):19-29.
    [51]王舟,童钟杭.胰岛素受体异常与胰岛素抵抗[J].国外医学(内科学分册),1991,(08):358-360+357.
    [52]Costanzo BV, Trischitta V, Di Paola R,et al. The Q allele variant (GLN121) of membrane glycoprotein PC-1 interacts with the insulin receptor and inhibits insulin signaling more effectively than the common K allele variant (LYS121) [J]. Diabetes,2001,50(4):831-836.
    [53]Kennedy BP, Ramachandran C. Protein tyrosine phosphatase-1B in diabetes[J]. Biochem Pharmacol,2000,60(7):877-883.
    [54]Costanzo BV, Trischitta V, Di Paola R,et al. The Q allele variant (GLN121) of membrane glycoprotein PC-1 interacts with the insulin receptor and inhibits insulin signaling more effectively than the common K allele variant (LYS121) [J]. Diabetes,2001,50(4):831-836.
    [55]Goldstein BJ, Ahmad F, Ding W,et al. Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases [J]. Mol Cell Biochem,1998,182(1-2):91-99.
    [56]Lee YH, White MF. Insulin receptor substrate proteins and diabetes [J]. Arch Pharm Res,2004,27(4):361-370.
    [57]李慧颖,崔广智,张岩.2型糖尿病胰岛素信号转导途径[J].长春中医药大学学报,2008(3):93-94.
    [58]迟毓婧,李晶,管又飞,等.P13K-Akt信号传导通路对糖代谢的调控作用[J].中国生物化学与分子生物学报,2010,10:879-885.
    [59]Lochhead PA, Coghlan M, Rice SQ, et al. Inhibition of GSK-3 selectively reduces glucose-6-phosphatase and phosphatase and phosphoenolypyruvate carboxykinase gene expression [J].Diabetes,2001,50(5):937-946
    [60]Zorzano A,et al. Role of plasma membrane transporters in muscle metabolism[J].Biochem J.2000,349(3):667-688.
    [61]张旭,王姮.胰岛素调节下GLUT-4储存囊泡与细胞膜融合机制的研究进展[J].国际内分泌代谢杂志,2006,06:378-381.
    [62]郭仪,石岩.葡萄糖转运蛋白4转位与胰岛素抵抗[J].辽宁中医药大学学报,2007,04:63-64.
    [63]曹永红,王长江,贾敬华,等.吡格列酮对3T3-L1细胞葡萄糖转运蛋白4表达的影响[J].安徽医科大学学报,2007,02:186-188.
    [64]薛红丽,张曾,王文健,等.益气增敏方对2型糖尿病大鼠骨骼肌组织葡萄糖转运蛋白4表达的影响[J].中西医结合学报,2011,10:1133-1137.
    [65]王莉.中药复方益糖康对2型糖尿病大鼠骨骼肌GLUT4含量的影响及转位机制的研究[D].辽宁中医药大学,2008.
    [66]葛斌,谢梅林,顾振纶,等.AMPK作为治疗2型糖尿病新靶点的研究进展[J].中国药理学通报,2008,05:580-583.
    [67]方飞.桑叶有效部位改善HepG2胰岛素抵抗及其机制的研究[D].华南理工大学,2012.
    [68]刘金凤,彭红丽.黄芩苷对链脲佐菌素诱导的糖尿病模型大鼠血糖和血脂及腺苷酸活化蛋白激酶的影响[J].中国药理学与毒理学杂志,2011,02:145-150.
    [69]乔巧华AMPK-ACC-CPT信号通路对脓毒症大鼠游离脂肪酸代谢的影响[D].浙江大学,2010.
    [70]Schwartz AV, Vittinghoff E, Sellmeyer DE,et al. Diabetes-related complications, glycemic control, and falls in older adults [J]. Diabetes Care,2008,31(3):391-396.
    [71]Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance [J]. Nature,2006,440(7086):944-948.
    [72]Ikeda Y, Olsen GS, Ziv E,et al. ellular mechanism of nutritionally induced insulin resistance in Psammomys obesus:overexpression of protein kinase Cepsilon in skeletal muscle precedes the onset of hyperinsulinemia and hyperglycemia [J]. Diabetes,2001,50(3):584-592.
    [73]Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance [J]. J Clin Invest, 2006,116 (7):1793-1801.
    [74]孙晓菲,刘红.氧化应激激活信号转导通路与胰岛素抵抗[J].内科,2008,(06):889-891.
    [75]Kozlovsky N, Rudich A, Potashnik R,et al. Transcriptional activation of the GluTl gene in response to oxidative stress in L6 myotubes [J]. J Biol Chem,1997,272(52):33367-33372.
    [76]张冬燕,刘保林,刘康.氧化应激与胰岛素抵抗分子机制之联系[J].海峡药学,2012,(09):1-5.
    [77]Drews G, Krippeit-Drews P,et al. Oxidative stress and beta-cell dysfunction [J]. Pflugers Arch,2010,460(4):703-718.
    [66]时丽丽,张莉,谭初兵,等.线粒体功能损伤与胰岛素抵抗[J].中国药理学通报, 2012,(11):1481-1486.
    [78]Yamauchi T, Kamon J, Waki H,et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis [J]. J Biol Chem, 2003,278(4):2461-2468.
    [79]Lihn AS,(?)stergard T, Nyholm B,et al. Adiponectin expression in adipose tissue is reduced in first-degree relatives of type 2 diabetic patients [J]. Am J Physiol Endocrinol Metab,2003,284(2):E443-8
    [80]Yamauchi T, Kamon J, Minokoshi Y,et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase [J]. Nat Me,2002,8(11):1288-1295.
    [81]Wu X, Motoshima H, Mahadev K,et al. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes [J]. Diabetes,2003,52(6):1355-1363.
    [82]Maeda N, Shimomura I, Kishida K,et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30 [J]. Nat Med,2002,8(7):731-737.
    [83]周瑞秀,王静,逢力男.脂联素及其受体与胰岛素抵抗的研究进展[J].医学综述,2008,(04):515-517.
    [84]崔丽娟,都健.脂联素与炎症及胰岛素抵抗关系的研究进展[J].国际内分泌代谢杂志,2006,(S1):44-46.
    [85]Yamauchi T, Kamon J, Waki H,et al. Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis [J]. J Biol Chem, 2003,278(4):2461-2468.
    [86]曾俊,杨刚毅.脂肪细胞因子与胰岛素抵抗的关系及其机制研究新进展[J].成都医学院学报,2011,(01):78-82.
    [87]Le Lay S, Dugail I. Connecting lipid droplet biology and the metabolic syndrome [J]. Prog Lipid Res,2009,48(3-4):191-195.
    [88]夏道曼,陈秋.脂肪细胞因子与胰岛素抵抗关系研究进展[J].中国公共卫生,2009,(12):1507-1509.
    [89]李慧,邹大进,张乐之,等.血清抵抗素水平与肥胖及2型糖尿病的关系[J].中华糖尿病杂志,2004,(03):48-50.
    [90]Nagaev I, Smith U. Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle [J]. Biochem Biophys Res Commun,2001,285(2):561-564.
    [91]Barnes KM, Miner JL. Role of resistin in insulin sensitivity in rodents and humans [J]. Curr Protein Pept Sci,2009,10(1):96-107.
    [92]Wanders RJ, Komen J, Ferdinandusse S. Phytanic acid metabolism in health and disease [J]. Biochim Biophys Acta,2011,1811 (9):498-507.
    [93]Ritz P, Berrut G. Mitochondrial function, energy expenditure, aging and insulin resistance [J]. Diabetes Metab,2005,31 Spec No 2:5S67-5S73.
    [94]Watson ML, Macrae K, Marley AE,et al. Chronic effects of palmitate overload on nutrient-induced insulin secretion and autocrine signalling in pancreatic MIN6 beta cells [J]. PLoS One,2011,6(10):e25975.
    [95]Shaw CS, Clark J, Wagenmakers AJ. The effect of exercise and nutrition on intramuscular fat metabolism and insulin sensitivity [J]. Annu Rev Nutr,2010,30:13-34.
    [96]Daniele SM, Montenegro SM, Tarres MC,et al. The eSS rat, a nonobese model of disordered glucose and lipid metabolism and fatty liver [J]. Diabetol Metab Syndr,2010,2:15.
    [97]Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes [J]. Science, 2005,307 (5708):384-387.
    [98]Bonnard C, Durand A, Peyrol S,et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice [J]. J Clin Invest,2008,118(2):789-800.
    [99]Trombetta ES, Parodi AJ. Quality control and protein folding in the secretory pathway [J]. Annu Rev Cell Dev Biol,2003,19:649-676.
    [100]Ye R, Jung DY, Jun JY,et al. Grp78 heterozygosity promotes adaptive unfolded protein response and attenuates diet-induced obesity and insulin resistance [J]. Diabetes,2010 59(1):6-16.
    [101]方朝晖.内质网应激与2型糖尿病[J].安徽医药,2010,(01):15-16.
    [102]Yang R, Trevillyan JM. c-Jun N-terminal kinase pathways in diabetes [J]. Int J Biochem Cell Biol,2008,40(12):2702-2706.
    [103]Kaneto H, Nakatani Y, Kawamori D,et al. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic beta-cell dysfunction and insulin resistance [J]. Int J Biochem Cell Biol,2006,38(5-6):782-793.
    [104]官滨斌,王丽静,刘小莺,等.内质网应激可介导3T3-L1脂肪细胞胰岛素抵抗[J].福建医科大学学报,2012,(03):165-168.
    [1]张家庆.最近几年中医药防治糖尿病研究进展[J].中西医结合学报,2007,5(4):373-377.
    [2]]秦灵灵,徐暾海,刘铜华.天然药物中黄酮类化合物抗糖尿病作用机制研究进展[A].中华中医药学会糖尿病分会.第十四次全国中医糖尿病大会论文集[C].中华中医药学会 糖尿病分会:,2012:7.
    [3]王勇,赵海燕.植物黄酮类治疗糖尿病药理机制的研究进展[J].医学综述,2010(4):612-615.
    [4]Soto C, Recoba R, Barron H, et al. Silymarin increases antioxidant enzymes in alloxan-induced diabetes in rat pancreas[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2003,136(3):205-212.
    [5]赵海燕,杨少娟,马永平,等.甘草黄酮对2型糖尿病大鼠抗氧化能力的影响[J].中国现代医学杂志,2011,21(35):4359-4362.
    [6]Vessal M, Hemmati M, Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats[J]. Comp Biochem Physiol C Toxicol Pharmacol,2003, 135C(3):357-364.
    [7]杨新波,黄正明,曹文斌,等.水芹黄酮的抗糖尿病作用(英文)[J].Acta Pharmacologica Sinica,2000,21(3):239-242.
    [8]Yokozawa T, Kim H Y, Cho E J, et al. Antioxidant effects of isorhamnetin 3, 7-di-O-beta-D-glucopyranoside isolated from mustard leaf (Brassica juncea) in rats with streptozotocin-induced diabetes[J]. J Agric Food Chem,2002,50(19):5490-5495.
    [9]郭舜民.天然药降血糖成分的研究进展[J].海峡药学,2000,12(1):1-5.
    [10]Waltner-Law M E, Wang X L, Law B K, et al. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production[J]. J Biol Chem,2002, 277(38):34933-34940.
    [11]Hnatyszyn O, Mino J, Ferraro G, et al. The hypoglycemic effect of Phyllanthus sellowianus fractions in streptozotocin-induced diabetic mice[J]. Phytomedicine,2002, 9(6):556-559.
    [12]Ahmad M, Akhtar M S, Malik T, et al. Hypoglycaemic action of the flavonoid fraction of Cuminum nigrum seeds[J]. Phytother Res,2000,14(2):103-106.
    [13]Matsui T, Tanaka T, Tamura S, et al. alpha-Glucosidase inhibitory profile of catechins and theaflavins[J].J Agric Food Chem,2007,55(1):99-105.
    [14]Kim J H, RyuYB, Kang N S, et al. Glycosidase inhibitory flavonoids from Sophora flavescens[J]. Biol Pharm Bull,2006,29(2):302-305.
    [15]Lee D S, Lee S H. Genistein, a soy isoflavone, is a potent alpha-glucosidase inhibitor[J]. FEBS Lett,2001,501(1):84-86.
    [16]全吉淑,尹学哲,金泽武道,等.大豆异黄酮对α-葡萄糖苷酶和α-淀粉酶的抑制作用[J].延边大学医学学报,2001,24(4):239-242.
    [17]俞灵莺,李向荣,等.桑叶总黄酮对糖尿病大鼠小肠双糖酶的抑制作用[J].中华内分泌代谢杂志,2002,18(4):313-315.
    [18]LEI H, LUF, DONG H, etal.华中科技大学学报(医学)(英德文版),2011,31(2):185-189.
    [19]Lei H, Lu F, Dong H, et al. Genistein reverses free fatty acid-induced insulin resistance in HepG2 hepatocytes through targeting JNK[J]. J Huazhong Univ Sci Technolog Med Sci,2011,31(2):185-189.
    [20]程昊,李俊.翻白草黄酮对2型糖尿病胰岛素抵抗大鼠保护作用[J].中国实用医药,2011,6(35):248-250.
    [21]陶树高,谭海荣,潘甜美,等.葛根素增强2型糖尿病-胰岛素抵抗大鼠胰岛素敏感性和抗氧化作用[J].医药世界,2006(7):61-64.
    [22]刘江,童智,张再超, 等.山楂叶总黄酮防治大鼠胰岛素抵抗及脂肪肝的实验研究[J].华东师范大学学报:自然科学版,2008(6):127-132.
    [23]唐嘉航,叶希韵,刘江,等.银杏叶总黄酮对胰岛素抵抗大鼠糖脂代谢和肝功能的影响[J].上海交通大学学报:医学版,2009,29(2):150-153.
    [24]李燕,巫冠中,张巨松,等.鹰嘴豆异黄酮提取物对糖尿病小鼠血糖和氧化-抗氧化态的效应[J].中国组织工程研究与临床康复,2007,11(38):7625-7629.
    [25]Nedvidkova J, Smitka K, Kopsky V, et al. Adiponectin, an adipocyte-derived protein[J]. PhysiolRes,2005,54(2):133-140.
    [26]Mantzoros C S, Moschos S J. Leptin:in search of role(s) in human physiology and pathophysiology[J]. Clin Endocrinol (Oxf),1998,49(5):551-567.
    [27]李楠,范颖,贾旭鸣,等.黄芪不同有效部位对糖尿病模型大鼠血清胰岛素、脂联素的影响[J].中国实验方剂学杂志,2011,17(5):144-146.
    [28]Aoki F, Honda S, Kishida H, et al. Suppression by licorice flavonoids of abdominal fat accumulation and body weight gain in high-fat diet-induced obese C57BL/6J mice[J]. Biosci Biotechnol Biochem,2007,71(1):206-214.
    [29]Staehr P,Hother-Nielsen O, Beck-Nielsen H. The role of the liver in type 2 diabetes[J]. Rev Endocr Metab Disord,2004,5(2):105-110.
    [30]Moller D E. New drug targets for type 2 diabetes and the metabolic syndrome[J]. Nature,2001,414(6865):821-827.
    [31]赵文惠,萧建中,杨文英,等.肝脏胰岛素抵抗与肝糖输出调控基因表达的关系[J].中华肝脏病杂志,2006,14(1):45-48.
    [32]Guigas B, Naboul si R, Villanueva GR, et al.The flavonoid silibin in decreases glucose-6-phosphatehydrolysis in perfused rat hepatocytes by aninhibitory effect on glucose-6-phosphatase[J].Cell Physiol Biochem,2007,20(6):925-934.
    [33]Doble B W, Woodgett J R. GSK-3:tricks of the trade for a multi-tasking kinase[J]. J Cell Sci,2003,116(Pt 7):1175-1186.
    [34]洪畋,毕会民,毕欣.葛根素对胰岛素抵抗大鼠肝脏中GSK-3表达的影响[J].中国临床药理学与治疗学,2006,11(2):207-210.
    [35]雷红伟.马齿苋黄酮有效部位改善胰岛素抵抗的作用机理研究[D].华中科技大学中西结合基础,2010.
    [36]Liu I M, Liou S S, Cheng J T. Mediation of beta-endorphin by myricetin to lower plasma glucose in streptozotocin-induced diabetic rats[J]. J Ethnopharmacol,2006, 104(1-2):199-206.
    [37]Ueda M, Nishiumi S, Nagayasu H, et al. Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle[J]. Biochem Biophys Res Commun,2008,377(1):286-290.
    [38]娄少颖,刘毅,陈伟华,等.蒲黄总黄酮对Palmitate培养下的C2C12骨骼肌细胞葡萄糖代谢的影响[J].上海中医药大学学报,2008,(02):39-42.
    [39]孙卫,郑学芝,崔荣军,等.葛根素对2型糖尿病大鼠胰岛素抵抗及脂肪分化相关蛋白基因表达的影响[J].医药导报,2008,27(10):1159-1161.
    [40]李娟娟,毕会民.葛根素对胰岛素抵抗大鼠脂肪细胞葡萄糖转运蛋白4的影响[J].中国临床药理学与治疗学,2004,9(8):885-888.
    [41]Mae T, Kishida H, Nishiyama T, et al. A licorice ethanolic extract with peroxisome proliferator-activated receptor-gamma ligand-binding activity affects diabetes in KK-Ay mice, abdominal obesity in diet-induced obese C57BL mice and hypertension in spontaneously hypertensive rats[J]. J Nutr,2003,133(11):3369-3377.
    [42]赵海燕,王勇,吴力武,马永平.甘草黄酮对2型糖尿病大鼠血糖、血脂等生化指标的影响[J].中国糖尿病杂志,2012,(01):65-69.
    [43]Xu M E, Xiao SZ, Sun YH, et al. The study of antimetabolic syndrome effect of puerarin in vitro[J].Life Sci,2005,77(25):3183-3196.
    [44]何燕铭,王文健,陈伟华,等.蒲黄总黄酮对3T3-L1脂肪细胞糖脂代谢的影响[J].中西医结合学报,2006,4(6):593-596.
    [45]何燕铭,王文健,陈伟华.蒲黄总黄酮对3T3-L1脂肪细胞过氧化物酶体增生物激活受体家族mRNA基因表达的影响[J].中西医结合学报,2008,6(9):939-941.
    [46]李晓东,李娟,杨丽霞,姜华.中药植物多糖降血糖作用的研究进展[J].甘肃中医,2010,(11):77-80.
    [47]芮莉莉,萧建中,程义勇.茶多糖对2型糖尿病小鼠降糖作用研究[J].中日友好医院学报,2005,(02):93-96.
    [48]丁仁凤,何普明,揭国良.茶多糖和茶多酚的降血糖作用研究[J].茶叶科学,2005,(03):219-224.
    [49]朱红艳,陈霞,任亚丽,虞珏,徐济良.南瓜多糖对链脲菌素诱导的大鼠胰岛损伤的保护作用[J].中国医院药学杂志,2007,(12):1647-1649.
    [50]姜曼花,胡剑卓,邱文高,钱青,谭敏,吴开,邱细敏.白背三七多糖和黄酮降血糖及耐缺氧作用[J].中国医院药学杂志,2009,(13):1074-1076.
    [51]刘正猛,劳风云,翟丽,郭瑞华,王和平.豆豉多糖对实验性糖尿病小鼠血糖的活性作用[J].中国组织工程研究与临床康复,2007,(52):10471-10473.
    [52]王兵,黄传贵.石韦多糖降血糖作用的实验研究[J].亚太传统医药,2008,(08):33-34.
    [53]董英,张慧慧.苦瓜多糖降血糖活性成分的研究[J].营养学报,2008,(01):54-56.
    [54]戴英,马建民,徐颖,蒋滢.大黄多糖对糖尿病小鼠血清脂质等几项指标的作用[J].上海实验动物科学,2004,(02):94-96.
    [55]谢建军,王长松,胡蔓菁.玉竹多糖预处理对糖尿病大鼠胰岛p细胞损伤的影响[J].中国医院药学杂志,2010,(14):1200-1203.
    [56]谢建军,胡蔓菁,孙桂菊,王长松,朱欣佚.玉竹多糖对四氧嘧啶糖尿病大鼠胰岛β细胞损伤的保护作用[J].时珍国医国药,2008,(10):2479-2481.
    [57]公惠玲,李卫平,尹艳艳,李维祖.黄精多糖对链脲菌素糖尿病大鼠降血糖作用及其机制探讨[J].中国中药杂志,2009,(09):1149-1154.
    [58]朱红艳,徐济良,朱清.南瓜多糖对糖尿病大鼠胰岛Fas、Fas-L、Bcl-2及Bax表达的影响[J].中国药理学通报,2009,(02):248-251.
    [59]杨斌.灵芝多糖降血糖作用及其机理的研究[D].浙江大学,2011.
    [60]李承德,李静静,王琳,王金红,戴功,康白,毛淑梅.黄芪多糖对Fas介导的糖尿病大鼠胰岛β细胞凋亡的抑制作用[J].中药材,2011,(10):1579-1582.
    [61]张海凤,董亚琳,刘琳娜,张琰.大黄多糖对α-糖苷酶活性的抑制作用[J].医药导报,2010,(08):985-989.
    [62]全吉淑,尹学哲,及川和志.茶多糖降糖作用机制[J].中国公共卫生,2007,(03):295-296.
    [63]原爱红,马骏,蒋晓峰,李素.桑叶中糖苷酶抑制活性组分的筛选[J].中国中药杂志,2006,(03):223-227.
    [64]Chen HM.a-glucosidase inhibitor structure-activity relationship.Chin J Biochem Mol Biol,2003,19:780-784
    [65]魏守蓉,薛存宽,何学斌,沈凯,袁彬,蒋鹏,朱军,李颖,曾玲.绞股蓝多糖降血糖作用的实验研究[J].中国老年学杂志,2005,(04):418-420.
    [66]宋晓勇,刘强,王子华.蒲公英多糖降糖药理作用研究[J].中国药房,2009,(27):2095-2097.
    [67]侯庆宁,何兰杰.枸杞多糖对2型糖尿病大鼠血糖、血脂及TNF-a水平的影响[J].宁夏医学杂志,2009,(03):201-203+192.
    [68]刘雪芹,于湄,张燕,魏丽莉.人工虫草多糖对2型糖尿病小鼠胰岛素抵抗的影响[J].医药导报,2011,(01):5-8.
    [69]李成军,张亚珍,孟文芳.当归多糖对2型糖尿病大鼠的降糖机制[J].齐齐哈尔医学院学报,2007,(12):1422-1424.
    [70]叶蕻芝.三白草主要化学成分的分离检测及其对糖尿病的药效与药理研究[D].福州大学,2003.
    [71]郑海生,金智生,刘凯,王荣,吴立文.红芪多糖对2型糖尿病胰岛素抵抗大鼠胰岛素敏感性影响的研究[J].中华中医药学刊,2010,(07):1516-1518.
    [72]王钦茂,洪浩,赵帜平,沈业寿,陈光亮.丹皮多糖-2b对2型糖尿病大鼠模型的作用及其降糖作用机制[J].中国药理学通报,2002,(04):456-459.
    [73]梁秋云,蒙华琳,刘华钢,黄慧学.仙人掌果多糖降血糖作用及其机制[J].中国新药杂志,2010,(14):1252-1254+1259.
    [74]刘雪芹,于湄,张燕,魏丽莉.虫草多糖对2型糖尿病小鼠InsR/IRS-1通路及糖代谢的影响[J].中国药师,2011,(02):163-166.
    [75]欧阳静萍,王念,张德玲,等.黄芪多糖抑制2型糖尿病大鼠肝脏PTP1B的表达改善胰岛素抵抗的机制[J].中国动脉硬化杂志,2009,(07):569-570.
    [76]刘洪凤,任岩海,韩智学,等.黄芪多糖对2型糖尿病大鼠GLUT4 mRNA表达的影响[J].中国老年学杂志,2011,(20):3988-3989.
    [77]吴德红,王凤杰,邓娟,欧阳静萍,刘永明.黄芪多糖对2型糖尿病大鼠肝脏AMPK苏氨酸磷酸化的影响[J].微循环学杂志,2009,(03):1-3+79+81.
    [78]徐寒松,吴青,谢晓云,孔德明.黄芪多糖对2型糖尿病患者外周血内皮祖细胞PI3K/Akt/eNOS信号通路的影响[J].中国组织工程研究与临床康复,2011,(23):4272-4276.
    [79]刘洪凤,宋高臣,崔荣军,王桂云.黄芪多糖对2型糖尿病大鼠GLUT4蛋白表达的影响[J].中国食物与营养,2011,(11):70.-72.
    [80]刘洪凤,韩智学,赵正林,等.桑叶多糖对2型糖尿病大鼠GLUT4 mRNA表达的影响[J].中国食物与营养,2012,(03):68-69.
    [81]宗灿华,田丽梅.枸杞多糖对2型糖尿病胰岛素抵抗模型大鼠resistin基因表达的影响[J].药物生物技术,2008,(04):275-277.
    [82]宗灿华,田丽梅.枸杞多糖对2型糖尿病大鼠胰岛素抵抗及脂联素基因表达的影响[J].中国康复理论与实践,2008,(06):531-532.
    [83]金智生,汝亚琴,李娟娥,高妍,周强,楚惠媛,师霞.红芪多糖对实验性大鼠糖尿病胰岛素抵抗瘦素的影响[J].中西医结合心脑血管病杂志,2010,(10):1215-1217.
    [84]刘洪凤,陈宏娟,王桂云,韩智学,张杰.黄芪多糖对2型糖尿病胰岛素抵抗大鼠Resistin蛋白表达的影响[J].中国食物与营养,2012,(01):69-71.
    [85]刘洪凤,韩智学,聂影.南瓜多糖对2型糖尿病大鼠胰岛素抵抗及脂联素基因表达的影响[J].中国食物与营养,2011,(03):63-65.
    [86]刘洪凤,任岩海,宋铁军,韩智学.桑叶多糖对糖尿病大鼠resistin mRNA表达的影响 [J].中国食物与营养,2012,(04):67-68.
    [87]李春梅,高永林,李敏,等.知母皂苷对小鼠血糖的影响[J].中药药理与临床,2005,21(4):22-23.
    [88]凯赛尔·阿不都克热木.鹰嘴豆总皂苷对2型糖尿病大鼠的抗氧化作用[J].中药药理与临床,2012(3):156-158.
    [89]张俐勤,戚向阳,陈维军,等.罗汉果皂苷提取物对糖尿病小鼠血糖、血脂及抗氧化作用的影响[J].中国药理学通报,2006,22(2):237-240.
    [90]李若楠,桂莉,郭家智.三七皂苷Rbl改善2型糖尿病大鼠胰岛素抵抗的作用研究[J].中国民族民间医药,2012(8):11-13.
    [91]张素军,冯尚彩.蒺藜皂苷对正常和2型糖尿病大鼠餐后血糖水平的影响[J].实用药物与临床,2012(1):7-9.
    [92]苗明三,苗艳艳,纪晓宁,等.玉米须总皂苷对地塞米松所致小鼠糖耐量降低模型和α-葡萄糖苷酶活力的影响[J].中华中医药杂志,2009,24(8):1071-1073.
    [93]李春梅,高永林,李敏,等.知母皂苷对小鼠血糖的影响[J].中药药理与临床,2005(4):24-25.
    [94]刘永生,李晓坤,王金菊.苦瓜总皂苷对2型糖尿病模型大鼠胰岛素抵抗、脂联素和瘦素的影响[J].中国实验方剂学杂志,2010,16(9):177-179.
    [95]王雨裱,孙佳犄,刘毓敏.人参皂苷对胰岛素抵抗大鼠模型中GLUT4和PI3K表达的影响[J].辽宁中医药大学学报,2009,11(6):234-237.
    [96]Quan H Y, Yuan H D, Jung M S, et al. Ginsenoside Re lowers blood glucose and lipid levels via activation of AMP-activated protein kinase in HepG2 cells and high-fat diet fed mice[J]. Int J Mol Med,2012,29(1):73-80.
    [97]Zhang Z, Li X, Lv W, et al. Ginsenoside Re reduces insulin resistance through inhibition of c-Jun NH2-terminal kinase and nuclear factor-kappaB[J]. Mol Endocrinol, 2008,22(1):186-195.
    [98]郭洁文,廖惠芳,潘竞锵,等.荔枝核皂苷改善高脂血症-脂肪肝大鼠胰岛素抵抗作用的机制研究[J].中国药房,2005,16(10):732-734.
    [99]尚文斌,杨颖,姜博仁,等.人参皂苷Rbl促进3T3L1细胞的脂肪形成和抑制脂肪分解:2006年中华医学会糖尿病分会第十次全国糖尿病学术会议,中国广东广州,2006[C].
    [100]金华,尚文斌,杨颖,等.人参皂苷Rb_1促进3T3-L1脂肪细胞的分化:第九次全国中西医结合虚证与老年病学术会议,中国吉林长春,2007[C].
    [1]江苏新医学院.中药大辞典(上册)[M].上海:上海人民出版社,1977.12461
    [2]韦宝伟,施骞.匙羹藤的研究概况[J].国外医药·植物药分册,1996,1(3):1071
    [3]华青.匙羹藤的开发与利用[J].中国野生植物资源,1993,(3):351
    [4]Lai Jeng Shiow, Wang Shu-Ping, Huang Keh-Feng. Consituents from t he stems of Gymnema alterinifolium [J].Chen. Pharm (Taipei),1994,46 (3):219.
    [5]甄汉深,马利飞,唐伯灵,等.匙羹藤的生药鉴定[J].中药材,1997,20(2):701
    [6]甄汉深,徐世霞,潘小姣.匙羹藤果皮的生药鉴别[J].中药材,2001,24(2):951
    [7]甄汉深,张三平,徐世霞,等.匙羹藤种子的鉴别研究[J].中草药,2001,32(4):3611
    [8]Yokota Toshihiro, Mizutani Kenji, Okada Kenzo, et al. Quantitative analysis of Gymnemic acids by high performance liquid chromatogaphy [J].Nippon Shokuhin Kogyo Gakkaish,1994,41(3):202.
    [9]余其卢,李东东,王定勇.广东匙羹藤乙醇提取物降血糖的实验研究[J].中医药导报,2006,(09):67-68.
    [10]梁洁,甄汉深,周芳.广西匙羹藤茎降血糖活性部位的研究[J].中国实验方剂学杂志,2007,(02):29-31.
    [11]梁洁,甄汉深,周芳,李爱媛,石琳.广西匙羹藤茎降血糖作用机制的研究[J].中药材,2007,(01):74-77.
    [12]甄汉深,梁洁,周芳.广西匙羹藤茎95%乙醇提取物降血糖作用及其机制的初步研究[J].中国实验方剂学杂志,2007,(01):32-34.
    [13]Persaud SJ, Al-Majed H, Raman A,et al. Gymnema sylvestre stimulates insulin release in vitro by increased membrane permeability [J]. J Endocrinol,1999,163(2):207-212.
    [14]Liu B, Asare-Anane H, Al-Romaiyan A,et al. Characterisation of the insulinotropic activity of an aqueous extract of Gymnema sylvestre in mouse beta-cells and human islets of Langerhans [J]. Cell Physiol Biochem,2009,23(1-3):125-132
    [15]Snigur GL, Samokhina MP, Pisarev VB,et al. Structural alterations in pancreatic islets in streptozotocin-induced diabetic rats treated with of bioactive additive on the basis of Gymnema sylvestre [J]. Morfologiia,2008,133(1):60-64.
    [16]Shigematsu N, Asano R, Shimosaka M,et al. Effect of administration with the extract of Gymnema sylvestre R. Br leaves on lipid metabolism in rats [J]. Biol Pharm Bull,2001,24(6):713-717.
    [17]Luo H, Kashiwagi A, Shibahara T,et al. Decreased body weight without rebound and regulated lipoprotein metabolism by gymnemate in genetic multifactor syndrome animal [J]. Mol Cell Biochem,2007,299(1-2):93-8.
    [18]覃俊佳,甄汉深,方红,等.匙羹藤酸降血糖作用的研究[J].中国中医药信息杂志,2000,(03):28.
    [19]Shigematsu N, Asano R, Shimosaka M,et al. Effect of administration with the extract of Gymnema sylvestre R. Br leaves on lipid metabolism in rats [J]. Biol Pharm Bull,2001,24(6):713-717.
    [20]Luo H, Imoto T, Hiji Y. Inhibitory effect of voglibose and gymnemic acid on maltose absorption in vivo [J]. World J Gastroenterol,2001,7(2):270-274.
    [21]Shimizu K, Ozeki M, lino A,et al. Structure-activity relationships of triterpenoid derivatives extracted from Gymnema inodorum leaves on glucose absorption [J]. Jpn J Pharmacol,2001,86(2):223-229.
    [22]Shimizu K, lino A, Nakajima J,et al. Suppression of glucose absorption by some fractions extracted from Gymnema sylvestre leaves [J]. J Vet Med Sci,1997,59(4):245-251.
    [23]日地康武.印度原产植物匙羹藤的生理作用[J].医学介绍,1992(13)9:35
    [24]Wang LF, Luo H, Miyoshi M,et al. Inhibitory effect of gymnemic acid on intestinal absorption of oleic acid in rats [J]. Can J Physiol Pharmacol,1998,76(10-11):1017-1023.
    [25]Miyatake K. Isolation of conduritol A from gymnema sylvestre and its effects against intestinal glucose absorption in rats [J]. Am J Physiol Endocrinol Metab, 2002,283(4):E682-91.
    [26]韦建华,丘琴,甄汉深,等.匙羹藤有效成分牛弥菜醇A急性毒性及降糖作用研究[J].时珍国医国药,2011,(03):554-556.
    [27]韦建华,甄汉深,丘琴,陈君,周芳.匙羹藤有效成分牛弥菜醇A降血糖作用研究[J].中国中药杂志,2008,(24):2961-2965.
    [28]Miyoshi Michio, Imoto Toshiaki, Kasagi Takeshi. Antieurodonitic effect of various fractions extracted from the leaves of Gymnema sylvestre [J]. Yonago Igaku Zasshi,1987,38 (2):127.
    [1]刘微,李冀,盛波,谢田,葛鹏玲,闫东,马育轩,王烨然.胰岛素抵抗动物模型的研究进展[J].中医药信息,2008,(06):9-11.
    [2]甄仲,常柏,于波,等.糖尿病啮齿动物模型应用研究进展[J].吉林中医药,2009,(08):732-734.
    [3]李娟娥,王磊,秦灵灵,刘铜华.自发性2型糖尿病啮齿类动物模型研究概况[J].中国实验方剂学杂志,2010,(06):267-271.
    [4]宋冰,刘学政.大黄素对糖尿病KK-Ay小鼠PI3-K信号转导通路的影响[J].山东医药,2012,(10):20-22.
    [5]陈广,陆付耳,王增四,等.小檗碱改善2型糖尿病大鼠胰岛素抵抗与PI-3K、GLUT4蛋白相关性的研究[J].中国药理学通报,2008,(08):1007-1010.
    [6]曾静波,李玉秀,孙琦,等.罗格列酮和二甲双胍治疗对胰岛素抵抗KK-Ay糖尿病小鼠肝及横纹肌组织PTEN蛋白表达的影响[J].中华老年多器官疾病杂志,2010,(06):529-532.
    [7]Miller RA, Birnbaum MJ. An energetic tale of AMPK-independent effects of metformin[J]. J Clin Invest,2010,120(7):2267-70.
    [8]刘永贵,田红,解学星,等.治疗2型糖尿病的非胰岛素类药物的研究进展[J].现代药物与临床,2013,(02):108-113.
    [9]Amin RH, Mathews ST,et al. Selective activation of PPARgamma in skeletal muscleinduces endogenous production of adiponectin and protects mice from diet-inducedinsulin resistance [J]. Am J Physiol Endocrinol Metab,2010,298(1):E28-37.
    [10]Gimble JM, Robinson CE, Wu XY, et al. Peroxisorae proligerator activated receptor-yactivation by thiazokidinediones induces adipogenesis in bone marrow stromal cells.Molecular Pharmacology,1996,50:1087.
    [11]Goldberg RB, Kendall DM, Deeg MA, et al. A comparison of lipid and glycemic effectsof pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia[J].Diabetes Care,2005,28(7):1547-54.
    [12]Keum-Jin Yang Jung-Ran NohYong-Hoon Kim et al. Differential modulatory effects of rosiglitazone and pioglitazone on white adipose tissue in db/db mice[J]. Life Sciences,2010, 87:405-10.
    [13]李强.2型糖尿病伴高胰岛素血症的对策与评价[J].中国实用内科杂志,2004,(03):144-147.
    [14]Eckel RH. Lipoprotein lipase:a multifunctional enzyme relevant to common metabolic diseases[J]. N Engl J Med,1989,320 (16):1060-1081.
    [15]Lagrcst L, Gambert P, Jallent C. Combinedh effects of lipid transfers and lipulsis on gradiealgel patterns of human plasma LDL[J]. Arteriose Thromb,1994,14(8):1327-1336.
    [16]黄瑞英,姜宝法.2型糖尿病血脂代谢异常的临床进展[J].中国老年学杂志,2008,28(2):202-502.
    [17]陈名道.肥胖与胰岛素抵抗的评估[J].诊断学理论与实践,2003,(02):13-14.
    [18]余峰彬.胰岛素抵抗的评估干预现状[J].护士进修杂志,2004,(04):315-317.
    [19]李强.2型糖尿病伴高胰岛素血症的对策与评价[J].中国实用内科杂志,2004,(03):144-147.
    [20]李光伟.胰岛素抵抗评估[A].中华医学会.第八次全国妇产科学学术会议论文汇编[C].中华医学会:,2004:5.
    [21]王伟,郭素丽,屈爱静.胰岛素及胰岛素抵抗研究进展[J].山西体育科技,2011,(03):33-34.
    [22]Julia Tonelli,Weijie Li,Preeti Kishore,et al:Mechanisms of Early Insulin-Sensitizing Effects of Thiazolidinediones in Type 2 Diabetes. Diabetes 2004;53:1621-1629.
    [23]Miyazaki Y,Mahankali A,Matsuda M,et al. Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 2002;2784-2791.
    [24]W Eerner AL Travaglini MT. A review of rosiglitazone in type 2diabetes mellitus. Pharmacotherapy 2001 Sep;21 (9):1082-99.
    [25]Greenberg AS, McDaniel ML. Ident ifying the links between obesity, insulin resistance and beta cell function:potential role of adipocyte derived cytokines in the pathogenesis of type 2 diabetes[J]. Eur J Clin Invest,2002,32(Suppl 3):24-34.
    [26]Lindsay RS, Funahashi T, Hanson RL, et al. Adiponectin and development of type 2 diabetes in Pima Indian population [J]. Lancet,2002,360 (9326):57-58.
    [27]Kausch C, Krutzfeldt J, Witke A, Rettig A, Bachmann O,Rett K, et al. Effects of troglitazone on celluar differentiation,insulin signaling and glucose metabolism in cultured humanskeletal muscle cells [J]. Biochem Biophys Res Commun,2001; 280(3):264-7
    [28]钟婷婷,高士争,赵素梅.CAP/Cbl通路的研究进展[J].中国医药科学,2012,(07):44-46.
    [29]Anai M, Funaki M, Ogihara T, et al.Enhanced insulin-stimulatedativation of phosphatidylinositol 3-kinase in the liver of high-fat-fed rats. Diabetes 1999; 48:158-169
    [30]Andreelli F, Laville M, Ducluzeau PH, et al. Defective regulation of phosphatidylinositol-3-kinase gene expression in skeletal muscle and adipose tissue ofnon-insulin-dependent diabetes mellitus patients. Diabetologia 1999; 42:358-364.
    [31]Liu F, Dallas-Yang Q, Castriota G, et al. Development of anovel GLUT4 translocation assay for identifying potential novel therapeutic targets for insulin sensitization. Biochem J, 2009,418(2):413-420.
    [32]Nakashima N, Sharma PM, Imamura T, et al. The tumor suppressor PTEN negatively regulates insulin signaling in3T3-L1 adipocytes. J Biol Chem,2000,275(17):12889-12895
    [33]Zhou QL, Park JG, Jiang ZY, et al. Analysis of insulin signalling by RNAi-based gene silencing. Biochem Soc Trans,2004,32(Pt 5):817-821.
    [34]Heen L, Whiteman HC, M orris J. Role of Akt/protein kinaseB in metabolism[J]. T-rends Endocrinology M etabolism,2002,13:444-451.
    [35]Effie Tozzo, Luigi Gnudi,Barbara B. Kahn. Amelioration of Insulin Resistance in Streptozotocin Diabetic Mice by Transgenic Overexpression of GLUT4 Driven by an Adipose-Specific Promoter[J]. Endocrinology April 1,1997 vol.138 no.41604-1611
    [36]Michael Gaster, Peter Staehr, Henning Beck Nielsen,et al.GLUT4is reduced in slow muscle fibers of type 2 diabetic patients [J].Diaberes,2001,50 (6):1324.
    [37]Seung Y,Park, Wan Lee.The depletion of cellular mitochondrialDNA causes insulin resistance through the alteration of insulin receptor substratel in rat myocytes[J].Diabetes Research and Clinical Practice,2007,1:51.
    [38]Baumann C. CAP detines a second signaling pathway required for insulin-stimulated glucose transport [J]. Nature,2000,407(6801):202-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700