用户名: 密码: 验证码:
山西晋城地区煤岩力学性质及煤储层压裂模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层气作为一种洁净优质的能源,加以综合利用可获得多方面的效益。煤层气井以直井为主,水力压裂是增加煤层气直井产能最主要的强化手段。由于我国含煤地层一般都经历过强烈构造运动,煤体结构往往遭到很大破坏,压裂效果不好,不能获得较好的产能,因此需要对煤储层压裂机理进行研究,为此选择煤岩力学性质及模拟煤储层水力压裂的研究。通过对寺河煤矿主要可采煤层3号煤的煤岩抗拉强度、单轴抗压强度、三轴抗压强度及声发射试验发现,煤的力学性质不仅在垂直煤的层理面上具有方向性,而且在平行煤的层理面上也具有方向性。
     位于沁水盆地南部的山西晋城地区晋煤集团寺河煤矿3号煤的抗拉强度随着饱和吸水率的增加而增加;煤岩的抗拉强度受高度的影响很大,其值和高度呈负相关。随饱和含水率的增加垂直面割理方向弹性模量逐渐降低,而饱和含水率对平行面割理方向的弹性模量影响很小;垂直面割理方向上的泊松比随单轴抗压强度的增加而降低,而平行面割理方向变化不大。单轴压缩条件下的声发射计数率曲线特征可以分为三个类型:①迸裂型;②破裂型;③稳定型。在三轴压缩条件下煤岩峰值应变和方向有关,峰值应变随围压的变化在较低的压力下试样轴向垂直面割理时比轴向平行面割理时小,而在较高围压时比轴向平行面割理时要大。
     数值模拟计算表明在各向同性、不含裂隙的情况下,在非均匀应力场中破裂压力随着最大和最小主应力与应力差的变化而变化。在含裂隙的情况下其破裂压力在均匀地应力场中几乎不受裂缝方向与最大主应力方向夹角的影响,仅受地应力大小的影响;在非均匀地应力场中当应力条件不变时破裂压力随着裂缝方向与最大主应力方向夹角的变化而变化。压裂裂缝是沿先存裂缝扩展还是产生新缝,受先存裂缝与最大水平主应力方向的夹角、水平主应力的大小、最高工作压力等因素的共同影响。在不含裂隙、地应力条件相同的情况下,煤岩力学性质各向异性与煤岩力学性质各向同性相比,破裂压力很接近。
Coalbed methane(CBM), one kind of clean and high-quality energies, can bring various benefits if being took into comprehensive use. Nowadays, vertical well is the mainly CBM development mode. And hydraulic fracturing is the most important means for vertical well to enhance the recovery of CBM. As a result of strong tectonic movement that coal-bearing strata generally undergone in China, coal structure had been great damaged extensively, which usually cause bad fracturing effect and lower production, and hence it is necessary to research the fracturing mechanism of coal reservoir. For these reason, we select the research subject, mechanical properties of coal and coal reservoir fracturing simulation.
     A series of experiments containing tensile strength, uniaxial compressive strength, triaxial compressive strength and acoustic emission were carried out to the coal collected from No.3 coal seam in Sihe coal mine, south of the Qinshui Basin, and the results indicated that the mechanical properties of coal possess directivity not only in the direction vertical to the coal bedding plane,but also in the direction parallel to the coal bedding plane. The tensile strengths increase with the increase of the saturated water absorption. And the tensile strengths are also influenced greatly by length of the specimen which has negative correlation with the value of the tensile strengths. With the increase of Saturated water absorption, the elastic modulus reduce gradually in the direction vertical face cleat; in contrast the impacts of the Saturated water absorption on the elastic modulus were little in the direction parallel face cleat. The Poisson's ratio decrease with the increase of uniaxial compressive intensity in the direction vertical face cleat, and similarly, it has little change in the direction parallel face cleat. Under the condition of Uniaxial compression, the characteristics of the acoustic emission count rate curves can be divided into three types:①Burst;②ruptured; and③stable. Under the condition of Triaxial compression, the peak strain of coal also correlate with direction, under the lower confining pressure, the variation of peak strain with the confining pressure when axial of specimens perpendicular to the face cleat are less than that when axial of specimens parallel to the face cleat; whereas under the higher confining pressure, the variation when axial of specimens perpendicular to the face cleat are greater than that when axial of specimens parallel to the face cleat.
     The results of numerical simulation indicated that, in the non-uniform stress field, under the condition of the isotropic and non-fracture, the breakdown pressure changed with the change of maximum principal stress, minimum principal stress and stress difference; while under the condition of cracks, the breakdown pressure were affected mainly by the crustal stress rather than the variation of the angle between the directions of cracks and the maximum principal stress. In the non-uniform stress field, at given stress condition, the breakdown pressure changed with the change of the angle between the directions of cracks and the maximum principal stress.In fracturing, whether the crack expanding along pre-existing crack or generation new crack depending on the complex factors such as the angle between the directions of pre-existing cracks and the maximum horizontal principal stress, horizontal stress and the maximum working pressure.Under the condition non-fractured and the given ground stress, the fracture stress are close to each other when the mechanical properties of coal is isotropic.
引文
[1]王红霞,刘炜,王登海,等.山西沁水盆地煤层气地面工艺技术优化设计.见:雷群,李景明,赵庆波主编,煤层气勘探开发理论与实践.北京:石油工业出版社,2007:173~178.
    [2]国务院文件.国务院办公厅关于加快煤层气(煤矿瓦斯)抽采利用的若干意见.国务院公报.2006·22..
    [3]陈先达.当前我国煤层气开发政策和产业化问题分析.见:叶建平主编,2008年煤层气学术研讨会论文集.北京:地质出版社,2008.3~9
    [4]刘贻军.中国煤层气产业发展面临的地质问题和技术挑战.见:叶建平主编,2008年煤层气学术研讨会论文集.北京:地质出版社,2008.10~16.
    [5]邓泽,康尚永,刘洪林,等.排采过程中煤储层渗透率动态变化特征研究.见:叶建平主编,2008年煤层气学术研讨会论文集.北京:地质出版社,2008.195~201.
    [6]冯三利.我国煤层气开发利用现状、产业发展机遇与前景.见:叶建平主编,2006年煤层气学术研讨会论文集.北京:地质出版社,2006.2~8.
    [7]李文阳,王慎言,赵庆波.中国煤层气勘探与开发.徐州:中国矿业大学出版社,2003.3~160.
    [8]田华,郭建业.我国煤层气产业发展的现状及建议.煤化工,2007,(4):5~7.
    [9]黄稚达.中国煤层气资源的开发与利用.中国矿业,2001,10(1):22~26.
    [10]阎立宏.杨庄煤矿煤物理力学性质研究与相关性分析.煤,2001,10(3):34~37.
    [11]李先炜.岩块力学性质.北京:煤炭工业出版社,1983.
    [12]闫立宏,吴基文.淮北杨庄煤矿煤的抗拉强度试验研究与分析.煤炭科学技术,2002,30(5):39~41.
    [13]朱万成,唐春安,齐安文.混凝土三点弯曲试件破坏过程的数值模拟.力学与实践,1999,21:55~56.
    [14]罗运军,秦本东,赵兴东.花岗岩试件的三点弯曲试验裂纹扩展数值模拟.岩土工程界,2004,7(10):36~40.
    [15]段东,唐春安,徐涛,等.岩石间接拉伸试验的数值模拟.金属矿山,2007,(4):12~15.
    [16]高延法,张庆松编著.矿山岩体力学.徐州:中国矿业大学出版社,2000.
    [17] Palchik V. Influence of porosity and elastic modulus on uniaxial compressive strength in soft brittle porous sandstones.Rock Mechanics and Rock Engineering, 1999,32 (4):303~309.
    [18] Al-Harthi A A,Al-Amri R M,Shehata W M.The porosity and engineering properties of vesicular basalt in Saudi Arabia. Engineering Geology, 1999,54:313~320.
    [19]重庆建筑工程学院,同济大学编.岩体力学.北京:中国建筑工业出版社,1979.
    [20]张清,杜静.岩石力学基础.北京:中国铁道出版社,1997.
    [21]吕兆兴,冯增朝,赵阳升.岩石的非均质性对其材料强度尺寸效应的影.煤炭学报,2007,32(9):917-920.
    [22] Alexeeva A D, Revvaa V N, Alyshevb N A, et al.True triaxial loading apparatus and its application to coal outburst prediction. International Journal of Coal Geology, 2004, 58: 245~ 250.
    [23] Okubo S, Fukui K, Qingxin Qi. Uniaxial compression and tension tests of anthracite and loading rate dependence of peak strength.International Journal of Coal Geology, 2006, 68:196~204.
    [24]齐庆新.煤的直接单轴拉伸特性的试验研究.煤矿开采,2001,(4):15~18.
    [25]吴基文,樊成.煤块抗拉强度的套筒致裂法实验室测定.煤田地质与勘探,2003,31(1):17~19.
    [26] Daniels J, Moore L D. The Ultimate Strength of Coal.The Eng. and Mining, 1907, (10):263~268.
    [27] Bunting D. Chmaber Pillars in Deep Anthracite Mine. Trams. AIME, 1911, (42):236~245.
    [28] Gaddy F L. A study of the Ultimate Strength of Coal as Related to the Absolute Size of Cubical Specimens.Tested West Virginia polytechnic Bulletin,1956,(112):l~27.
    [29] Holland C T, Gaddy F L. Some Aspects of Perment support of over burden on. Coalbeds.Proceedings of the West Virginia Coal Mining Institute,1956:43~46.
    [30] Hirt A M, Shakoor A.Determination of Unconfined Compressive strength of Coal for pillar Design.Mining Engineering,1992,(8):1037~1041.
    [31] Medhurst T P, Brown E T. A study of the Mechanical Behavior of Coal for Pillar Design.Int. J. Rock. Min. Sci. 1998,35(8):1087~1104.
    [32]吴立新.煤岩强度机制及矿压红外探测基础实验研究[博士学位论文].北京:中国矿业大学,1997.
    [33]刘宝琛,张家生,杜奇中,等.岩石抗压强度的尺寸效应.岩石力学与工程学报,1998,17(6):611~614.
    [34]靳钟铭,宋选民,薛亚东,等.顶煤压裂的实验研究.煤炭学报,1999,24(l):29~33.
    [35] Unrug K F, Nandy S, Thompson E. Evaluation of the Coal strength for Pillar Calculation.Trans,SEMAIME,1986,(280):2071~2075.
    [36] Townsend J M,Jenning W C. A Relationship Between the Ultimate Compressive Strength of Cubes an cylinders for Coal specimens. Proc. 18th Sym. For Rock Mech. Keystone, CO. 1977:(4A6_1~4A6_6).
    [37] Khair A W. The Effect of Coefficient of Friction on Strength of Model coal Pillar.Master Thesis. Pept. Of Mining Eng.,West Virginia Univ, 1968.
    [38]杨永杰,宋扬,陈绍杰,等.煤岩强度离散性及三轴压缩试验研究.岩土力学,2006,27(10):1763~1766.
    [39]王宏图,鲜学福,贺建民.层状复合煤岩的三轴力学特性研究.矿山压力与顶板管理,1999,(l):81~83.
    [40]尹贤刚,李庶林,唐海燕,等.岩石破坏过程的声发射特征研究,矿业研究与开发,2003,23(3):9~11.
    [41]张平.集成化声发射信号处理平台的研究[博士学位论文].北京:清华大学机械工程系,2002.
    [42]李宏,张伯崇.北京房山花岗岩原地应力状态AE法估计.岩石力学与工程学报,2004,23(8):1349~1352.
    [43]谢强,张永兴,余贤斌.石灰岩在单轴压缩条件下的声发射特性.重庆建筑大学学报,2002,24(1):19~22,58.
    [44] Konecnyp.Acoustic emission during cyclic loading of carboniferous rocks and the manifestation of Kaiser effect//Proceedings of the EUROCK 2000 Symposium.Essen:Verlag Gluckauf,2000:649~652.
    [45] Pestman B J,Van Munster J G. An acoustic emission study of damage development and stress–memory effects in sandstone.Int J Rock Mech Min Sci Geomech Abstr, 1996, 33:585~593.
    [46]谢强,Carlos Dinis da Gama,余贤斌.细晶花岗岩的声发射特征试验研究.岩土工程学报,2008,30(5):745~749.
    [47]李银平,曾静,陈龙珠,等.含预制裂隙大理岩破坏过程声发射特征研究.地下空间,2004,24(3):290~293.
    [48] Lei X L,Kusunose K,Nishizawa O,et al. On the spatio- temporal distribution of acoustic emissions in two granitic rocks under triaxial compression:the role of pre-existing cracks. Geophysical Research Letter, 2000, 27: 1997~2000.
    [49] Lei X L, Nishizawa O, Kusunose K, et al. Compressive failure of mudstone samples containing quartz veins using rapid AE monitoring:the role of asperities.Tectonophysics, 2000, 328: 329~340.
    [50] Lei X L, Kusunose K, Nishizawa O, et al. Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring.Journal of Geophysical Research, 2000, 105: 6127~6139.
    [51] Jouniaux L, Masuda K, Nishizawa O, et al. Comparison of the microfracture localization in granite between fracturation and slip of a pre-existing macroscopic healed joint by acoustic emission measurements.Journal of Geophysical Research, 2001, 106: 8687~8698.
    [52] Manthei G, Eisenblatter J, Dahm T.Moment tensor evaluation of acoustic emission sources in salt rock.Constr Build Mater, 2001, 15:297~309.
    [53] Mitsuhiro Shigeishi, Masayasu Ohtsu.Acoustic emission moment tensor analysis:development forcrack identification in concrete materials.Construction and Building Materials, 2001, 15: 311~319.
    [54]余贤斌,谢强,李心一,等.直接拉伸、劈裂及单轴压缩试验下岩石的声发射特性.岩石力学与工程学报,2007,26(1):137~142.
    [55] Lavrov A, Vervoorta, Weversm, et al.Experimental and numerical study of the Kaiser effect in cyclic Brazilian tests with disk rotation.International Journal of Rock Mechanics & Mining Sciences,2002,39(3):287~302.
    [56]徐东强,单晓云,甄在学.双向压缩下岩石声发射特性损伤力学分析.矿山压力与顶板管理,2000,(3):82~84.
    [57]周小平,张永兴.大厂铜坑矿细脉带岩石结构面直剪实验中声发射特性研究.岩石力学与工程学报,2002,21(5):724~727.
    [58] Lei X,Kusunose K,Nishizawa O, et al.Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring.J Geophys Res, 2000, 105(B3):6127~39.
    [59] Changa S H,Lee C I.Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission. International Journal of Rock Mechanics & Mining Sciences, 2004, 41: 1069~1086.
    [60]蒋宇,葛修润,任建喜.岩石疲劳破坏过程中的变形规律及声发射特性.岩石力学与工程学报,2004,23(11):1810~1814.
    [61]刘红元,唐春安,杨天鸿,等.对称和非对称载荷下声发射特征的数值模拟研究.岩土力学,2001,22(4):383~388.
    [62]李庶林,尹贤刚,王泳嘉,等.单轴受压岩石破坏全过程声发射特征研究.岩石力学与工程学报,2004,23(15):2499~2503.
    [63]尹贤刚,李庶林.声发射技术在岩土工程中的应用.采矿技术,2002,2(4):39~42.
    [64]李俊平.九女磷矿地压监测与空区处理.岩土力学,1993,4(2):35~40.
    [65]李庶林,毛建华,桑玉发.基于岩体声发射参数的竖井围岩稳定性分析.中国有色金属学报,1998,8(增2):753~757.
    [66]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学.徐州:中国矿业大学出版社,1995.
    [67]胡菊,魏风清.俄罗斯-6型地震声学监测系统在八矿的试验应用.煤炭工程师,1994,(6):41~46.
    [68]曹庆林,桑玉发.采场冒顶灾害的声发射预报技术.中国有色金属学报,1996,6(2):7~12.
    [69] Lavrov A.The Kaiser effect in rocks:Principles and stress estimation techniques. International Journal of Rock Mechanics and Mining Sciences & Geomechanical Abstracts,2003,40:151–171.
    [70] Yoshikawa S,Mogi K.Experimental studies on the effect of stress history on acoustic emission activity a possibility for estimation of rock stress.Journal of Acoustic Emission, 1989,8(4):113–123.
    [71]陈强,朱宝龙,胡厚田.岩石Kaiser效应测定地应力场的试验研究.岩石力学与工程学报,2006,25(7):1370~1376.
    [72]丁原辰.声发射法古应力测量问题的讨论.地质力学学报,2000,6(2):45~52.
    [73]李俊平.声发射技术在岩土工程中的应用.岩石力学与工程学报,1995,14(4):371~376.
    [74]王恩元,何学秋,刘贞堂,等.煤体破裂声发射的频谱特征研究.煤炭学报,2004,29(3):289~292.
    [75] Zofia Majewska, Jerzy Zietek. Changes of acoustic emission and strain in hard coal during gas sorption–desorption cycles. International Journal of Coal Geology, 2007, 70: 305–312.
    [76] Shkuratnik V L, Filimonov Y L,Kuchurin S V. Acoustic-emissive memory effect in coal samples under triaxial axial-symmetric compression,Journal of Mining Science,2006,42(3):203~206.
    [77] Voznesenskii A S,Tavostin M N.Acoustic emission of coal in the post limiting deformation stste, Journal of Mining Science, 2005, 41(4):291~297.
    [78] Shkuratnik V L,Filimonov Y L,Kuchurin S V.Experimental investigations into acoustic emission in coal samples under uniaxial loading.Journal of Mining Science,2004,40(5):458~460.
    [79] Fenhua Ren, Xingping Lai, Meifeng Cai.Dynamic destabilization analysis based on AE experiment of deep-seated, steep-inclined and extra-thick coal seam.Journal of University of Science and Technology Beijing,2008,15(3):215~219.
    [80] Shkuratnik V L, Filimonov Y L, Kuchurin S V. Features of the kaiser effect in coal specimens at different stages of the triaxial axisymmetric deformation.Journal of Mining Science,2007, 43(1):1~4.
    [81] Yang S J. Study on the Field Test for Dynamic Disaster Regularity of Thick Coal Seam in Fully-mechanized TOP Coal Caving (Dissertation) (in Chinese). Xi’an University of Science and Technology, 2006: 55.
    [82]耿荣生,沈功田,刘时风.声发射信号处理和分析技术.无损检测,2002,(1):23~28.
    [83]杨永杰.煤岩强度、变形及微震特征的基础试验研究[博士学位论文].山东:山东科技大学,2006.
    [84]马志敏,贾嘉.岩体声发射监测现场噪声自适应数字滤波技术初探.岩石力学与工程学报,1999,18(6):685~689.
    [85]卢文韬.岩石声发射实验的衰减排噪法.岩石力学与工程学报,1995,4(2):187~192.
    [86]沈功田,耿荣生,刘时风.声发射信号的参数分析方法.无损检测,2002,(2):72~77.
    [87]李银平,曾静,陈龙珠,等.含预制裂隙大理岩破坏过程声发射特征研究.地下空间,2004,24(3):290~293.
    [88]纪洪广,张天森,蔡美峰,等.混凝土材料损伤的声发射动态检测实验研究.岩石力学与工程学报,2000,19(2):165~168.
    [89]纪洪广,蔡美峰.根据声发射自相似特征进行混凝土材料断裂的识别和预报.中国矿业,1999,8(1):43~46.
    [90]纪洪广,蔡美峰.混凝土材料断裂过程中声发射空间自组织演化特征及其在结构失稳预报中的应用.土木工程学报,2001,34(5):15~20.
    [91]陈枫,孙宗颀,徐纪成.岩石压剪断裂过程中的超声波波谱特性研究.工程地质学报,2000,8(2):164~168.
    [92]任战利,肖晖,刘丽,等.沁水盆地新生代抬升冷却事件的确定.石油与天然气地质,2005,26(1):109~113.
    [93]张建博,王红岩.山西沁水盆地煤层气有利区预测.徐州:中国矿业大学出版社,1999.
    [94]刘焕杰.山西南部煤层气地质.江苏徐州:中国矿业大学出版社,1998.
    [95]王红岩.山西沁水盆地高煤阶煤层气成藏特征及构造控制作用[博士学位论文].北京:中国地质大学(北京),2005.
    [96] Middleton G V. Chemical composition of sandstonds.Geol.Soc. America Bull.,1960,71:1011~1026.
    [97]徐振永,王延斌,陈德元.沁水盆地晚古生代煤系层序地层及岩相古地理研究.煤田地质与勘探,2007,35(4):5~11.
    [98]曾勇,屈永华,宋金宝.煤层裂隙系统及其对煤层气产出的影响.江苏地质,2000,24(2):91~94.
    [99] Close J C.煤中的天然裂隙.秦勇,曾勇主编译.煤层甲烷储层评价及生产技术.徐州:中国矿业大学出版社,1996:49~57.
    [100]王生维,陈钟惠.煤基岩块孔裂隙特征及其在煤层气产出中的意义.地球科学,1995,20(5):557~561.
    [101]关德师,牛嘉玉.中国非常规油气地质.北京:石油工业出版社,
    [102] Law B E.煤级与割理间距的关系及其在煤渗透性预测中的意义.秦勇,曾勇主编译.煤层甲烷储层评价及生产技术.徐州:中国矿业大学出版社,1996:97~101.
    [103]张胜利,李保芳.煤层甲烷的形成机理及在煤层气勘探开发中的意义.中国煤田地质,1996,8:72~77.
    [104]钱凯,赵庆波,汪泽成,等.煤层甲烷气勘探开发理论与实验测试技术.北京:石油工业出版社,1996.
    [105]邵震杰,任文忠,陈家良编.煤田地质学.北京:煤炭工业出版社,1993.
    [106]黄景城.煤层甲烷开发概述.郑州:河南科学技术出版社,1990.
    [107]刘洪林,王红岩,张建博.煤储层割理评价方法.天然气工业,2000,20(4):27~29
    [108] Close J C. Natural fracture in coal. AAPG, 1993, (38):119~132
    [109] Ammosov I I,Eremin I V. Fracturing in coal (English vers,1963) Israel program in science translation, Tel Aviv,1960.
    [110]张胜利.煤层割理及其在煤层气勘探开发中的意义.煤田地质与勘探,1995,23(4):27~31.
    [111]张彦平.国外煤层甲烷气开发技术译文集.北京:石油工业出版社,1996.
    [112] Law B E. The relationship between coal rank and cleat spacing: Implication for the predication of permeability in coal,1993 int. Coalbed methane symposium proc. University of Alabama, Tuscaloosa, 1993, (2):435~441.
    [113] Levine J R. Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoir. In:Coalbed Methane and Coal Geology. Edited by R. Gayer, Iharris. Geological Society Special Publication, 1996:197~212.
    [114]毕建军,苏现波,韩德馨,等.煤层割理与煤级的关系.煤炭学报,2001,26(4):346~349.
    [115]徐根,陈枫,徐纪成.岩石抗拉强度的误差研究.矿业研究与开发,2004,24(5):31~33.
    [116]中华人民共和国水利部.水利水电工程岩石试验规程(SL264~2001).北京:地质出版社,2001.
    [117]国际岩石力学学会实验室和现场标准化委员会.岩石力学试验建议方法.郑雨天等译.北京:煤炭工业出版社,1981.
    [118]闫立宏,吴基文.煤岩单轴压缩试验研究.矿业安全与环保,2001,28(2):14~16.
    [119]潘结南.煤岩单轴压缩变形破坏机制及与其冲击倾向性的关系.煤矿安全,2006,08:1~4.
    [120]李世平,吴珍业,贺永年,等.岩石力学简明教程.北京:煤炭工业出版社, 1996.
    [121]张流,王绳祖,施良骐.我国六种岩石在高围压下的强度特性.岩石力学与工程学报, 1985,4(1):10~19.
    [122]尤明庆.岩石试样的杨氏模量与围压的关系.岩石力学与工程学报,2003,22 (1):53~60.
    [123]杨永杰,宋扬,陈绍杰.三轴压缩煤岩强度及变形特征的试验研究.煤炭学报,2006,31(2):150~153.
    [124]尤明庆,华安增.岩石单轴压缩的破坏形式和承载能力降低.岩石力学与工程学报,1998,17 (3): 292~296.
    [125]尤明庆,李化敏,纪多辙.试验数据回归结果的评价方法.岩石力学与工程学报,2003,22(7):1 191~1 195.
    [126]苏承东,翟新献,李永明,等.煤样三轴压缩下变形和强度分析.岩石力学与工程学报,2006,25(增1):2963~2968.
    [127] Blake W.Microseismic applications for mining-a practical guide.U.S.:Bureau of Mines,1982.
    [128]唐绍辉,吴壮军.岩石声发射活动规律的理论与实验研究.矿业研究与开发.2000,20(1):16~18.
    [129]傅宇方,唐春安.岩石声发射KAISER效应的数值模拟实验研究.力学与实践,2000, (22):42~44.
    [130]王恩元,何学秋,刘贞堂.煤岩破裂声发射实验研究及R/S统计分析.煤炭学报,1999,24 (3):270~273.
    [131]秦四清,李造鼎,张倬元,等.岩石声发射技术概论.成都:西南交通大学出版社,1993.
    [132]王富耻,张朝晖.ANSYS10.0有限元分析理论与工程应用.北京:电子工业出版社,2006.
    [133]邓凡平.ANSYS10.0有限元分析自学手册.北京:人民邮电出版社,2007.
    [134] Saeed Moaveni.有限元分析——ANSYS理论与应用.(第二版).王崧,董春敏,金云平,等译,北京:电子工业出版社,2005.
    [135]博嘉科技.有限元分析软件——ANSYS融汇与贯通.北京:中国水利水电出版社,2002.
    [136] Hossain M M,Rahman M K,Rahman S S.Hydraulic fracture initiation and propagation:roles of wellbore trajectory, perforation and stress regimes.JPSE, 2000, 27:129~149.
    [137]倪小明,王延斌,接铭训,等.不同构造部位地应力对压裂裂缝形态的控制.煤炭学报,2008,33(5):505~508.
    [138]张晓.小孔径水压致裂地应力测量技术研究及现场应用[硕士学位论文].北京:煤炭科学研究总院,2004.
    [139]刘洪林,王勃,王烽,等.沁水盆地南部地应力特征及高产区带预测.天然气地球科学,2007,18(6):885~890.
    [140]张培河.沁水煤田煤储层压力分布特征及影响因素分析.煤田地质与勘探,2002,30(6):31~32.
    [141]曹言光,刘长松,林平,等.应用断裂力学理论建立油气井压裂时岩石破裂压力计算模型.西安石油学院学报(自然科学版),2003,18(4):36~39.
    [142]李颖川主编.采油工程.北京:石油工业出版社,2002.
    [143]张毅,李根生,熊伟,等.高压水射流深穿透射孔增产机理研究.石油大学学报,自然科学版,2004,28(2):38~41.
    [144]胡永全,赵金洲,曾庆坤,等.计算射孔井水力压裂破裂压力的有限元方法.天然气工业,2003,23(2):58~59.
    [145]张广清,陈勉,殷有泉,等.射孔对地层破裂压力的影响研究.岩石力学与工程学报,2003,26(1):40~44.
    [146]李根生,刘丽,黄中伟,等.水力射孔对地层破裂压力的影响研究.中国石油大学学报(自然科学版),2006,30(5):42~45.
    [147]朱宝存.煤层气井水力压裂力学机制数值模拟研究[硕士学位论文].北京:中国地质大学(北京),2008.
    [148]郝艳丽,王河清,李玉魁.煤层气井压裂施工压力与裂缝形态简析.煤田地质与勘探,2001,29(3):20~22.
    [149]李民河,聂振荣,廖健德,等.水力压裂缝延伸方向分析及其应用.新疆地质,2003,21(4):486~488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700