用户名: 密码: 验证码:
吉林省典型黑土区农田土壤重金属环境风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属不仅通过人体的呼吸道和消化道等直接接触的方式危害人体健康,而且通过影响农产品的品质,经由食物链影响人类的生命和健康。黑土作为东北地区的主要耕作土壤,土壤质量决定农产品品质。本研究以典型黑土玉米种植区的德惠市为研究区,研究黑土区农田土壤重金属的环境行为及其生态效应,为农产品产地环境保护和农产品质量安全提供理论和数据支持。
     研究区土壤Cr、Ni、Cu、Zn、Pb的变异系数范围为12.2-45.0%,平均变异程度为:Cu>Pb>Ni>Cr>Zn,表明土壤Cu和Pb受人类活动干预强烈,外源输入量大,而Cr、Ni、Zn含量的变异较小,且其含量均值低于元素的区域背景值,表明外源输入相对较小。主成分分析结果表明,土壤Cr、Ni和Zn主要受成土母质和成土过程控制,Cu和Pb含量受人类活动的影响显著,施用禽畜粪便、含铜杀虫剂、杀菌剂等是土壤Cu的主要来源,工业废气、燃煤烟尘及生活垃圾等可能是研究区土壤Pb污染的主要来源。
     德惠市农田土壤Cr、Ni和Zn的空间分布呈现一致性,高值区出现在德惠市中部,自南往北呈条带分布,另一个高值区分布在德惠市西南部,其空间分布受自然成土过程控制,表现出明显的地带性分布。Cu和Pb的分布受人类活动影响显著,Cu含量的高值区与工业和蔬菜生产基地相吻合,而Pb的高值区呈现斑状分布,且与大的乡镇村庄相吻合,表明工业废气,燃煤烟尘及生活废物是土壤Pb的主要来源。
     开垦通过影响土壤中有机碳的含量和组成,影响重金属在胡敏酸和富里酸内的分布及其潜在迁移性。通过对不同开垦年限典型黑土的研究表明,与未开垦土壤相比,开垦土壤中DOC、SOC、HS和HU的含量都明显减少。与未开垦土壤相比,开垦200年以上土壤中SOC含量下降了30%。与FA相比,土壤HA对开垦的响应更加敏感,开垦引起HA含量的显著下降(38%),而FA仅下降7%。土壤的胡富比(CHA/CFA)由开垦前的2.05下降到开垦200年后的1.38,开垦引起胡富比下降了33%,表明开垦导致土壤的腐殖化程度降低。
     Pb和Zn主要存在于FA中,FA结合态的Pb和Zn占HS中含量的47-60%和63-76%,而Cu主要存在于HA中,约55%的Na4P2O7+NaOH提取态的Cu存在于HA中。重金属与HA的结合有利于增加矿物颗粒对重金属的吸附,进而降低重金属的移动性和生物有效性,本研究中,Zn和Pb主要存在于FA中,表明研究区土壤中这些元素的潜在迁移性较高。开垦导致Cu和Zn在HA中的比率下降,相反增加了Cu和Zn在FA中的比率。对Pb在腐殖物质不同组分间分配的影响不显著。
     德惠市玉米种植区农田土壤重金属Cr、Ni、Cu、Zn和Pb都属于轻微生态风险,虽然土壤Pb和Cu存在明显累积,但是5种重金属含量都未超过土壤环境质量二级标准,表明德惠市黑土玉米种植区农田土壤中重金属的累积相对较轻,未对农业生产和人体健康造成危害。
Soil contamination with heavy metals draws great attention due to its potentialthreat to food safety, human health, and its detrimental effects on soil ecosystems.Excessive accumulation of heavy metals in agricultural soils can be transferred fromsoil to crops, and can affect human health through the food web. Food consumptionhas been identified as the major pathway of human exposure compared to other waysof exposure such as inhalation and dermal contact. The black soil region in NortheastChina is one of the major bases for commercial grain production in China, soilcontamination affects food safety. This research studied the environmental behaviorsand ecological effects of heavy metals in agricultural soil in Dehui, a representativeagricultural area in the black soil region, Northeast China. This research is essential toreduce metal inputs and to establish quality standards on a regional level that allowthe detection of sampling sites affected by pollution.
     The coefficients of variation varied from12.2%for Zn to45.0%for Cu, itdecreased in the order Cu>Pb>Ni>Cr>Zn, showing the significant influence ofagronomic practices on soil Cu and Pb contents. The coefficients of variation for Cr,Ni, and Zn were small, and the mean concentrations of Cr, Ni, and Zn were lowerthan their background values, indicating that anthropic inputs of these elements werelow. The results of PCA for heavy metal contents showed that soil Cr, Ni, and Zn hada lithogenic origin, whereas, the elevated Cu concentrations in the study area were associated with industrial and agronomic practices, and the main sources of Pb wereindustrial fume, coal burning exhausts, and domestic waste.
     The trends for soil Cr, Ni, and Zn were similar with higher concentrations trendingN–S across the centre of the study area, other hotspots were located in the southwestof the area. The concentrations of Cr, Ni, and Zn pointed to the parent materialinfluence, and their spatial distribution showed a good correlation with the surfaceevidence of the mineralogical structure. The spatial distribution of Cu and Pb wereaffected by human activities. High Cu values can come from Cu-based agrochemicalsrelated to specific agronomic practices; the hotspots of Cu were coincided with thevegetable farming area. The hotspots where the soils were enriched with Pb mostlycoincided with the towns and big villages that had a high discharge of industrial fume,coal burning exhausts and domestic waste.
     Cultivation affects soil organic matter and its fractions, and affects metaldistribution in humic and fulvic acid in black soil. Uncultivated sites and theiradjacent cultivated sites (18,50, and>200years) were studied in the present study,the results showed that the content of dissolved organic carbon (DOC), soil organiccarbon (SOC), extractable humic substances (HS), and humin (HU) had decreasedafter200years of cultivation. SOC had decreased by30%after200years ofcultivation. Cultivation led to a moderate decrease (38%) in HA and a minor decrease(7%) in FA. The CHA/CFAratio, which is a humification parameter, decreased from2.05in the uncultivated soil to1.38in the soil cultivated for200years, showing a33%decrease, and indicating a lower degree of humification of organic matter incultivated soils.
     Lead and Zn were more abundant in the FA than the HA fraction. TheFA-complexed Pb and Zn (%of total Na4P2O7+NaOH-extracted Pb and Zn) were inthe ranges47–60%and63–76%, respectively, showing that fulvic acid has a highaffinity for Pb and Zn. Binding on HA may enhance metal sorption on mineralparticles, and accordingly decrease the mobility of heavy metals. In the present study,relatively higher Zn and Pb concentrations were found in the FA fraction, evidencingthat these elements have high phytoavailability. Copper was bound predominantly to the HA fraction;55%of the Na4P2O7+NaOH extracted Cu was in the humic fraction.The share of Cu and Zn in the HA fraction decreased with cultivation time, butcultivation did not bring about a systematic change in Pb distribution in humicsubstances. The results show that cultivation can decrease the humified C content andmetals bound to the HA fraction, and suggest that cultivation may potentially increasethe mobility of heavy metals.
     Risk assessment of heavy metals in agricultural soil showed that soil Cr, Ni, Cu, Zn,and Pb in the study area belonged to low potential ecological risk for all the samplingsites. Anthropic activities caused an enrichment of Cu and Pb in soils. However, metalconcentrations in all agricultural soils did not exceed the concentration limit affectingthe safety of agricultural production and human health according to the soilenvironmental quality standard of China, indicating an insignificant contamination ofthese metals in the area.
引文
Agbenin, J.O.,2002. Lead in a Nigerian savanna soil under long-term cultivation.Science of the Total Environment286:1-14.
    Ali, N.A., Bernal, M.P., Ater, M.,2002. Tolerance and bioaccumulation of copper inPhragmites australis and Zea mays. Plant and Soil239:103-111.
    Alcantara, S., Pérez, D.V., Almeida, M.R.A., Silva, G.M., Polidoro, J.C., Bettiol, W.,2009. Chemical Changes and Heavy Metal Partitioning in an Oxisol Cultivatedwith Maize (Zea mays, L.) after5Years Disposal of a Domestic and an IndustrialSewage Sludge. Water Air Soil Pollut203:3–16.
    Alexander, M.,2000. Aging, bioavailability, and overestimation of risk fromenvironmental pollutants. Environmental Science&Technology34(20):4259–4265.
    álvarez, E., Monterroso, C., Fernández Marcos, M.L.,2002. Aluminium fractionationin Galician (NW Spain) forest soils as related to vegetation and parent material.Forest Ecology and Management166:193-206.
    Andrewes, P., Town, R.M., Hedley, M.J., Loganathan, P.,1996. Measurement ofplant-available cadmium in New Zealand soils. Soil Research34:441-452.
    Angehrn-bettinazzi, C., Thoni, L., Hertz, J.,1989. An attempt to evaluate somefactors affecting the heavy metal accumulation in a forest stand. InternationalJournal of Environmental Analytical Chemistry35:69–79.
    Arias, M., Barral, M.T., Mejuto, J.C.,2002. Enhancement of copper and cadmiumadsorption on kaolin by the presence of humic acids. Chemosphere48:1081–1088.
    Azimi, S., Cambier, P., Lecuyer, I., Thevenot, D.,2004. Heavy Metal Determinationin Atmospheric Deposition and Other Fluxes in Northern France Agrosystems.Water, Air, and Soil Pollution157:295-313.
    Azimi, S., Rocher, V., Garnaud, S., Varrault, G., Thevenota, D.R.,2005a. Decrease ofatmospheric deposition of heavy metals in an urban area from1994to2002(Paris,France). Chemosphere61:645–651.
    Azimi, S., Rocher, V., Muller, M., Moilleron, R., Thevenota, D.R.,2005b. Sources,distribution and variability of hydrocarbons and metals in atmospheric deposition inan urban area (Paris, France). Science of the Total Environment337:223-239.
    Balesdent, J., Besnard, E., Arrouays, D., Chenu, C.,1998. The dynamics of carbon inparticle-size fractions of soil in a forest–cultivation sequence. Plant and Soil201:49–57.
    Barton, D., Hope, D., Billett, M.F., Cresser, M.S.,1994. Sulphate adsorption capacityand pH of upland podzolic soils in Scotland: Effects of parent material, texture andprecipitation chemistry. Applied Geochemistry9:127–139.
    Bengtsson, H., born, I., Jonsson S, Nilssona, I., Andersson, A.,2003. Field balancesof some mineral nutrients and trace elements in organic and conventional dairyfarming—a case study at jebyn, Sweden. European Journal of Agronomy20:101-116.
    Biasioli, M., Barberis, R., Ajmone-Marsan, F.,2006. The influence of a large city onsome soil properties and metals content. Science of the Total Environment356:154-164.
    Bongiovanni, M.D., Lobartini, J.C.,2006. Particulate organic matter, carbohydrate,humic acid contents in soil macro-and microaggregates as affected by cultivation.Geoderma136:660–665.
    Bor vka, L., Drábek, O.,2004. Heavy metals distribution between fractions of humicsubstances in heavily polluted soils. Plant, Soil and Environment50:339–345.
    Businelli, M., Altieri, R., Giusquiani, P.L., Gigliotti, G.,1999. Complexation capacityof dissolved organic matter from pig slurry: A gel filtration and dialysis study.Water, Air, and Soil Pollution113:385–394.
    Caussy, D., Gochfeld, M., Gurzau, E., Neagu, C., Ruedel, H.,2003. Lessons fromcase studies of metals: investigating exposure, bioavailability, and risk.Ecotoxicology and Environmental Safety56:45–51.
    Chabukdhara, M., Nema, A.K.,2012. Assessment of heavy metal contamination inHindon River sediments: A chemometric and geochemical approach. Chemosphere87:945–953.
    Charlesworth, S., Everett, M., McCarthy, R., Ordó ez, A., De Miguel, E.,2003. Acomparative study of heavy metal concentration and distribution in deposited streetdusts in a large and a small urban area: Birmingham and Coventry, West Midlands,UK. Environ. Int.29:563–573.
    Christl, I., Knicker, H., K gel-Knabner, I., Kretzschmar, R.,2000. Chemicalheterogeneity of humic substances: characterization of size fractions obtained byhollow-fibre ultrafiltration. European Journal of Soil Science51:617–625.
    Christl, I., Milne, C.J., Kinniburgh, D.G., Kretzschmar, R.,2001. Relating ion bindingby fulvic and humic acids to chemical composition and molecular size.2. Metalbinding. Environmental Science&Technology35:2512–2517.
    Commission of the European Communities,2002. Communication from theCommission to the Council, the European Parliament, the Economic and SocialCommittee and the Committee of the Regions: Towards a Thematic Strategy forSoil Protection COM (2002)179final. European Commision, Brussels, Belgium, p.9.
    Critchley, R.F.,1983. An assessment of trace metal inputs to agricultural land in theUnited Kingdom. WRc, Medmenham.
    Cui, Y.J., Zhu, Y.G., Zhai, R.H., Chen, D.Y., Huang, Y.Z., Qiu, Y., Liang, J.Z.,2004.Transfer of metals from soil to vegetables in an area near a smelter in Nanning,China. Environment International30:785–791.
    Dach, J., Starmans, D.,2005. Heavy metals balance in Polish and Dutch agronomy:Actual state and previsions for the future. Agriculture, Ecosystems&Environment107:309–316.
    Datta, A., Sanyal, S.K., Saha, S.,2001. A study on natural and synthetic humic acidsand their complexing ability towards cadmium. Plant and Soil235:115–125.
    DIN (Deutsches Institut fur normung), Bo-denbeschaffenheit. Extraktion vonSpurenelemente mit Ammonium-nitratlosung. Vornorm DINV19730, DIN (ed.)Boden-Chemische
    Doelsch, E., Moussard, G., Macary, H.S.,2008. Fractionation of tropical soilborneheavy metals—Comparison of two sequential extraction procedures. Geoderma143:168–179.
    Donisa, C., Mocanu, R., Steinnes, E.,2003. Distribution of some major and minorelements between fulvic and humic acid fractions in natural soils. Geoderma111:75–84.
    Dormaar, J.F.,1979. Organic matter characteristics of undisturbed and cultivatedchernozemic and solonetzic A horizons. Canadian Journal of Soil Science59:349–356.
    Ellickson, K.M., Meeker, R.J., Gallo, M.A., Buckley, B.T., Lioy, P.J.,2001. OralBioavailability of Lead and Arsenic from a NIST Standard Reference Soil Material.Archives of Environmental Contamination Toxicology40:128–135.
    Evangelou, M.W.H., Ebel, M., Schaeffer, A.,2007. Chelate assisted phytoextractionof heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents.Chemosphere68:989-1003.
    Facchinelli, A., Sacchi, E., Mallen, L.,2001. Multivariate statistical and GIS-basedapproach to identify heavy metal sources in soils. Environ. Pollut.114:313–324.
    Franco-Uría, A., López-Mateo, C., Roca, E., Fernández-Marcos, M.L.,2009. Sourceidentification of heavy metals in pastureland by multivariate analysis in NW Spain.J. Hazard. Mater.165:1008–1015.
    Ghosh, S., Wilson, B.R., Mandal, B., Ghoshal, S.K., Growns, I.,2010. Changes insoil organic carbon pool in three long-term fertility experiments with differentcropping systems and inorganic and organic soil amendments in the eastern cerealbelt of India. Australian Journal of Soil Research48:413–420.
    Gondar, D., Iglesias, A., López, R., Fiol, S., Antelo, J.M., Arce, F.,2006a. Copperbinding by peat fulvic and humic acids extracted from two horizons of anombrotrophic peat bog. Chemosphere63:82–88.
    Gondar, D., López, R., Fiol, S., Antelo, J.M., Arce, F.,2006b. Cadmium, lead, andcopper binding to humic acid and fulvic acid extracted from an ombrotrophic peatbog. Geoderma135:196–203.
    Goovaerts, P.,1997. Geostatistics for Natural Resources Evaluation. AppliedGeostatistics Series. Oxford University Press, New York.
    Grandy, A.S., Robertson, G.P.,2006. Aggregation and organic matter protectionfollowing tillage of a previously uncultivated soil. Soil Science Society of AmericaJournal70:1398–1406.
    Grandy, A.S., Robertson, G.P.,2007. Land-use intensity effects on soil organiccarbon accumulation rates and mechanisms. Ecosystems10:58–73.
    Gray, C.W., McLaren, R.G., Roberts, A.H.C.,2003. Atmospheric accessions of heavymetals to some New Zealand pastoral soils. Science of the Total Environment305:105-115.
    Guo, J.H., Liu, X.J., Zhang, Y., Shen, J.L., Han, W.X., Zhang, W.F., Christie, P.,Goulding, K.W.T., Vitousek, P.M., Zhang, F.S.,2010. Significant Acidification inMajor Chinese Croplands. Science327:1008-1010.
    Hani, H., Gupta, S.,1986. Chemical methods for the biological characterization ofmetal in sludge and soil. Commission of the European Communities, Report10361:157-167
    Helyar, K.R., Cregan, P.D., Godyn, D.L.,1990. Soil acidity in New-South-Wales—Current pH values and estimates of acidification rates. Soil Research28(4):523-537.
    Houba. V.J.G., Lexmond, T.M., Novozamsky, I., van der Lee, J.J.,1996. State of theart and future developments in soil analysis for bioavailability assessment. Scienceof the Total Environment178:21-28.
    Houba, V.J.G., Temminghoff, E.J.M., Gaikhorst, G.A., van Vark, W.,2000. Soilanalysis procedures using0.01M calcium chloride as extraction reagent.Communications in Soil Science and Plant Analysis31:1299-1396.
    J rup, L.,2003. Hazards of heavy metal contamination. British medical bulletin68:167–182.
    Keller, A., Abbaspour, K.C., Schulin, R.,2002. Assessment of Uncertainty and Risk inModeling Regional Heavy-Metal Accumulation in Agricultural Soils. Journal ofenvironmental quality31:175–187.
    Keller, A., von Steiger, B., van der Zee, S.E.A.T.M., Schulin, R.,2001. A StochasticEmpirical Model for Regional Heavy-Metal Balances in Agroecosystems. Journalof environmental quality30:1976–1989.
    Kumar Sharma, R., Agrawal, M., Marshall F.,2007. Heavy metal contamination ofsoil and vegetables in suburban areas of Varanasi, India. Ecotoxicology andEnvironmental Safety66(2):258-266.
    Li, X.G., Li, F.M., Zed, R., Zhan, Z.Y., Singh, B.,2007. Soil physical properties andtheir relations to organic carbon pools as affected by land use in an alpinepastureland. Geoderma139:98–105.
    Li, W.C., Wong, M.H.,2010. Effects of bacteria on metal bioavailability, speciation,and mobility in different metal mine soils: a column study. Journal of Soils andSediments10:313–325.
    Liang, A.Z., McLaughlin, N.B., Zhang, X.P., Shen, Y., Shi, X.H., Fan, R.Q.,2011.Short-term effects of tillage practices on soil aggregate fractions in a ChineseMollisol. Acta Agriculturae Scandinavica, Section B–Soil and Plant Science61:535-542.
    Liang, A.Z., Yang, X.M., Zhang, X.P., McLaughlin, N.B., Shen, Y., Li, W.F.,2009.Soil organic carbon changes in particle-size fractions following cultivation of Blacksoils in China. Soil&Tillage Research105:21–26.
    Lin, Y.P.,2002. Multivariate geostatistical methods to identify and map spatialvariations of soil heavy metals. Environmental Geology42:1-10.
    Liu, X.B., Han, X.Z., Herbert, S.J., Xing, B.,2003. Dynamics of soil organic carbonunder different agricultural management system in the black soil of China.Communications in Soil Science and Plant Analysis34:973–984.
    Liu, X.B., Zhang, X.Y., Wang, Y.X., Sui, Y.Y., Zhang, S.L., Herbert, S.J., Ding, G.,2010. Soil degradation: a problem threatening the sustainable development ofagriculture in Northeast China. Plant, Soil and Environment56:87–97.
    Lu, A.X., Wang, J.H., Qin, X.Y., Wang, K.Y., Han, P., Zhang, S.Z.,2012.Multivariate and geostatistical analyses of the spatial distribution and origin ofheavy metals in the agricultural soils in Shunyi, Beijing, China. Science of the TotalEnvironment425:66-74.
    McBride, M.B., Richards, B.K., Steenhuis, T.,2004. Bioavailability and crop uptakeof trace elements in soil columns amended with sewage sludge products. Plant andSoil262:71-84.
    McBride, M.B., Spiers, G.,2001. Trace element content of selected fertilizers anddairy manures as determined by ICP-MS. Communications in Soil Science andPlant Analysis32:139-156.
    McLaughlin, M.J., Parker, D.R., Clarke, J.M.,1999. Metals and micronutrients-foodsafety issues. Field Crops Research60,143-163.
    Menzies, N.W., Donn, M.J., Kopittke, P.M.,2007. Evaluation of extractants forestimation of the phytoavailable trace metals in soils. Environmental Pollution145,121-130.
    Meyer, J.S.,2002. The utility of the terms “bioavailability” and “bioavailablefraction” for metals. Marine Environmental Research53:417–423.
    Micó, C., Recatalá, L., Peris, M., Sánchez, J.,2006. Assessing heavy metal sources inagricultural soils of an European Mediterranean area by multivariate analysis.Chemosphere65:863–872.
    Minkina, T.M., Motuzova, G.V., Nazarenko, O.G.,2006. Interaction of heavy metalswith the organic matter of an ordinary chernozem. Eurasain Soil Science39:720–726.
    Moolenaar, S.W.,1998a. Sustainable management of heavy metals inagro-ecosystems. Ph. D. thesis. Agric. Univ. of Wageningen, Wageningen, theNetherlands.
    Moolenaar, S.W., Lexmond, T.M.,1998b. Heavy-metal balances of agro-ecosystemsin the Netherlands. NJAS wageningen journal of life sciences46:171-192.
    Muller, G.,1969. Index of geo-accumulation in sediments of the Rhine River.Geological Journal2:109-118.
    Nicholson, F.A., Smith, S.R., Alloway, B.J., Carlton-Smith, C., Chambers, B.J.,2003.An inventory of heavy metals inputs to agricultural soils in England and Wales.Science of the Total Environment311:205–219.
    Nogueira, T.A.R., Melo, W.J., Fonseca, I.M., Marcussi, S.A., Melo, G.M.P., Marques,M.O.,2010. Fractionation of Zn, Cd and Pb in a tropical soil after nine-year sewagesludge applications. Pedosphere20:545–556.
    Notten, M.J.M., Oosthoek, A.J.P., Rozema, J., Aerts, R.,2005. Heavy metalconcentrations in a soil-plant-snail food chain along a terrestrial soil pollutiongradient. Environmental Pollution138:178-190.
    Novotny, E.H., Blum, W.E.H., Gerzabek, M.H., Mangrich, A.S.,1999. Soilmanagement system effects on size fractionated humic substances. Geoderma92:87–109.sterberg, R., Wei, S.Q., Shirshova, L.,1999. Inert copper ion complexes formed byhumic acids. Acta Chemica Scandinavica. Series A: Physical and InorganicChemistry53:172–180.
    Palm, V.,1994. A model for sorption, flux and plant uptake of cadmium in a soilprofile: Model structure and sensitivity analysis. Water, Air, and Soil Pollution77:169-190.
    Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., Wesemael, B.V., Schumacher, J.,Gensior, A.,2011. Temporal dynamics of soil organic carbon after land-use changein the temperate zone—carbon response functions as a model approach. GlobalChange Biology17:2415–2427.
    Quan, G.X., Yan, J.L.,2010. Binding constants of lead by humic and fulvic acidsstudied by anodic stripping square wave voltammetry. Russian Journal ofElectrochemistry46:90–94.
    Rao, C.R.M., Sahuquillo, A., Sanchez, J.F.L.,2008. A Review of the DifferentMethods Applied in Environmental Geochemistry For Single and SequentialExtraction of Trace Elements in Soils and Related Materials. Water, Air, and SoilPollution189:291–333.
    Rauret, G., López-Sánchez, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A.Quevauviller, Ph.,1999. Improvement of the BCR three step sequential extractionprocedure prior to the certification of new sediment and soil reference materials.Journal of Environmental Monitoring1:57–61.
    Rodríguez, J.A., Nanos, N., Grau, J.M., Gil, L., López-Arias, M.,2008. Multiscaleanalysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere70:1085–1096.
    Roper, M.M., Gupta, V.V.S.R., Murphy, D.V.,2010. Tillage practices altered labilesoil organic carbon and microbial function without affecting crop yields. SoilResearch48:274–285.
    Rühling,.,2002. A European survey of atmospheric heavy metal deposition in2000-2001. Environmental pollution120:23-25.
    Saha, D., Kukal, S.S., Sharma, S.,2011. Landuse impacts on SOC fractions andaggregate stability in typic ustochrepts of Northwest India. Plant and Soil339:457–470.
    Saviozzi, A., Levi-Minzi, R., Riffaldi, R.,1994. The effect of forty years ofcontinuous corn cropping on soil organic matter characteristics. Plant and Soil160:139–145.
    Schimel, J.P., Mikan, C.,2005. Changing microbial substrate use in Arctic tundrasoils through a freeze-thaw cycle. Soil Biology and Biochemistry37:1411–1418.
    Schnitzer, M.,1982. Total carbon, organic matter, and carbon. In ‘Methods of SoilAnalysis’. American Society of Agronomy, Madison. pp.539–577.
    Schuhmacher, M., Bosque, M.A., Domingo, J.L., Corbella, J.,1991. Dietary intake oflead and cadmium from foods in Tarragona province, Spain. Bulletin ofEnvironmental Contamination and Toxicology46:320-328.
    Six, J., Elliott, E.T., Paustian, K.,1999. Aggregate and soil organic matter dynamicsunder conventional and no-tillage systems. Soil Science Society of America Journal63:1350–1358.
    Six, J., Paustian, K., Elliott, E.T., Combrink, C.,2000. Soil structure and organicmatter: I. Distribution of aggregate-size classes and aggregate-associated carbon.Soil Science Society of America Journal64:681–689.
    Smith, W.H.,1976. Lead contamination of the roadside ecosystem. Journal of the AirPollution Control Association26:753-766.
    Spohn, M., Giani, L.,2010. Water-stable aggregates, glomalin-related soil protein,and carbohydrates in a chronosequence of sandy hydromorphic soils. Soil Biologyand Biochemistry42:1505–1511.
    Stevenson, F.J.,1994.‘Humus chemistry: genesis, composition, reactions.’ pp.378–382.(Wiley Publishing: New York)
    Stone, M., Droppo, I.G.,1996. Distribution of lead, copper and zinc in size-fractionedriver bed sediment in two agricultural catchments of southern Ontario, Canada.Environmental Pollution93(3):353–362.
    Tan, K.H.,1978. Variations in soil humic compounds as related to regional andanalytical differences. Soil Science125:351–358.
    Taylor, R.W., Ibeabuchi, I.O., Sistani, K.R., Shuford, J.W.,1992. Accumulation ofsome metals by legumes and their extractability from acid mine spoils. Journal ofenvironmental quality21:176-180.
    Terbouche, A., Djebbar, S., Benali-Baitich, O., Hauchard, D.,2011. Complexationstudy of humic acids extracted from forest and Sahara soils with zinc (II) andcadmium (II) by differential pulse anodic stripping voltammetry (DPASV) andconductimetric methods. Water, Air, and Soil Pollution216:679–691.
    Tessier, A., Campbell, P.G.C., Bisson, M.,1979. Sequential extraction procedure forthe speciation of particulate trace metals. Analytical chemistry51(7):844–851.
    Tian, L., Dell, E., Shi, W.,2010. Chemical composition of dissolved organic matter inagroecosystems: Correlations with soil enzyme activity and carbon and nitrogenmineralization. Applied Soil Ecology46:426–435.
    Tibazarwa, C., Corbisier, P., Mench, M.,2001. A microbial biosensor to predictbioavailable nickel in soil and its transfer to plants. Environmental Pollution113:19-26.
    Tipping, E.,1998. Humic ion-binding model VI: An improved description of theinteractions of protons and metal ions with humic substances. AquaticGeochemistry4:3–48.
    Tisdall, J.M., Oades, J.M.,1982. Organic matter and water-stable aggregates in soils.Journal of Soil Science33:141–163.
    Walker, D.J., Clemente, R., Roig, A., Bernal, M.P.,2003. The effects of soilamendments on heavy metal bioavailability in two contaminated Mediterraneansoils. Environmental Pollution,122:303-312.
    Wang, X.S., Qin, Y.,2007. Relationships between heavy metals and iron oxides,fulvic acids, particle size fractions in urban roadside soils. Environmental Geology52,63–69.
    Wei, B.G., Yang, L.S.,2010. A review of heavy metal contaminations in urban soils,urban road dusts and agricultural soils from China. Microchemical Journal94:99–107.
    Wen, D.Z., Liang, W.J.,2001. Soil fertility quality and agricultural sustainabledevelopment in the black soil region of northeast China. Environment,Development and Sustainability3:31–43.
    Wheeler, D.M., Power, I.L.,1995. Comparison of plant uptake and plant toxicity ofvarious ions in wheat. Plant and Soil172:167-173.
    Whitten, M.G., Ritchie, G.S.P.,1991. Calcium chloride extractable cadmium as anestimate of cadmium uptake in subterranean clover. Soil Research29:215-221.
    Wild, A., Russell, E.W.,1988. Russell's soil conditions and plant growth (11th ed.),London: Longman.
    Wong, C.S.C, Li, X.D., Zhang, G., Qi, S.H., Peng, X.Z.,2003. Atmosphericdeposition of heavy metals in the Pearl River Delta, China. AtmosphericEnvironment37:767–776.
    Yu, Y., Zhou, Q.X.,2006. Impacts of soybean growth on Cu speciation anddistribution in two rhizosphere soils. Biology and fertility of soils42:450–456.
    Zalba, P., Quiroga, A.R.,1999. Fulvic acid carbon as a diagnostic feature foragricultural soil evaluation. Soil Science164:57–61.
    Zhang, J., Dai, J.L., Wang, R.Q., Li, F.S., Wang, W.X.,2009. Adsorption anddesorption of divalent mercury (Hg2+) on humic acids and fulvic acids extractedfrom typical soils in China. Colloids and Surfaces A: Physicochemical andEngineering Aspects335:194–201.
    Zhuang, P., McBride, M.B., Xia, H.P., Li, N.Y., Li, Z.A.,2009a. Health risk fromheavy metals via consumption of food crops in the vicinity of Dabaoshan mine,South China. Science of the Total Environment407:1551-1561.
    Zhuang, P., Shu, W.S., Li, Z.A.,2009b. Removal of metals by sorghum plants fromcontaminated land. Journal of Environmental Sciences21:1432-1437.
    曹会聪,2007.农田黑土中Cd、Pb、As环境行为及生态效应研究.博士学位论文,长春:中国科学院东北地理与农业生态研究所.
    曹会聪,王金达,张学林,2006.吉林省农田黑土中Cd、Pb、As含量的空间分布特征.环境科学27(10):2117-2122.
    陈飞霞,魏世强,2006.土壤中有效态重金属的化学试剂提取法研究进展.干旱环境监测20(3):153-157.
    陈怀满,1996.土壤-植物系统中的重金属污染.北京:科学出版社.
    陈怀满,2002.土壤中化学物质的行为与环境质量.北京:科学出版社.
    陈同斌,1998.土壤中溶解性有机质及其对污染物吸附和解吸行为的影响.植物营养与肥料学报4(3):201-210.
    丛源,郑萍,陈岳龙,2008.北京农田生态系统土壤重金属元素的生态风险评价.地质通报27(5):681-688.
    崔海山,张柏,于磊,朱金花,何艳芬,2003.中国黑土资源分布格局与动态分析.资源科学25(3):64-68.
    崔俊涛,2005.微生物在土壤腐殖质形成与转化中作用的研究.博士学位论文,长春:吉林农业大学.
    窦森,于水强,张晋京,2007.不同CO2浓度对玉米秸秆分解期间土壤腐殖质形成的影响.土壤学报44(3):458-466.
    方凤满,王起超,李东侠,赵国君,汪丽英,2001.长春市大气颗粒汞及其干沉降通量.环境科学22(2):60-63.
    方华军,2005.坡耕地黑土有机碳再分布过程及其动态研究.博士学位论文,长春:中国科学院东北地理与农业生态研究所.
    方华军,杨学明,张晓平,梁爱珍,申艳,2006.东北黑土区坡耕地表层土壤颗粒有机碳和团聚体结合碳的空间分布.生态学报26(9):2847-2854.
    顾国平,章明奎,2006.蔬菜地土壤有效态重金属提取方法的比较.生态与农村环境学报22(4):67-70.
    郭观林,2006.东北黑土重金属污染发生机理及健康动力学研究.博士论文,沈阳:中国科学院沈阳应用生态研究所.
    郭平,2005.长春市土壤重金属污染机理与防治对策研究.博士学位论文,长春:吉林大学.
    何峰,2004.重庆市农田土壤一粮食作物重金属关联特征与污染评价.博士学位论文,重庆:西南农业大学.
    黑龙江省土地管理局,黑龙江省土地勘测规划院,1998.黑龙江土地资源.北京:中国农业科技出版社.
    侯雪莹,2009.长期施肥对黑土肥力的影响.博士学位论文,长春:中国科学院东北地理与农业生态研究所.
    胡文,2008.土壤—植物系统中重金属的生物有效性及其影响因素的研究.博士学位论文,北京:北京林业大学.
    黄昌勇,2000.土壤学.北京:中国农业出版社.
    吉林省统计局,2011.吉林省统计年鉴.北京:中国统计出版社.
    吉林省土壤肥料总站,1998.吉林土壤.北京:中国农业出版社.
    李亮亮,张大庚,李天来,依艳丽,臧健,胡睿,2008.土壤有效态重金属提取剂选择的研究.土壤40(5):819~823.
    梁爱珍,2008.东北黑土有机碳的恢复潜力及其机理研究.博士论文,长春:中国科学院东北地与农业生态研究所.
    刘恩玲,王亮,2006.土壤中重金属污染元素的形态分布及其生物有效性.安徽农业科学34(3):547-548,557.
    刘清,王子健,汤鸿霄,1996.重金属形态与生物毒性及生物有效性关系的研究进展.环境科学17(1):89-92.
    鲁如坤,时正元,熊礼明,1992.我国磷矿磷肥中镉的含量及其对生态环境影响的评价.土壤29(2):150-157.
    孟宪玺,李生智,1995.吉林省土壤元素背景值研究.北京:科学出版社.
    米红,张文璋,2000.实用现代统计分析方法与SPSS应用,北京:当代中国出版社,241-258.
    单孝全,王仲文,2001.形态分析与生物可给性.分析试验室20(6):103-108.
    水利部,中国科学院,中国工程院,2010.中国水土流失防治与生态安全·东北黑土区卷.北京:科学出版社.
    汤国安,2006. ArcGIS地理信息系统空间分析实验教程.北京:科学出版社.
    汤奇峰,杨忠芳,张本仁,2007.成都经济区农业生态系统土壤镉通量研究.地质通报26(7):867-877.
    檀满枝,詹其厚,陈杰,2007.基于信息熵原理的土壤pH影响因素空间相关性分析.土壤39(6):953~957.
    滕彦国,庹先国,倪师军,张成江,2002.应用地质累积指数评价沉积物中重金属污染:选择地球化学背景的影响.环境科学与技术25(2):7-10.
    王昌全,2005.成都平原城市化土壤重(类)金属演变及其环境效应研究.博士学位论文,重庆:西南农业大学.
    王焕校,2000.污染生态学.北京:高等教育出版社:188-213.
    王其存,2007.黑土DOC变化与耕作-培肥措施及土壤性状关系研究.博士学位论文,长春:中国科学院东北地与农业生态研究所.
    王亚平,黄毅,王苏明,许春雪,刘妹,2005.土壤和沉积物中元素的化学形态及其顺序提取法.地质通报24(8):728-734.
    王洋,齐晓宁,2007.德惠市农田黑土肥力评价及施肥措施研究.中国生态农业学报15(2):26-28.
    王洋,齐晓宁,刘兆永,李泽兴,2008.黑土区长期连作玉米农田土壤肥力变化及其评价.土壤40(3):495-499.
    王宇,李业东,曹国军,王玉军,2008.长春地区土壤中重金属含量及其在玉米子粒中的积累规律.玉米科学16(2):80~82,87.
    韦朝阳,陈同斌,2001.重金属超富集植物及植物修复技术研究进展.生态学报21(7):1197-1203.
    吴燕玉,王新,梁仁禄,1998. Cd、Pb、Cu、Zn、As复合污染在农田生态系统的迁移动态研究.环境科学学报18(4):407-414.
    夏增禄,1992.中国土壤环境容量.北京:地震出版社.
    徐素娟,郑娜,刘景双,孙崇玉,王洋,常守志,2011.有色冶金区街道灰尘中As和Pb的空间分布特征及其生态风险.环境科学32(5):1441-1446.
    徐勇贤,2007.典型城乡交错区土壤重金属平衡及生态效应研究.硕士学位论文,南京:南京农业大学
    严平,董光荣,张信宝,邹学勇,2003.青海共和盆地土壤风蚀的137Cs法研究(Ⅱ)—137Cs背景值与风蚀速率测定.中国沙漠23(4):391-397.
    杨金燕,杨肖娥,何振立,李廷强,2005.平衡时间及含水量对红壤有效态铅提取量的影响.土壤通报36(4):595-597.
    杨苏才,南忠仁,曾静静,2006.土壤重金属污染现状与治理途径研究进展.安徽农业科学34(3):549-552.
    杨学明,张晓平,方华军,梁爱珍,2004.20年来部分黑土耕层有机质和全氮含量的变化.地理科学24(6):710-714.
    杨忠平,2008.长春市城市重金属污染的生态地球化学特征及其来源解析.博士学位论文,长春:吉林大学.
    杨忠平,卢文喜,龙玉桥,2009.长春市城区重金属大气干湿沉降特征.环境科学研究22(1):28-34.
    于君宝,刘景双,刘淑霞,王金达,齐小宁,王洋,2004a.不同开垦年限黑土耕层有机无机复合体变化及有机碳组分分布特征.农业系统科学与综合研究20(3),224-228.
    于君宝,刘景双,王金达,刘淑霞,齐小宁,王洋,王国平,2004b.不同开垦年限黑土有机碳变化规律.水土保持学报18:27–30.
    章明奎,方利平,周翠,2006.污染土壤重金属的生物有效性和移动性评价:四种方法比较.应用生态学报17(8):1501~1504.
    张仲胜,2011.三江平原不同土地利用类型土壤重金属元素集散规律及生物地球化学过程研究.博士学位论文,长春:中国科学院东北地理与农业生态研究所.
    赵兰坡,王鸿斌,刘会青,王艳玲,刘淑霞,王宇,2006.松辽平原玉米带黑土肥力退化机理研究.土壤学报43(1):79-84.
    中华人民共和国环境保护部(EPAC),1997a.土壤质量铜、锌的测定火焰原子吸收分光光度法(GB/T17138-1997).http://kjs.mep.gov.cn/hjbhbz/bzwb/trhj/trjcgfffbz/199805/t19980501_82031.htm.
    中华人民共和国环境保护部(EPAC),1997b.土壤质量铅、镉的测定石墨炉原子吸收分光光度法(GB/T17141-1997).http://kjs.mep.gov.cn/hjbhbz/bzwb/trhj/trjcgfffbz/199805/t19980501_82029.htm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700