用户名: 密码: 验证码:
匀速电子注激励周期加载波导衍射辐射研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹电磁波因其在当代科技的诸多领域具有重要的应用价值而受到全世界各国科学家的广泛关注,太赫兹科学技术作为一门新兴的交叉前沿学科已逐步成型。太赫兹辐射源是太赫兹科学技术的重要组成部分,也是相关技术应用和发展的前提条件。然而,由于太赫兹波处在传统电子学与光子学领域的中间地带,基于电子学或光子学方法的辐射源均不能产生覆盖整个太赫兹频段的电磁辐射。缺乏实用可靠的太赫兹源已成为当前制约太赫兹科学技术发展的主要瓶颈。探索新机制以发展室温,便携,大功率,可调谐的太赫兹辐射源一直是各国科学家努力为之奋斗的目标。
     基于自由电子注驱动的传统真空电子学辐射源是目前在低频太赫兹波段(频率通常低于0.5THz)可以实现相对最大功率输出的太赫兹辐射源。然而,在中高频太赫兹波段(频率ITHz以上),由于其物理机制的限制,该类辐射源的功率和效率都急剧下降。其中,对于线性注器件来说,产生高频段太赫兹辐射的主要障碍是需要极高的电子注起振电流密度。匀速电子注激励周期加载波导衍射辐射是最近几年新发现的辐射现象,因其避开了对起振电流(密度)的要求而在发展高频段太赫兹源方面具有独特优势,该机制可望为基于自由电子注驱动的电磁辐射源提供新的发展契机。本论文对这一特殊的辐射机制进行了系统详细的理论和模拟研宄,分析得出了辐射产生的条件,辐射特点,以及周期结构对辐射特性的影响。
     由于其衍射辐射机制,该辐射的功率较传统真空器件的功率明显偏低。为提高辐射功率,论文采用电子团及周期电子团作为激励源,并对此时周期加载波导的衍射辐射特性进行了研宄,分析得出了电子团内部电荷及周期电子团在波导中的相干衍射辐射条件。结果显示当辐射相干时,辐射功率与电子团内部电荷数的平方及电子团个数的平方均成正比关系,这说明利用周期电子团的相干衍射辐射可以显著提高辐射功率。分析同时考虑了电子团内部电荷分布对辐射特性的影响。文章得到的一系列结果将为该类电磁辐射源的发展提供理论支持。
     同时,针对传统真空电子学源起振电流密度高和衍射辐射源辐射功率低的缺点,论文研宄了一种基于两段周期结构的电磁辐射源一第一段用于对电子注进行预调制,第二段用于产生电磁辐射,辐射频率为调制频率的高次谐波一并对其进行了理论和模拟研宄,结果表明利用该方法可以显著降低第二段周期结构中的注波互作用起振电流。它在机制上可以理解为预调制的周期电子团在第二段周期结构中产生的衍射辐射发生相干,辐射场增强,并反作用于电子注而激励起高频振荡,这显然比直流电子注驱动的自激振荡更容易起动,从而实现了起振电流的降低。该辐射源结合了传统真空器件的注波互作用机制和周期加载波导的衍射辐射机制,使得利用中等电流密度的电子注即可激发较高频段较大功率的太赫兹辐射,对于发展实用小型化,大功率太赫兹辐射源具有重要意义。
     金属表面等离子体在太赫兹及更高频段对周期加载波导结构的色散特性以及相关的电磁辐射特性具有重要影响。由此,论文对考虑金属表面等离子体情况下周期加载波导结构的电磁特性进行了详细的理论分析和计算机模拟,得出了金银铝三种金属的介电特性以及金属内部电磁场的分布特性。研宄同时发现:当圆柱型周期加载波导工作在特定频段时,电磁波将不能沿径向传播而被完全约束在轴向波导内而减小了径向衰减提高了轴向传输效率,这对于提高结构的电磁波传输效率及其衍射辐射效率均具有重要意义。
Terahertz wave, electromagnetic radiation in the frequency from0.1THz to10THz (wavelength of3mm to0.03mm), has attracted extensive interests of scientistsfrom different disciplines for its great potential applications in varieties of ifelds ofmodern science. Yet till now, it is still an urgent problem to develop the compact, roomtemperature, and relatively high power terahertz radiation source, even though greatefforts have been made.
     The primary obstacle for the traditional vacuum electronic devices, such as BWOand EIO,to generate high frequency (higher than0.5THz) terahertz radiation is therequirement of extremely high starting beam current density. The diffraction radiationfrom the periodical waveguide structure (PWS) excited by a uniformly moving electronbeam, which is newly found in the recent years, may offer a good opportunity to thevacuum electronics and bring attractive prospects to develop the compact and tunablefree-electron-radiation-source in the high frequency terahertz regime since it avoids therequirement of starting current density. Detailed theoretical analysis as well asnumerical simulations on this kind of radiation are carried out in this dissertation. Therequirements for the coherent radiation from the electron bunch and the train of bunchesare found. And the influence of the charge distribution on the radiation characteristicsare studied. The results I obtained are of great signiifcances for the development of thehigh frequency terahertz radiation sources based on this mechanism.
     I also propose, in the dissertation, a kind of free electron terahertz wave radiationsource with two-section periodical waveguide structure (PWS), where the first section(section-I) is used to pre-modulate the electron beam and the second section (section-II)is for terahertz wave generation. By means of theoretical analysis and numericalsimulations, I demonstrate that the starting current density of the beam-wave interactionin section-II can be signiifcantly reduced provided that its operation frequency is theharmonic of electron beam's pre-modulation frequency. This kind of source can generaterelatively high power terahertz wave radiation but only need a moderate beam current density. And it may have great potential application in developing the compact and highpower terahertz wave radiation source.
     Besides, the detailed theoretical analysis and computer simulations on theelectromagnetic waves propagating in the nano-scale periodical waveguide structurewith Surface Plasmon Polaritons (SPPs) taken into consideration are carried out in thisdissertation. The results show that the presence of SPPs will signiifcantly influence theelectromagnetic characteristics of the structure. More importantly, when the operatingfrequency lies in the radial conifnement region,the electromagnetic waves will becompletely conifned within the longitudinal waveguide and propagate along it with littleattenuation. And the radial energy loss is greatly reduced. These results are of greatsigniifcance for increasing the eiffciency of the radiation sources based on this structure,as well as for the development of high eiffciency transmission waveguides andwide-band iflters in the infrared and visible region.
引文
[1]刘盛纲.太赫兹科学技术的新发展[J].第270次香山科学会议.北京,2005,6-30
    [2] Siegel P H.Terahertz technology[J]. IEEE Trans. M.T.T.,2002,50(3):910-928
    [3] Siegel P H.THz Technology: An Overview[J]. Int. J. High Speed Electro. Syst.,2003,13(2):351-394
    [4]贾刚,汪力,张希成.太赫兹波科学与技术[J].中国科学基金,2002(4):200-203
    [5]刘盛纲.太赫兹科学技术的新发展[J].中国基础科学,2006,(1):7-12
    [6] Bradley Ferguson,张希成.太赫兹科学技术研究回顾[J].物理,2003,286-293
    [7]胡永生,陈钱.太赫兹技术及其应用研究的进展[J].红外与毫米波,2006,27(1):11-15
    [8] Nishizawa Jun-Ichi, Sasaki Tetsuo, Suto Ken, et al. THz imaging of nucleobases and canceroustissue using a GaP THz-wave generator[J]. Opt. Commun.,2005,244(1-6):469-474
    [9] Yue Weiwei, Wang Weining, Yan Haitao. THz pulse spectroscopy of biological molecules[C].Proceedings of SPIE-The International Society for Optical Engineering,2005,5640:568-578
    [10] Ma Xiao-Jing, Zhao Hong-Wei, Dai Bin, et al. Progress in application of THz-TDS to proteinstudy [J]. Spectrosc. Spectra. Anal.,2008,28(10):2237-2242
    [11] Emma P M. Terahertz pulsed imaging in vivo: measurements and processing methods [J]. Int. J. Ter.Sci. Tech.,2011,3:163-171
    [12] Gretel M. Png, Robert J. Falconer, Bernd M. Fischer, et al. Terahertz Spectroscopic Differentiationof Microstructures in Protein Gels[J]. Opt. Express,2009,17(15):13102-13115
    [13] Yang Chen, Shengyang Huang, Emma Pickwell. Frequency-wavelet domain deconvolution forterahertz reflection imaging and spectroscopy [J]. Opt. Express,2010,18(2):1177-1190
    [14] Hiibers H W, Pavlov S G, Richter H, et al. Molecular spectroscopy with terahertz quantum cascadelasers [J]. J. Nano. Electro. Optoelec.,2007,2(1):101-107
    [15] Charles Schmuttenmaer. Using terahertz spectroscopy to study nano-materials[J]. Int. J. Ter. Sci.Tech.,2008,1(1):1-8
    [16] Michael von Ortenberg. THz-radiation-a probe in solid state physic[J]. Int. J. Ter. Sci. Tech.,2008,1(1):9-21
    [17] Yue Weiwei, Wang Weining, Yan Haitao. THz pulse spectroscopy of biological molecules[C].Proceedings of SPIE-The International Society for Optical Engineering,2005,5640:568-578
    [18] Zhang Cunlin. THz and thermal wave imaging for material inspection[C]. IRMMW-THz2006-31stInternational Conference on Infrared and Millimeter Waves and14th International Conference onTerahertz Electronics,2006,14
    [19] Kleine-Ostmann T, Pierz K, Hein G, et al. Room-temperature semiconductor modulators forfree-space signal transmission with THz waves[C]. Proceedings of SPIE-The International Societyfor Optical Engineering,2004,5593:521-532
    [20] Fischer Bernd M, Helm Hanspeter, Jepsen Peter Uhd. Chemical recognition with broadband THzspectroscopy [C]. Proceedings of the IEEE,2007,95(8):1592-1604
    [21] Cheville R Alan, Reiten Matthew T, O'Hara John, et al. THz time domain sensing and imaging[C].Proceedings of SPIE-The International Society for Optical Engineering,2004,5411:196-206
    [22] Song Qian, Redo-Sanchez Albert, Zhao Yuejin, et al. High speed imaging with CW THz forsecurity [C]. Proceedings of SPIE-The International Society for Optical Engineering,2009,7160
    [23] McMillan R W, Trussell C W, Bohlander R A, et al. An experimental225GHz pulsed coherentradar[J]. IEEE Trans. M.T.T.,1991,39(3):555-562
    [24] Tadao Nagatsuma. Exploring wub-terahertz waves for future wireless communications [C]. TheJoint31st International Conference on Infrared and Millimeter Waves and14th InternationalConference on Terahertz Electronics,2006,4
    [25]孙博,姚建铨.基于光学方法的太赫兹辐射源[J].中国激光,2006,33:1349-1359
    [26] E F Plinski. Terahertz photomixer[J]. Bull. Pol. Acad. Sci.: Tech. sci.,2010,58(4):463-470
    [27] E Peytavit, C Coinon, and J F Lampin. A metal-metal Fabry-Perot cavity photoconductor forefficient GaAs terahertz photomixers[J], J. Appl. Phys.,2011,109,016101
    [28] Lee Yun-Shik, Vodopyanov K L, Hurlbut W C, et al. Generation of multi-cycle THz-pulses viaoptical rectification in periodically inverted GaAs[C]. Proceedings of SPIE-The InternationalSociety for Optical Engineering,2006,6120
    [29] Nagatsuma Tadao, Ito Hiroshi, Ishibashi Tadao. Photonic THz sources using uni-traveling-carrierphotodiode technologies [C]. Conference Proceedings-Lasers and Electro-Optics Society AnnualMeeting-LEOS,2007,92-793
    [30] Kozlov V G, Bliss D, Vodopyanov K L, et al. Frequency tunable THz source based on opticaldown-conversion in orientation patterned GaAs[C]. The13th International Conference on TerahertzElectronics,2005,2:632-633
    [31] Saeedkia Daryoosh, Safavi-Naeini Safieddin. Terahertz photonics: Optoelectronic techniques forgeneration and detection of terahertz waves [J]. J. Lig. Wav. Tech.,2008,26(15):2409-2423
    [32] Stohr Andreas, Jager Dieter. Photonic millimeter-wave and terahertz source technologies[C].2006International Topical Meeting on Microwave Photonics,2006
    [33] Kawase Kodo, Otani Chiko, Ogawa Yuichi. THz generation and applications with photonicsources [J]. IEEE MTT-S Int. Microwa. Sympo. Dig.,2007,1701-1704
    [34] Benjamin S. Williams. Terahertz quantum-cascade lasers [J]. Nature Photonics,2007,1:517-525
    [35]曹俊诚.太赫兹量子级联激光器研究进展[J].物理,2006,8:632-636
    [36] Kohler, R., Tredicucci, A., Beltram, F. et,al. Terahertz semiconductor-heterostructure laser[J]. Nat.Lett.,2002(417):156
    [37] Rihani Samir, Page Hideaki, Beere Harvey E, et al. Design and simulation of a THz QCL based onr~X depopulation mechanism[J]. Physica E: Low-Dimens. Syst. Nanostr.,2009,41(7):1240-1242
    [38] Darmo J, Fasching G, Benz A, et al. Terahertz quantum-cascade lasers: Time domain spectroscopyand micro cavity effects [C].33rd International Conference on Infrared and Millimeter Waves andthe16th International Conference on Terahertz Electronics,2008
    [39] Chen Rui, Lin Guijiang, Chen Songyan, et al. Waveguide simulation of a THz Si/SiGe quantumcascade laser [J]. Chin. J. Semicond.,2008,29(5):893-897
    [40] Lawrence Ives, Carol Kory, Michael Read, et al. Development of backward wave oscillators forterahertz applications[C]. Proc. of SPIE.5070:71-82
    [41] Mauro Mineo and Claudio Paoloni. Corrugated rectangular waveguide tunable backward waveoscillator for terahertz applications [J]. IEEE Trans. Electron Devices,2010,57:1481-1484
    [42] Li Ji, Wang Hui, Yu Zhiqiang, Gao Yujuan, et al. Emission mechanism of high current densitythermionic cathodes [C].8th IEEE International Vacuum Electronics Conference, IVEC2007:143-144
    [43] http://www.teo.com.cn/
    [44] Zhang Kai-chun, Wu Zhen-hua, Liu Sheng-Gang. Study of an extended interaction oscillator with arectangular reentrance coupled-cavity in terahertz Region [J]. J. Infra. Milli. Tera. Wav.2009,30:309-318
    [45] Zhang Kai-Chun, Wu Zhen-Hua and Liu Sheng-Gang. Study of a rectangular coupled cavityextendedinteraction oscillator in sub-terahertz waves[J]. Chin. Phys. B,2008,17:3402-3406
    [46] D Perirng, G Phillips. A submillimeter wave extended interaction oscillator with novel broadbandmechanical tuning[C]. Technical Digest-International Electron Devices Meeting,1990,897-900
    [47] Chen Leeming, Guo Hezhong, Chen Han-Ying, et al. An extended interaction oscillator based on acomplex resonant structure [J]. IEEE Trans. Plasma Sci.,2000,28(3):626-632
    [48] Manfred Thumu. History, Present Status and Future of Gyrotrons[C].2009IEEE InternationalVacuum Electronics Conference,2009,37-40
    [49] Ding Y, Liu P, Zhan Z, Wang Y. Research and Development of Multi-Beam Klystrons in China[C].2009IEEE International Vacuum Electronics Conference,2009,49-52
    [50] Bratman V L, Dumesh B S, Fedotov A F. Broadband Orotron operation at millimeter andsubmillimeter waves [J]. Int. J. Infr. Mill. Wav.,2002,23(11):1595-1601
    [51] J Madey. Stimulated Emission of bremsstrahlung in a periodic magnetic field[J]. J. Appl. Phys.,1971,42:1906
    [52] Zhirong Huang, Kwang-Je Kim. Review of x-ray free-electron laser theory [J]. Phys. Rev. ST Accel.Beams,2007,10:034801
    [53] J Urata, M Goldstein, M F Kimmitt, et.al. Superradiant Smith-Purcell Emission[J]. Phys. Rev. Lett.,1998,80:516
    [54] H L Andrews, C H Boulware, C A Brau, et.al. Superradiant emission of Smith-Purcell radiation [J].Phys. Rev. ST Accel. Beams2005,8:110702
    [55] G Adamo, K F Macdonald, Y H Fu, et.al. Light well: A Tunable free-electron light source on achip[J]. Phys. Rev. Lett,2009,103:113901
    [56] G Adamo. Tuneable electron-beam-driven nanoscale light source[J]. J. Opt,2010,12:024012
    [57] Shenggang Liu, Min Hu, Yaxin Zhang, et.al. Theoretical investigation of a tunable free-electronlight source [J]. Phys. Rev. E,2011,83:066609
    [58] P A Cherenkov. Visible radiation produced by electrons moving in a medium with velocitiesexceeding that of Light[J]. Phys. Rev.,1937,52:378
    [59] Ginzburg V L. Radiation by uniformly moving sources (Vavilov-Cherenkov effect, transitionradiation and other phenomena)[J]. Physics-Uspekhi,1996,39(10):973-982
    [60] Cherry M L, Transition radiation from relativistic electrons in periodic radiators [J]. Phys. Rev. D,1974,10:3594
    [61] B Pardo1and J M Andre'. Classical theory of resonant transition radiation in multilayerstructures [J]. Phys. Rev. E,2000,63:016613
    [62] Melvin A Piestrup. The prospects of an x-ray free electron leaser using stimulated resonanttransition radiation [J]. IEEE J. Quantum Electronics,1983,19:3
    [63] Pokrovsky A L, Kaplan. Transition radiation in metal-metal multilayer nanostructures as a medicalsource of hard x-ray radiation [J]. J. App. Phys.,2006,100(4):044328
    [64] U Happek. Observation of coherent transition radiation [J]. Phys. Rev. Lett.,1991,67:2962-2965
    [65] Smith S J, Pure ell E M. Visible light from localized surface charges moving across a grating [J].Phys. Rev.,1953,92(2):1069-1070
    [66] O Haeberle, P Rullhusen. Calculation of Smith-Purcell radiation generated by electron beam ofl-100MeV[J]. Phys. Rev. E,1994,49:3340
    [67] Amit S Kesar. Smith-Purcell radiation from a charge moving above a grating of finite length andwidth [J]. Phys. Rev. ST Accel. Beams,2010,13:022804
    [68] P A Molenaar, P van der Straten. Diagnostic technique for Zeeman-compensated atomic beamslowing: Technique and results [J]. Phys. Rev. A,1997,55:605
    [69] John Jackson, Classical Electrodynamics[M]. John Wiley&Sons,1999,450-465
    [70] King-Yuen Ng. Wake fields in a dielectric-lined waveguide [J]. Phys. Rev. D,1990,42:1819
    [71]刘盛纲.微波电子学导论[M].北京:国防工业出版社,1980,7-12
    [72]张克潜,李德杰.微波与光电子学中的电磁理论[M].北京:电子工业出版社,2001,384-392
    [73] J S Nodvick, Saxon. Suppression of coherent radiation by electrons in synchrotron [J]. Phys. Rev.1954,96:180
    [74] K Ishi. Observation of coherent synchrotron, Cherenkov, and wake-ifeld radiation at millimeterwavelengths using an L-band linear accelerator[J]. Phys. Rev. A1991,43:597-1991
    [75] Y Shibata. Coherent Smith-Purcell radiation in the millimeter-wave region from a short-bunchbeam of relativistic electrons [J]. Phys. Rev. E,1998,57:1061-1074
    [76] A Gover. Superradiant and stimulated-superradiant emission in prebunched electron-beam radiators.I. Formulation [J]. Phys. Rev. ST Accel. Beams,2005,8:030701
    [77] A Gover and E Dyunin. Superradiant and stimulated-superradiant emission in prebunchedelectron-beam radiators [J]. Phys. Rev. ST Accel. Beams,2005,8:030702
    [78] A. Doria. Enhanced coherent emission of Terahertz radiation by energy-Phase correlation in abunched electron beam [J]. Phys. Rev. Lett.,2004,93:264801
    [79] S. E. Korbly, A. S. Kesar, J. R. Sirigiri, et.al. Observation of Frequency-Locked Coherent TerahertzSmith-Purcell Radiation [J]. Phys. Rev. Lett.,2005,94:054803
    [80] Yen-Chieh Huang. Desktop megawatt superradiant free-electron laser at terahertz frequencies [J].Appl. Phys. Lett.,2010,96:231503
    [81] Liu Wanming and Gai Wei. Wakefield generation by a relativistic ring beam in a coaxialtwo-channel dielectric loaded structure [J]. Phys. Rev. ST Accel. Beams,2009,12:051301
    [82] Wang Dong, Fan Zhikai, Chen Daibing, et.al. Rigorous analysis of the coaxial disk-loadedwaveguide slow-wave structures [J]. IEEE Trans. Plasma Sci.,2007,35:1070-1074
    [83] Weihao Liu, Sen Gong, Yaxin Zhang, et.al. Free electron terahertz wave radiation source withtwo-section periodical waveguide structures [J]. J. App. Phys.,2012,111:063107
    [84] Heinz Raether. Plasma losses by fast electrons in thin films [J]. Phys. Rev.,1957,106:874-881
    [85] Heinz Raether. and H. B. Eldridge. Optical emission from irradiated foils [J]. Phys. Rev.,1962,126:1935-1947
    [86] A. L. Frank, E. T. Arakawa, and R. D. BirkhofF. Optical emission from irradiated foils [J]. Phys.Rev.,1962,126:1947-1952
    [87] Heinz Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M]. Berlin:Springer-Velag,1988:4-10
    [88] S. A. Maier and H. A. Atwater. Plasmonics: Localization and guiding of electromagnetic energy inmetal/dielectric structures [J]. J. Appl. Phys.,2005,98(1):011101
    [89] S. A. Maier. Plasmonics: fundamentals and applications[M]. Berlin: Springer-Velag,2007:25-30
    [90] Rashid Zia, Anu Chandran, and Mark L. Brongersma. Dielectric waveguide model for guidedsurface polaritons[J]. Opt. Lett.,1956,30(12):1473-1475
    [91] F. I. Baida and D. Van Lab eke. Three-dimensional structures for enhanced transmission through ametallic film: Annular aperture arrays [J]. Phys. Rev. B,2003,67:155314
    [92] Pierre Berini. Plasmon-polariton waves guided by thin lossy metal films of finite width: Boundmodes of asymmetric structures [J]. Phys. Rev. B,2001,63(12):125417
    [93] B. Prade, J. Y. Vinet, and A.Mysyrowicz. Guided optical waves in planar heterostructures withnegative dielectric constant[J]. Phys. Rev. B,1991,44(24):13556-13572
    [94] W. L. Barnes, A. Dereux, and T. Ebbesen. Surface plasmon subwavelength optics [J]. Nat. Lett.,2002,424:824-830
    [95] D. Sarid. Long-range surface-plasma waves on very thin metal films [J]. Phys. Rev. Lett.,1981,47(26):1927-1930
    [96] R. Zia, M. D. Selker, and M. L. Brongersma. Leaky and bound modes of surface plasmonwaveguides [J]. Phys. Rev. B,2005,71:165431
    [97] S. Nerkararyan and Kh. Nerkararyan. Generation of Hankel-type surface plasmon polaritons in thevicinity of a metallic nanohole[J]. Phys. Rev. B,2010,82:245405
    [98] S. A. Maier, M. L. Brongersma, P. G. Kik, et al. Observation of near-field coupling in metalnanoparticle chains using far-field polarization spectroscopy [J]. Phys. Rev. B,2002,65:193408
    [99] Sarid, D. Long-range surface-plasma waves on very thin metal films [J]. Phys. Rev. Lett.,1981,47:1927-1930
    [100] Martin Aeschlimann, Michael Bauer, Daniela Bayer, et.al. Adaptive subwavelength control ofnano-optical fields [J]. Nat. Lett.,2007,446(15):301-304
    [101] H. Ehrenreich, H. R. Philipp, and B. Segall. Optical properties of aluminum [J]. Phys. Rev.,1963,132:1918-1928
    [102] P. B. Johnson and R. W. Christy. Optical constants of the noble metals [J]. Phys. Rev. B,1972,6(12):4370-4379
    [103] Aleksandar D. Rakic. Optical properties of metallic films for vertical-cavity optoelectronicdevices[J]. Appl. Opt.,1995,34:4715
    [104] Neil W. Ashcroft, N. David Mermin. Solid State Physics [M]. Thomson Learning,2004,2-25
    [105] Allan W. Snyder, John D. Love. Optical waveguide theory[M].1983,240-244
    [106] http://www.cstchina.cn/
    [107] http://www.comsol.com/
    [108] Weihao Liu, Renbin Zhong, Yaxin Zhang, et al. Investigations on the nano-scale periodicalwaveguide structure with surface plasmon polaritons taken into consideration [J]. J. Phys. D: Appl.Phys.,2012,45:205104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700