用户名: 密码: 验证码:
基于单站地基GNSS的电波折射参数估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球导航卫星系统(GNSS)不仅成功应用于测距、授时和导航等传统领域,而且在环境监测、大地测量、天文、气象等领域也得到广泛的应用。单站地基GNSS对电波折射参数的估计,由于操作简单、成本低、可移动性强以及精度高等优点,已成为当前国际研究的热点。本文以GNSS单点定位方法为出发点,围绕电波折射参数的高精度实时估计、实验验证和应用开展了相关研究。其主要研究成果如下:
     第一、分析了单点定位的主要误差源和修正方法,主要包括卫星误差、接收机误差以及空间传播误差等。讨论了传统随机模型的特点,提出了基于新权矩阵的随机模型,并对比分析了上述两类模型的对流层天顶延迟估计结果。
     第二、讨论了对流层天顶延迟的传统的Hopfield模型、Saastamoinen模型和MOPS模型以及探空方法在测量天顶延迟方面存在的局限性。在精密单点定位方法的基础之上,利用提出的随机模型,实现了单站地基GNSS对流层天顶延迟的估计。获得单站地基GPS与探空观测结果一致,与IGS产品中利用GIPSY软件计算精度相当的结果。
     第三、研究了低仰角对流层斜延迟估计方法。分析了现有映射函数、经验模型和探空观测方法的局限性,提出了单站地基GNSS实时估计低仰角对流层斜延迟的方法。利用2008年8月期间实验数据,进行单站地基GPS低仰角对流层斜延迟估计,获得与探空实验一致的结果,优于传统模型估计结果。实现了单站地基GNSS对低仰角的对流层斜延迟的估计。
     第四、研究了单站地基GNSS实时估计弯曲角。讨论了传统模型和探空折射率剖面计算弯曲角的方法,分析卫星信号的多普勒频移与弯曲角之间的关系,以及GNSS的多普勒观测值中的误差对计算弯曲角的影响。利用单站地基GNSS的数据和GNSS多普勒频移公式,对弯曲角的估计,获得与基于探空折射率剖面一致的结果,提出了单站地基GNSS实时估计弯曲角的方法。
     第五、提出了基于单站地基GNSS实时反演折射率剖面方法,利用汕头地区十年的历史数据进行仿真,初步验证了此方法的可行性。在我国广东东南沿海地区开展了单站地基GPS的观测实验,利用低仰角斜延迟进行了大气剖面实时反演和数据分析,验证了此方法的可行性和有效性。
The Global Navigation Satellite System (GNSS) have been applied successfully not only in the traditional field such as ranging, time service, and navigation, but also in environmental monitoring, geodesy, astronomy, and meteorology and so on. Estimation of electromagnetic wave refraction parameters based on singular ground-based GNSS has been one of hot topics in the international area. On the basis of theoretical study on GNSS point positioning, real time and high accuracy estimation of electromagnetic wave refraction parameters, experimental verification and application are studied in this dissertation. The main topics and results of the study are as follows:
     First, main errors consist of satellite error, receiver error, and space propagation error in GNSS point positioning, and corrected methods are analyzed. The characteristic of traditional stochastic models are discussed, and a new stochastic model is introduced. Two results of zenith tropospheric delay estimation by the above two stochastic models are compared and analyzed.
     Second, traditional models, for example, Hopfield model, Saastaoinen model and MOPS model, and radiosonde measuring zenith tropospheric delay are discussed, as well as their limitation. Based on precise point positioning and introducing stochastic model, the zenith tropospheric delay estimation by singular ground-based GNSS is realized. Results of GNSS agree well with those of radiosonde, the precision of GNSS have the same order with IGS products which are computed by GIPSY.
     Third, the estimation means of real time slant path tropospheric delay calculation at very low elevation are studied systemically. The limitations of existent mapping function, experiential model and radiosonde are analyzed in detail. A method of computing real time tropospheric slant delay at low elevation by singular ground-based GNSS is introduced. Observations in August 2008 are disposed. The corresponding results have well agreement with those of radiosonde, and are better than those of conventional models. Consequently, the estimation by singular ground-based GNSS is implemented.
     Fourth, real time bending angle estimation by singular ground-based GNSS station is studied. The previous methods of calculating the bending angles based on refractivity profile from refractivity climatology model and radiosonde are presented. The relationship of bending angle of radio waves with Doppler frequency shift is given and analyzed in detail. Main error sources of Doppler observations are presented and discussed. Some singular ground-based GPS observation and radiosonde measurements are analyzed. The bending angles calculating from Doppler agree fairly well with those from radiosondes. The method that is based on singurlar ground-based GNSS is introduced.
     Fifth, the real time inversion method of refractivity profile based on singular gound-based GNSS is introduced. Emulation is achieved by ten years historical data in Shantou and the feasibility is validated initiativly. A singular ground-based GPS observation experiment in eastsouth china is carried out. The real time inversion of refractivity profile is implemented and detailed analyzed. The feasibility and effectiveness is validated.
引文
[1] Bevis, M., Businger, S., Herring, T. A., et al., GPS Meteorology: Romote Sensing of Atmospheric Water Vapor Using the Global Positioning System, J. Geophys. Res., 1992,97 (D14):787-801
    [2] ANDERLE, R.J., Determination of Polar Motion from Satellite Observations, Geophys. Surv., 1973,1(2):147-161.
    [3] ANDERLE, R.J., Transformation of Terrestrial Survey Data to Doppler Satellite Datum, J. Geophys. Res., 1974,79(B35):5319-5331.
    [4] ANDERLE, R.J., Long Term Consistency in Positions of Sites Determined from Doppler Satellite Observations, Naval Surface Weapons Center, Dahlgren Laboratory Technical Report TR-3433, November 1975.
    [5] ANDERLE, R.J., Error Model for Geodetic Positions Derived from Doppler Satellite Observations, Bull. Geod., 1976,50(1):43-77.
    [6] Zumberge, J.F., Heflin, M.B., Jefferson, D.C., et al., Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 1997,102(B3):5005-5017.
    [7] Héroux, P, Kouba, J., Collins, P., et al., GPS Carrier-Phase Point Positioning with Precise Orbit Products, Proceedings of the KIS 2001, Banff, Alberta, Canada, 2001.
    [8] Kouba, J. and Héroux P., Precise point positioning using IGS orbit and clock products. GPS Solut., 2001,5(2):12-28.
    [9] Kouba, J. and Springer, T., New IGS station and satellite clock combination, GPS Solut., 2001,4(4):31-36.
    [10] Kouba, J., The GPS Toolbox ITRF Transformations, GPS Solut., 2002,5(3):88-90.
    [11] Kouba, J., A Guide to using International GPS Service (IGS) products, IGS, 2003, http:// www.igscb.jpl.nasa.gov/igscb/resource/pubs/GuidetoUsingIGSProducts.pdf.
    [12] Kouba, J., A possible detection of the 26 December 2004 great Sumatra-Andaman Islands earthquake with solution products of the international GNSS service, Stud. Geophys. Geod., 2005,49(4):463-483.
    [13] Gao, Y., Skone, S., Chen, K., et al., Real-Time Sensing Atmospheric Water Vapor Using Precise GPS Orbit and Clock Products, Proceedings of ION GNSS 2004, Long Beach, California, September 21-24, 2004.
    [14] Gao, Y. and Shen, X., A New Method for Carrier Phase Based Precise Point Positioning,Navigation, NAVIGATION J. Inst. Navig., 2002, 49(2):109-116.
    [15] Gao, Y. and Shen, X., Improving Ambiguity Convergence in Carrier Phase-Based Precise Point Positioning, ION, 2001.
    [16] Chen, K. Z. and Gao, Y., Real-Time Precise Point Positioning Using Single Frequency Data , Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation, Long Beach, California, U.S.A., September, 2005.
    [17] Gao, Y., Zhang, Y. and Chen, K. Z., Development of a Real-Time Single-Frequency Precise Point Positioning System and Test Results, Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation, Fort Worth, Texas, U.S.A., 26-29 September, 2006.
    [18] Hugentobler, U., Schaer, S. and Fridez, P., Bemese GPS Software Version 4.2, Astronomical Institute, University of Berne, Berne, Switzerland, 2001.
    [19] Dach, R., Hugentobler, U., Fridez, P., et al., Bernese GPS software version 5.0. Astronomical Institute University of Berne, 2007.
    [20] GFZ, Challenging Minisatellite Payload for Geophysical Research and Applications (CHAMP), The CHAMP Misssion, 29 November, 2005, http://www.gfz-potsdam.de/pb1/ op/champ/ index_CHAMP.html.
    [21] GFZ, Challenging Minisatellite Payload(CHAMP)Information System and Data Center (ISDC), 26 January, 2006, http://isdc.gfz-potsdam.de/champ.
    [22] Witchayangkoon, B., Elements of GPS precise point positioning, Maine, The University of Maine, 2000.
    [23] Bisnath, S.B. and Langley, R.B., A new approach to an old problem:carrier phase cycle slips, GPS World, 2001,12(5):46-51.
    [24] Bisnath, S. B. and Langley R. B., Precise orbit determination of low earth orbiters with GPS point positioning, ION National Technical Meeting, January 22-24, Long Beach CA, 2001, pp.725-33.
    [25] Wübbena, G. and Bagge, A., RTCM Message Type 59-FKP for transmission of FKP, Version 1.0, Geo++ White Paper, 2002.
    [26] Wübbena, G., Schmitz, M. and Bagge, A., PPP-RTK:Precise Point Positioning Using State-Space Representation in RTK Networks. Presented at the International Technical Meeting, ION GNSS-05, Long Beach, California, 2005.
    [27] Dixon, K., StarFireTM: A global SBAS for subdecimetre precise point positioning. Proceedings of IONGNSS 2006, Fort Worth, Texas, 2006,pp.2286-2296.
    [28] Shen, X. and Gao, Y., Analyzing the impacts of Galileo and Modernized GPS on Precise Point Positioning. Proceeding of ION NTM 2006, 18-20 January, Monterey, California,2006,pp.837-846.
    [29] Cai, C. S. and Gao, Y., Positioning model and accuracy analysis of Precise Point Positioning with GPS and GLONASS, Poster paper, Geoide Annual Meeting, 6-8 June, Halifax, Nova Scotia, 2007.
    [30] Le, A. Q. and Tiberius, C., Single-frequency precise point positioning with optimal filtering, GPS Solut., 2007,11(1):61-69.
    [31] Bisnath, S. and Gao, Y., Current State of Precise Point Positioning and Future Prospects and Limitations, Observing our Changing Earth, International Association of Geodesy Symposia 133, Springer-Verlag Berlin Heidelberg, 2009.
    [32]国家遥感中心,地球空间信息科学技术进展,北京:电子工业出版社, 2009.1.
    [33]罗鸣,曹冲,肖雄兵等译,全球定位系统-信号、测量与性能(第二版),北京:电子工业出版社, 2008.
    [34]刘经南,叶世榕, GPS非差相位精密单点定位技术探讨,武汉大学学报·信息科学版, 2002,27(3):234-240.
    [35]叶世榕, GPS非差相位精密单点定位理论与实现,武汉大学博士学位论文, 2002.4.
    [36]张小红,动态精密单点定位(PPP)的精度分析,全球定位系统, 2006,(1):7-11.
    [37]张小红,刘经南, Forsberg, R.,基于精密单点定位技术的航空测量应用实践,武汉大学学报·信息科学版, 2006,31(1):19-22.
    [38]张小红,鄂栋臣,用PPP技术确定南极Amery冰架的三维运动速度,武汉大学学报·信息科学版, 2005,30(10):909-912.
    [39]李征航,张小红,卫星导航定位新技术及高精度数据处理方法,武汉:武汉大学出版社, 2009.
    [40]张小红,李星星,郭斐等, GPS单频精密单点定位软件实现与精度分析,武汉大学学报·信息科学版, 2008,33(8):0783-0787.
    [41] Zhang X. H. and Andersen, O. B., Surface Ice Flow Velocity and Tide Ret rieval of the Amery Ice Shelf Using Precise Point Positioning, J. Geod., 2006,80(4):171-176.
    [42]陈义,精密单点定位的基本原理和应用,同济大学学报(然科学版), 2006,34(7):919-923.
    [43]吴江飞,黄珹, GPS精密单点定位模型及其应用分析, 2008,28(1):0096-00101.
    [44]郝明,欧吉坤,郭建锋等,一种加速精密单点定位收敛的新方法, 2007,32(10):0902- 0906.
    [45] Satirapod, C., Stochastic Models Used in Static GPS Relative Positioning, Survey Review, 2006,36(299):279-286.
    [46] Satirapod, C. and Luansang, M., Comparing stochastic model used in GPS precise point positioning technigue, Survey Review, 2008,40(308):188-194.
    [47] Leick, A., GPS Satellite Surveyying, 3rd edition, John Wiley &Sons Inc, New York, 2004.
    [48] Rizos, C., Principles and Practice of GPS Surveying, Monograph 17, School of Geomatic Engineering, The University of New South Wales, 1997.
    [49] Tevfik, M., the stochastic modeling of GPS observations, J.Eng.Env. Sci, 2004,28:223-231.
    [50] Hofmann-Wellenhof, B., Lichtenegger, H. and Collins, J., GPS Theory and Practice, New York:Springer-Verlag, 1993.
    [51] Kertz, W., Einführung in die Geophysik: Bd. I und Bd. II -B.I. Wissenschaftsverlag, Bd. 275 und Bd. 535, Mannheim -Wien -Zurich,1971.
    [52]熊皓,电磁波传播与空间环境,北京:电子工业出版社, 2004,1:130-133.
    [53]寇艳红译, GPS原理与应用,北京:电子工业出版社, 2007,7:229-237.
    [54]王惠南, GPS导航原理与应用,北京:科学出版社, 2003,8:109-114.
    [55] Hopfield, H.S., Two-quartic tropospheric refractivity profile for correcting satellite data, J. Geophys. Res., 1969,74(18):4487-4499.
    [56] Saatamoinen, J., Atmospheric Correction for Troposphere and Stratosphere in Radio Ranging of Satellites, in: Henriksen, The Use of Artificial Satellites for Geodesy, Geophys. Monogr. Ser., 1972,15:247-251.
    [57] Saastamoinen, J., Contribution to the theory of atmospheric refraction, Bull. Géod., 1973,107:13-34.
    [58] MOPS, Minimum Operational Performance Standards for Global Positioning System/Wide Area Augmentation System Airborne Equipment, Document No. RTCA/DO-229A, June 8, 1998.
    [59]谢益溪, J.拉菲涅特, J.P.蒙等,电波传播—超短波?微波?毫米波,北京:电子工业出版社, 1990.
    [60] Black, H. D., An easily implemented algorithm for the tropospheric range correction, J. Geophys. Res., 1978,83(B4):1823-1825.
    [61] Askne, J. and Nordius, R., Estimation of Tropospheric Delay for Microwaves from Surface Weather Data, Radio Sci., 1987, 99(1):979-986.
    [62] Businger, S., Chiswell, S.R., Bevis, M. J., et al., The Promise of GPS in Atmospheric Monitoring, Bull. Am. Meteor. Sco., 1996,77(1):5-18.
    [63] Duan, J., Bevis, M., Bock, P., et al., GPS Meteorology: Direct Estimation of the Absolute Value of Precipi table Water, J. Appl. Meteorol., 1996,35(6):830-838.
    [64]陈俊勇, GPS气象遥感技术,测绘通报, 1997,9:2-4.
    [65]陈俊勇,党亚明,程鹏飞,全球导航卫星系统的进展,大地测量与地球动力学, 2007,27 (5):1-4.
    [66]曹云昌,方宗义,夏青,轨道误差对近实时GPS遥感水汽的影响研究,气象科技, 2004,32(4):229-23.
    [67]宋淑丽,朱文耀,区域GPS网实时计算可降水量的若干问题,中国科学院上海天文台年刊, 2003,24:20-27.
    [68]宋淑丽,朱文耀,程宗颐等, GPS信号斜路径方向水汽含量的计算方法,天文学报, 2004,45(3):339-345.
    [69]宋淑丽,地基GPS网对水汽三维分布的监测及其在气象学中的应用,中国科学院研究生院博士学位论文, 2004.
    [70]宋淑丽,朱文耀,丁金才等,上海GPS网层析水汽三维分布改善数值预报湿度场,科学通报, 2005,50(20):2271-2277.
    [71]毛辉,毛节泰,毕研盟等,遥感GPS倾斜路径信号构筑水汽时空分布图,中国科学(D辑), 2006,36(12):1177-1186.
    [72]毕研盟,毛节泰,刘晓阳等,应用地基GPS遥感倾斜路径方向大气水汽总量,地球物理学报, 2006,49(2):335-342
    [73]毕研盟,毛节泰,李成才等,利用GPS的倾斜路径观测暴雨过程中的水汽空间分布,大气科学, 2006,30(6):1169-1176.
    [74]王小亚,地面GPS探测大气可降水汽置的研究及其在气象上的应用,上海:中国科学院上海天文台,1998.
    [75]王小亚,朱文耀,严豪键等,地面GPS探测大气可降水量的初步结果,大气科学,1999,23(5):605-612.
    [76]叶世榕,张双成,刘经南.精密单点定位方法估计对流层延迟精度分析,武汉大学学报·信息科学版, 2008,33(8):0788-0791.
    [77] Vries, J. d., Validation and Error Modelling of GPS Tropospheric Slant Delays, Netherlands, Available as TOUGH project deliverable no D37, 2006, http://tough.dmi.dk.
    [78] Flores, A., Ruffini, G., and Rius, A., 4D tropospheric tomography using GPS slant wet delays, Ann. Geophys., 2000,18(2):223-234.
    [79] Braun, J., Rocken, C., and Ware, R., Validation of line-of-sight water vapor measurements with GPS, Radio Sci., 2001,36(3):459-472.
    [80] J?rvinen, H., R. Eresmaa, Vedel, H., et al., A variational data assimilation system for ground-based GPS slant delays, Q. J. R. Meteorol. Soc. 2007,133:969-980.
    [81] Eresmaa, R., J?rvinen, H., Niemel?, S., et al., Asymmetricity of ground-based GPS slant delay data, Atmos, Chem. Phys., 2007,7:3143-3151.
    [82] Pany, T., Tropospheric GPS Slant Delays at Very Low Elevations, Proc. of International, Workshop on GPS Meteorology, Institute for Geodesy and Navigation, University FAF Munich, Germany, 2003.
    [83]赵红梅,江长荫,实际应用星载SAR的相位修正,电波科学学报, 2005,20(1):048-051.
    [84]宋小刚,李德仁,廖明生等,基于GPS观测量的InSAR干涉图中对流层改正方法及其论证,武汉大学学报?信息科学版, 2008,33(3):233-236.
    [85] Xu,C.J., Wang, H., Ge,L.L., InSAR tropospheric delay mitigation by GPS observations: A case study in Tokyo area, J. ATMOS. SOL-TERR. PHY., 2006,68(6):629-638
    [86] Heikki, J., Reima, E., Henrik, V., et al., A variational data assimilation system for ground-based GPS slant delays, Q. J. R. Meteorol. Soc., 2007, 133: 969-980.
    [87] Schuler, T., On Ground-Based GPS Tropospheric Delay Estimation, University of Munich, 2001.
    [88] Jin, S. G, and Park, P. H., A new precision improvement in zenith tropospheric delay estimation by GPS, Current Sci., 2005,89(6): 997-1000.
    [89] Andrei, O. and Chen, R., Assessment of time-series of troposphere zenith delays derived from the Global Data Assimilation System numerical weather model, GPS Solut., 2008,13:109-117.
    [90]朱庆林,吴振森,赵振维,单站地基非GPS测量对流层天顶延迟,西安电子科技大学学报自然科学版, 2009,36(5):921-926.
    [91]朱庆林,赵振维,吴振森,精密单点定位方法测量对流层天顶延迟的精度改善,武汉大学学报·信息科学版, 2009,34(9):1098-1101.
    [92] Sokolovskiy, S.V., Rocken, C., and Lowry, A.R., use of GPS for estimation of bending angles of radio waves at low elevations, Radio Sci., 2001,36(3):473-482.
    [93] J?rvinen, H., Eresmaa, R., Vedel, H., et al., A variational data assimilation system for ground-based GPS slant delays, Quart. J. Royal Meteor. Soc., 2007,133(625):969-980.
    [94]张双成,刘经南,叶世榕等,顾及双差残差反演GPS信号方向的斜路径水汽含量,武汉大学学报·信息科学版, 2009,34(1):100-105.
    [95] Deschamps, G. A., Ray Techniques in Electromagnetics, Proceedings of the IEEE, 1972,60(9):1022-1035.
    [96] Born, M., and Wolf, E., Principles of Optics, New York: Pergamon Press, 1964.
    [97]孙方,王红光,康士峰等,大气波导环境下的射线跟踪算法,电波科学学报, 2008,23(1): 179-183.
    [98]杨弃疾,电磁场理论下册,北京:高等教育出版社, 1995.
    [99] Boehm, J., Niell, A., Tregoning, P., et al., Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data, Geophys. Res. Lett., 2006,33(7):7304-7307.
    [100] Herring, T.A. and Quinn, K., Atmospheric Delay Correction to GLAS Laser Altimeter Ranges, Massachusetts Institute of Technology, Cambridge, MA, 1999.
    [101] Herring, T.A., Modeling atmospheric delays in the analysis of space geodetic data, in Refraction of transatmospheric signals in geodesy, 1992,pp.157-164.
    [102] Niell, A.E., Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res., 1996,101(B2):3227-3246.
    [103] Chao, C.C., The tropospheric calibration model for mariner mars 1971, Tech. rep., 33-7387, JPL Pasadena, 1974.
    [104] Ifadis, I., The atmospheric delay of radio waves: modeling the elevation dependence on a global scale, Technical Report no. 38L, School of Electrical and Computer Engineering, Chalmers University of Technology, G?teborg, Sweden, 1986.
    [105] Ifadis, I.M., The excess propagation path of radio waves: Study of the influence of the atmospheric parameters on its elevation dependence, Survey Review, 1992,31:289-298.
    [106] Elgered, G., Davis, J.L., Herring, T.A., et al., Geodesy by radio interferometry: water vapor radiometry for estimation of the wet delay, J. Geophys. Res., 1991, 96(B4):6541-6555.
    [107] Guo, J.M. and Langley, R.B., A New Tropospheric Propagation Delay Mapping Function for Elevation Angles Down to 2o, Proceedings of ION GPS/GNSS, 16th International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, OR, 2003,pp.386-376.
    [108] Ahn, Y.W., Analysis of GNS CORS Network for GPS RTK Performance Using External NOAA Tropospheric Corrections Integrated with a Multiple Reference Station Approach, M.Sc. theses, University of Calgary, Canada,2005.
    [109] Black, H.D and Eisner, A., Correcting satellite Doppler data for tropospheric effects, J. Geophys. Res., 1984,89(D2):2616-2626.
    [110] Anderson, K.D., Tropospheric refractivity profiles inferred from low elevation angle measurements of Global Positioning System(GPS)signals, AGARD Conf. Proc.CP-567, Bremerhaven,Germany, 1994.
    [111] Melbourne, W.G., Davis, E.S., Duncan, C.B., et al., The application of spaceborne GPS to atmospheric limb sounding and global change monitoring, JPL Publ, 1994,pp.94-18.
    [112] Kursinski, E. R., Hajj, G. A., Hardy, K. R., et al., Observing Earth’s atmosphere with radio occultation measurements using GPS, J. Geophys. Res., 1997,102(D19):23429-23465.
    [113] Rocken, C., Anthes, R., Exner, M., et al., Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res, 1997,102(D25):29849-29866.
    [114] Kolosov, M.A.M, Pavel’yev, A. G., Radio transillumination of the atmosphere by artificial and natural sources, J. Comnun. Technol. Electron., 1982,27(12):30-37.
    [115] Vorob’ev, V. V. and Krasil’nikova, T. G., Estimation of the accuracy of atmospheric refractive index recovery from Doppler shift measurements at frequencies used in the NAVSTAR system, Phys. of Atmos. and Oceans, 1994,29(5):602-609.
    [116] Axelrad,P., C.J. Comp, and P.F. MacDoran, SNR based multipath error correction for GPSdifferential phase, IEEE Trans. On Aerosp. Electron. Syst., 1996,32(2):650-660.
    [117] Gaikovich, K.P., and Sumin, M.I., Reconstruction of the altitude profiles of the refractive index, pressure, and temperature of the atmosphere from observations of the astronomical refraction, Izv. Russ. Acad. Sci.Atmos.Oceanic Phys., 1986,22:710-715.
    [118] Gaikovich, K.P., Ground-based Doppler radio-frequency refractometry of the atmosphere, Radiophys. and Quantum Electron., 1992,35(34):149-154.
    [119]严豪健,张贵霞,郭鹏等, CHAMP观测资料的振幅反演初步结果,天文学报, 2005,46 (1):84-95.
    [120]严豪健,天基GPS气象学与反演技术,中国科学技术出版社, 2007.
    [121]胡雄,曾桢,张训械等,无线电掩星技术及其应用,电波科学学报, 2002,17(5): 549-556.
    [122]曾桢,地球大气无线电掩星观测技术研究,武汉:武汉大学博士学位论文, 2003.
    [123]张训械,曾桢,胡雄等,山基和机载掩星模拟,电波科学学报, 2004,19(5): 530-536.
    [124]胡雄,曾桢,张训械等,大气GPS掩星反演方法,地球物理学报, 2005,48(4):768-774.
    [125]胡雄,张训械,吴小成等,山基GPS掩星观测实验及其反演原理,地球物理学报, 2006,49(1):22-27.
    [126]盛裴轩,毛节泰,李建国等,大气物理学,北京:北京大学出版社, 2003.
    [127] Born, M. and Wolf, E., Principles of Optics: electromagnetic theory of propagation, interference, and diffraction of light, Pergamon, New York, 1964, pp.856.
    [128] Gandin, L.S., Objective Analysis of meteorological Fields, Isr. Program for Sci. Transl. Jerusalem, 1963,pp.242.
    [129]王鑫,吕达任, GPS无线电掩星技术反演大气参数方法对比,地球物理学报, 2007,50(2):346-353.
    [130] Davis, J.L., Herring, T.A., Shapiro, I.I., et al., Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length, Radio Sci., 1985,20(6):1593- 1607.
    [131] Smith, E., Jr., and Weintraub, S., the constants in the equation for atmospheric refractive index at radio frequencies, Proc. IRE, 1953, 41,pp.1035-1037.
    [132] Owens, J.S., Optical refractive index of air: dependence on pressure, temperature, and composition, Appl. Opt., 1967,6(1):51-58.
    [133] ITU-R P 834-4, Effects of tropospheric refraction on radiowave propagation, 2003.
    [134]李建儒,刘玉梅,赵振维等,卫星测控电波折射修正效果分析, 2007年航天测控技术研讨会论文集.
    [135] ITU-R P 35-3, Reference Standard Atmospheres, 1998.
    [136]顾钧禧主编,大气科学辞典,北京:气象出版社, 1994.
    [137] ITU-R P 453-9, the Radio Refractive Index Its Formula and Refractivity Data, 2003.
    [138] Bean, B.R. and Dutton, E.J., Radio Meteorology, Dover Publications, Inc. New York, 1968.
    [139] Xie,Y., J. Lavergnat, J., Mon, P. S., et al., H. Jin Microwave and Millimeter Wave Propagation, International Academic Publishers, 1995.
    [140]黄捷,张仁芳,胡大璋,电波大气折射误差修正,北京:国防工业出版社, 1999.
    [141]江长荫,张明高,焦培南等,雷达电波传播折射与衰减手册,国防科学技术工业委员会, 1997.
    [142]杨志强,陈祥明,赵振维,对流层电波折射误差修正经验模型研究,电波科学学报, 2008,23(3):580-584.
    [143]陈祥明,赵振维,林乐科等,对流层折射率剖面模型研究,电波科学学报, 2007,22:178-181.
    [144]陈祥明,大气折射率剖面模型与电波折射误差修正方法研究,中国海洋大学硕士论文, 2008.
    [145]刘玉梅,陈金松,赵振维等,大气折射误差区域分布, 2007年航天测控技术研讨会论文集, 2007.
    [146] Yunck, T. P., Liu, C. H. and Ware, R., A history of GPS sounding, TERR. ATMOS. OCEAN. SCI., 2000,11(1):1-20.
    [147] Yunck, T. P., An overview of atmospheric radio occultation, J. Global Positioning Syst., 2002,1(1):58-60.
    [148] Meehan, T.K., Srinivasan, J. M., Spitzmesser, D. J., et al., The TurboRogue GPS receiver, 6th Int.Geodetic Symp.on Satellite Positioning, Columbus Ohio, 1992.
    [149] Lowry, A.R., Rocken, C., Sokolovskiy, S.V., et al, Vertical profiling of atmospheric refractivity from ground-based GPS, Radio Sci., 2002,37(3):1041-1059.
    [150]林乐科,张业荣,赵振维等,基于天顶湿延迟的GPS大气折射率剖面反演研究,全球定位系统, 2007,32(3):1-4.
    [151]林乐科,赵振维,张业荣等,利用BP-ANN和地基单站GPS数据反演大气折射率剖面,微波学报, 2008,24(6):39-42.
    [152]林乐科,张业荣,赵振维等,一种GPS大气折射率剖面统计反演方法,电波科学学报, 2007,22:182-183.
    [153] Lin, L.K., Zhao, Z.W., Zhang, Y.R., et al.,Tropospheric Refractivity Profiling Based on Single Ground-based GPS, Proceedings of ICMMT2008, Nanjing, 2008,pp.788-791.
    [154] Boser, B.E., Guyon, I.M., Vapnik, V.N., A training algorithm for optimal margin classifiers, In Proceedings of 5th Annual Workshop on Computer Learning Theory, ACM Press, New York, NY, 1992,pp.144-152.
    [155]林乐科,赵振维,康士峰等,单站地基GPS天顶延迟反演大气剖面研究,全球定位系统, 2008,33(5):24-26.
    [156]林乐科,张业荣,赵振维等,基于支持向量机的地基单站GPS反演大气剖面,南京邮电大学学报, 2009,29(4):64-68.
    [157] Zhu, Q.L., Wu, Z.S., Zhao, Z.W., Tropospheric Zenith Delay Monitoring in GPS Precise Point Positioning, an International Conference on Spatial Information Technology(ICSIT), Nov, Beijing, 2009.
    [158] Zhu, Q.L., Wu, Z.S., Zhao, Z.W., et al., Real Time Atmosphere Sensing from Singular Ground-based GPS Station, The 27th PIERS, Xi’an, 2010.
    [159]朱庆林,吴振森,赵振维等,单台地基卫星导航接收机测量对流层斜延迟,电波科学学报, 2010,25(1):0037-0041.
    [160]王波,地基微波辐射计大气环境遥感研究,中国海洋大学硕士论文, 2007.
    [161]陈宝林,最优化理论与算法,北京:清华大学出版社, 1989.
    [162] Rumelhart, D. E., Hinton, G. E. and Williams, R. J., Learning internal representation by error propagation. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Foundation. Vol. 1, Cambridge, MIT Press, 1986,pp.318-362.
    [163]康士峰,王宁, GPS技术反演对流层大气环境参数,第十届全国遥感遥测遥控学术研讨会, 2006,pp.19-23.
    [164] Zumberge, J. F., Watkins, M. M. and Webb, F. H., Characteristics and application of precise GPS clock solution every 30 seconds, J. Inst. Navig., 1998,44(4):449-456.
    [165] Bisnath, S. and Langley, R., High-precision platform-independent positioning with a single GPS receiver, J. Navig., 2002,29(3):161-169.
    [166] BOCK, H., Efficient methods for determining precise orbit s of low earth orbiters using global positioning system, Ast ronomical Institute University of Berne, 2003.
    [167] Kalman, R. E., A new approach to linear filtering and Prediction Problem, J. Basic Eng., 1960,83:95-108.
    [168]董绪荣,陶大欣,一个快速Kalman滤波方法及其在GPS动态数据处理中的应用,测绘学报, 1997,26(3):221-227.
    [169]胡国荣,欧吉坤,改进的高动态GPS定位自适应卡尔曼滤波方法,测绘学报, 1999,28(4):290-294.
    [170] Tralli, D.M. and Lichten, S. M., Stochastic Estimation of Tropospheric Path Delay sin Global Positioning System Geodetic Measurements, Bull. Geod.,1996,64:127-159.
    [171]丁朋辉, GPS非差相位精密单点定位算法研究与实现,中国测绘科学研究院, 2008.
    [172]葛茂荣, CPS卫星精密定轨理论及软件研究,武汉大学博士学位论文, 1995
    [173] Rothacher, M. and Mader, G., Receiver and Satellite Antenna Phase Center Offsets and Variations, Proceedings of IGS Network, Data and Analysis Center Workshop 2002, Ottawa,Canada, 2002,pp.8-11.
    [174] King, R. W. and Bock,Y., Documentation of the GAMIT GPS Analysis Software (version 9.8), Unpublished, Massachusetts Institute of Technology, Cambridge, Massachusetts,1999.
    [175] Wu, J.T., Wu, S, C., Hajj, G.A., et al., Effects of antenna orientation on GPS carrier phase, Man. Geod.,1993,18:91-98.
    [176] ION, Global Positioning System, Vol. I, Papers published in NAVIGATION, 1980.
    [177] ICD-GPS-200, Interface control document, NAVSTAR GPS Space Segment, 1991, July 3.
    [178] Kouba, J., Relativistic Time Transformations in GPS, GPS Solut., 2002,5(4):1-9.
    [179] Rothacher, M., Schaer, S., Mervart, L.,et al., Determination of Antenna Phase center Variations Using GPS Data, Proceedings of 1995 IGS Workshop on Special Topics and New Directions, Germant, 1995,pp.15-18.
    [180] Springer, T. A., Positioning, Timing and Ranging Using the Global Positioning System, PhD Thesis, Universitat Bern., 2002.
    [181] Klobuchar, J., Ionospheric effects on GPS, in Global PositioningSystem:Theory and Applications, vol. I, B. Parkinson, J. Spilker, P. and P. Enge, Eds.Washington, DC: American Ins. Aero. Astro., 1996,pp.485-515.
    [182] Wahr, J.M., The forced nutation of an elliptical, rotating, elastic, and ocean less Earth, Geophys. J. Roy. Astron. Soc., 1981,64:705-727.
    [183] IERS, IERS Standards (1989), IERS Technical Note 3,1989.
    [184] IERS, 1996, IERS Conventions(1996), IERS Technical Note 21,1996.
    [185] Scherneck, H.G., A parameterized Solid Earth Tide Model and Ocean Tide Loading Effects for global geodetic baseline measurements, Geophs. J. Int., 1991,106:677-694.
    [186] Scherneck, H.G., Ocean Tide Loading: Propagation errors from ocean tide into loading coefficients, Man. Geod., 1993,18:59-71.
    [187] Agnew, D.C., SPOTL: Some programs for ocean-tide loading, SIO Ref. Ser. 96-8, Scripps Inst. of Oceanography, La Jolla, California, 1996.
    [188] Pagiatakis, S.D., Program LOADSDP for the calculation of ocean load effects, Man. Geod., 1992,17:315-320.
    [189] Kouba, J., Sub-daily Earth Rotation Parameters and the International GPS Service Orbit/Clock Solution Products, Stud. Geophys. Geod., 2002,46:9-25.
    [190] Vermeer, M., The Precision of Geodetic GPS and One Way of Improving it, J.Geodesy, 1997,71:240-245.
    [191] Hartinger, H. and Brunner, F. K., Variance of GPS Phase Observations: the Sigma-Model. GPS Solut., 1999,2(4):35-43.
    [192] Herring, T. A., King, R. W. and McClusky, S. C., Documentation for the GAMIT GPSAnalysis Software,Release 10.0, 2000,Department of Earth, Atmospheric, and Planetary Sciences ,Massachussetts Institute of Technology ,2006.
    [193]李耀清,实验的数据处理,合肥:中国科技大学出版社, 2003.
    [194] Thayer, G.D., A modified equation for radio refractivity of air, Radio Sci., 1974,9(10):803- 807.
    [195]李成才,毛节泰,地基GPS遥感大气水汽总量中的“静力延迟”和“湿延迟”,大气科学, 2004,28(5):795-800.
    [196] Mendes, V. B. and Langley, R. B., Optimization of tropospheric delay mapping function performance for high-precision geodetic applications, Proceedings of DORIS Days, Toulouse, France, 1998,pp.27-29.
    [197] Mendes, V. B. and Langley, R. B., Tropospheric zenith delay prediction accuracy for airborne GPS high-precision positioning, Proceedings of The Institute of Navigation 54th Annual Meeting, Denver, CO, U.S.A., 1998,pp.337-347.
    [198] Spilker, J. J., Tropospheric Effects on GPS, in:Spilker and Parkinson(eds), GPS Theory and Applications; Vol. I, Progress in Astronautics and Aeronautics, 1996,163:517-546.
    [199] Marini, J.W., Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Sci., 1972,7(2):223-231.
    [200]王波,赵振维,吴振森等,雷达海杂波反演大气波导研究,第十届全国雷达学术年会, 2008,pp.1373-1376.
    [201]王波,王红光,赵振维等, GPS海面反射信号特性仿真分析,全球定位系统, 2008, 33(6):13-16.
    [202]王波,吴振森,赵振维等,基于蚁群算法的雷达海杂波反演蒸发波导研究,电波科学学报, 2009,20(4):598-603.
    [203]郭立新,李宏强,杨超等,改进DMFT算法研究粗糙海上蒸发波导中的电波传输特性,电波科学学报, 2009,24(3): 414-421.
    [204]杨超,郭立新,李宏强等,大气波导中电波传播特性的研究,西安电子科技大学学报, 2009,36(6):1097-1102.
    [205] Wang, B., Wu, Z. S., Zhao, Z.W., et al., Retrieving evaporation duct heights from radar sea clutter using particle swarm optimization(pso) algorithm, Progress In Electromagnetics Research M, 2009,9:79-91.
    [206] WANG, B., Zhao, Z.W., Wu, Z. S., et al., RETRIEVING SURFACE-B ASED DUCT PARAMETERS FROM RADAR SEA CLUTTER USING A PARTICLE SWARM OPTIMIZATION APPROACH, IET International Radar Conference, Guilin, 2009.
    [207]张金鹏,吴振森,张景剑,海杂波测量噪声对蒸发波导反演精度的影响分析,海峡两岸三地无线电科技研讨会暨博士生学术会议,天津, 2009.
    [208]杨德草,海杂波反演大气波导的模拟退火算法,西安电子科技大学硕士学位论文, 2009.
    [209]韩星星,雷达海杂波反演海面大气波导的研究,西安电子科技大学硕士学位论文, 2009.
    [210]徐国明,反演理论及其应用,北京:地震出版社, 2003.
    [211] Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation, Philadelphia: Society for Industrial and Applied Mathematics, 2005.
    [212] Tipping, M.E., Sparse Bayesian Learning and the Relevance Vector Machines, J. Mach. Learn. Res., 2001,1:211-244.
    [213]贾嵘,王小宇,蔡振华等,最小二乘支持向量机回归的HHT在水轮发电机组故障诊断中的应用,中国电机工程学报, 2006,26(22):128-133.
    [214]王波,地基微波辐射计大气环境遥感研究,中国海洋大学硕士论文, 2007.
    [215]班盼盼,基于神经网络和支持向量机的电离层foF2短期预报技术研究,电子科学研究院硕士论文, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700