用户名: 密码: 验证码:
水电机组控制系统辨识及故障诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水电机组控制系统与机组的稳定、安全、高效运行密切相关,对其进行精确建模研究是系统动态过程仿真、自适应控制、机组及互联电网稳定性分析和机组故障诊断的基础。水电机组控制系统是具有时变、非最小相位、强非线性等特点的复杂系统,精确建模一直是相关研究的难点;水电机组日趋大型化、复杂化导致机组故障风险日益突出,机组故障诊断研究一直备受学界关注。因此,深入研究水电机组控制系统辨识理论与方法,获得机组控制系统的精确模型描述,研究机组故障诊断策略,对实现水电机组的安全、可靠和高效运行,具有十分重要的理论意义和工程应用价值。
     在水电机组系统辨识研究中,传统方法多集中在线性系统辨识领域,辨识的模型多为忽略了非线性环节的简单线性模型,缺乏对非线性系统辨识的研究,制约了高精度水电机组对象模型的获取,亟需进一步发展水电机组非线性辨识理论并系统地建立完善水电机组系统辨识方法体系。为此,在全面分析水电机组特性基础上,凝练出机组控制系统辨识及机组故障诊断所面临的科学问题,结合模糊理论及先进智能优化方法,对水电机组控制系统参数辨识方法、模型整体辨识策略进行了系统深入的研究,进一步开展了基于系统辨识的机组故障诊断研究,提出了基于模糊聚类理论的故障模式识别方法体系。论文的主要工作及创新性成果如下:
     (1)针对水电机组对象特性及系统辨识研究需求,研究并建立了水轮机调节系统各环节数学模型,对其中的非线性特性进行了重点解析,探讨了不同工况下水电机组控制对象模型表现形式,建立了水轮机调节系统典型线性模型及非线性模型的SIMULINK仿真平台,为系统辨识研究打下了基础。
     (2)考虑水电机组参数辨识的特殊性,研究并推导了基于微分变换和积分变换的连续系统参数辨识方法,直接辨识对象物理参数。构建了基于Harley变换的连续系统辨识模型,实现了水轮机调速器控制参数的精确辨识,研究了具有结构简单、计算速度快的Haar类正交变换,成功应用于水轮机调节对象的参数辨识。
     (3)水电机组控制系统是复杂的非线性系统,在不对模型进行简化的情况下进行非线性系统参数辨识。引入引力搜索算法,结合粒子群算法的优点提出了改进引力搜索算法,使其在保留引力搜索的前提下增加了信息共享及记忆能力,进一步提高了搜索能力,在此基础上研究了基于智能优化的非线性系统辨识方法,构造了基于智能优化方法的水轮机调节系统辨识框架,实现了复杂工况下水轮机调节系统非线性模型参数的精确辨识。
     (4)进一步研究了水电机组复杂非线性系统的整体模型辨识,提出用模糊模型来精确描述水轮机调节系统。在传统T-S模糊模型的基础上,研究并提出用变尺度混沌优化方法来优化T-S模糊的结构与参数,实现结构参数的一体化辨识,为提高模糊空间划分的合理性,提出了基于线性回归原型及超平面原型的模糊聚类方法,实现了T-S模糊模型的高精度辨识,最后验证其在水轮机调节系统辨识中的效果。
     (5)研究了基于数学模型的动态系统故障诊断策略,为进一步开展该类问题研究打下了基础。进而研究了基于模糊聚类模式识别方法的机组故障诊断,提出了加权混合模糊聚类方法(WCOFCM)和一种加权核聚类算法(WFKC),结合混沌变量的全局搜索能力与梯度算子的局部寻优能力,通过核函数非线性映射及样本特征加权,有效区分了重要和非重要的样本特征,突出了敏感样本特征在聚类中的主导作用,有效实现了机组故障模式的准确识别。
The control system of hydropower generating unit is tightly associated with the stability, safety and efficient operation of hydropower generating unit (HGU), and the precise modeling of this system is foundation of dynamic process simulation, adaptive control, stability analysis of HGU and power system. The control system of hydropower generating unit is a non-minimum phase and time-varying nonlinear system, precise modeling of which is a difficult problem. In addition, the trend of HGU to be large and complicated brings significant risk of fault, thus problem of fault diagnosis of HGU is focused by researches widely.
     In researches of HGU system identification, traditional methods focus on linear system identification based on models which have almost been simplified by omitting nonlinearity sections, and the deficiency of research on nonlinear system identification of HGU restricts the precise modeling of HGU. Thus development of theory of nonlinear system identification and building the system of system identification of HGU are necessary. In this paper, based on comprehensive analysis of models of HGU, scientific problems in system identification of control system of hydropower generating unit (CSHGU) are proposed. Based on fuzzy theory and intelligent optimization methods, parameter identification and system identification of CSHGU are researched, furthermore fault diagnosis strategy based on model and system identification, fault pattern recognition are researched. The main contents and innovative results are listed as follows:
     (1) In considering of characteristics and system identification of HGU, models of all sections of governing system of HGU are researched and nonlinear sections are analyzed with emphasis. Models in different operating condition of CSHGU are discussed, and SIMULINK simulation platforms of linear and nonlinear models of CSHGU are built, providing foundation of system identification research.
     According to the special requirements of parameter identification, continuous system identification methods are studied and deduced to identify physical parameters directly, based on differential transform and integral transform. Continuous system identification strategy based on Hartley transform is researched and applied in control parameter identification of control system of HGU, then Haar transform with simple structure and high computing efficiency is studied and applied in parameter identification of objects in CSHGU.
     (3) In fact control system of HGU is a complicated nonlinear system. System identification of control system of HGU is studied under the condition of keeping all nonlinear sections of model of CSHGU. Gravity search algorithm (GSA) is introduced and improved by combining merits of particle swarm optimization, the search ability of improved GSA is enhanced by combination of gravity search, information sharing and ability of memory. The improved GSA is applied in nonlinear parameter identification of CSHGU and the identification strategy based on intelligent optimization method is proposed, realizing the precise identification of governing system of HGU under complicated operating conditions.
     (4) In addition, system identification of CSHGU based on nonlinear model is researched, focusing precise modeling using fuzzy model. On the basis of T-S fuzzy model, mutative scale chaos optimization is used to optimize the structure and parameters of T-S fuzzy model. In order to improve the linearity of fuzzy partition, fuzzy clustering methods based on linear regressive model and hyperplane are proposed, realizing precise identification of T-S fuzzy model, finally the effectiveness of proposed methods are verified in system identification of CSHGU.
     (5) In the end, fault diagnosis of dynamic system based on model and system identification is studied, building the foundation for further research. Fault diagnosis based pattern recognition based on fuzzy clustering analysis is emphasized, while weighted chaos optimization based fuzzy clustering method (WCOFCM) and weighted fuzzy kernel clustering (WFKC) algorithm are proposed. In WCOFCM, the global search ability of chaos optimization and local search ability of gradient operator are combined to improve the ability of obtaining more excellent partition solutions. In WFKC, samples in original space are mapped to high-dimension feature space by mercer kernel, and then a similarity based weighting method is used to assign weight to features of the transferred samples, and finally weighted fuzzy clustering in feature space is realized. WCOFCM and WFKC are applied in fault pattern recognition of HGU, the results show that the accuracy of fault pattern recognition are significantly improved.
引文
[1]江泽民.对中国能源问题的思考.上海交通大学学报,2008,42(3):345-359.
    [2]谈广鸣,舒彩文.清洁能源与优质电源论析.水电与新能源,2010,(1):74-77.
    [3]方红庆.水力机组非线性控制策略及其工程应用研究:[博士学位论文].南京:河海大学图书馆,2005.
    [4]魏守平.水轮机控制工程.武汉:华中科技大学出版社,2005.
    [5]陈光大,蔡维由,吴钾铨,等.水轮机电液调速器电液随动系统分析.大电机技术,1997,(1):58-64.
    [6]De Jaeger E., Janssens H., Malfiiet B., et al. Hydro turbine model for system dynamic studies, IEEE Transactions on Power Systems,1994,9(4):1709~1715.
    [7]Vournas C. D.. Second order hydraulic turbine models for multimachine stability studies. IEEE Transaction on Energy Conversion,1990,5(2):239-244.
    [8]Voarnas C. D., Zaharakis A.. Hydro turbine transfer functions with hydraulic coupling. IEEE Transaction on Energy Conversion,1993,8(3):527~532.
    [9]Working Group on Prime Mover and Energy Supply Models for System Dynamic Performance. Hydraulic turbine and turbine control models for system dynamic studies. IEEE Trans on Power Systems,1992,7(1):167~179.
    [10]Kundur P.. Power system stability and control. New York:McGraw-Hill,1994.
    [11]Hannett L. N., Feltes J. W., Fardanesh B.. Field tests to validate hydro turbine-governor model structure and parameters. IEEE Transactions on Power Systems,1994,9(4):1744~1751.
    [12]Wrate C. A., Wozniak L.. Hydrogenerator system identification using a simple genetic algorithm. IEEE Transaction on Energy Conversion,1997,12(1):60~65.
    [13]Trudnowski D.J., Agee J.C.. Identifying a hydraulic-turbine model from measured field data. IEEE Transaction on Energy Conversion,1995,10(4):768~763.
    [14]王淑青.水轮机调节系统控制策略及模型辨识方法研究:[博士学位论文].武汉,华中科技大学图书馆,2006.
    [15]陈启卷.系统辨识和智能化控制及在水电机组中的应用:[博士学位论文].武汉:武汉大学图书馆,1999.
    [16]Scott C. Bonnert, L.Wozniak. Adaptive Speed Control of Hydrogenerators by Recursive Least Squares Identification Algorithm. IEEE Trans. On Energy Conversion,1995,10(1):162~168.
    [17]Djukanovic M. B., Calovic M.S., Vesovic B. V.. Neuro-fuzzy controller of low head hydropower plants using adaptive-network based fuzzy inference system. IEEE Transaction on Energy Conversion,1997,12(4):375~381.
    [18]蔡维由,刘海锋,陈光大等.水轮机调节系统的模糊神经控制.长江科学院院报,2003,20(2):45-49.
    [19]余向阳,南海鹏,杨晓萍.基于遗传算法的水轮机模糊自适应调速器研究.大电机技术,2004,(1):63-67.
    [20]Cheng-Jian Lin.A GA-based neural fuzzy system for temperature control. Fuzzy Sets and Systems,2004,143:311~333.
    [21]李斌,吕永健,孔韬.Volterra级数频谱非线性系统故障诊断方法.火力与控制,2008,33(7):149-151.
    [22]唐浩,屈梁生,温广瑞.基于Volterra级数的转子故障诊断研究.中国机械工程,2009,20(4):447-449.
    [23]张华君,韩崇昭.一种Volterra级数简化辨识方法及其应用研究.计算机仿真,2006,23(9):140-143.
    [24]徐枋同,李永华.系统辨识理论与实践——在水电控制工程中的应用.北京:中国电力出版社,1999.
    [25]李鹏波,胡德文.系统辨识基础.北京:中国水利水电出版社,2006.
    [26]李言俊,张科.系统辨识理论及应用.北京:国防工业出版社,2002.
    [27]沈善德.电力系统辨识.北京:清华大学出版社,1999.
    [28]Zadeh L. A.. From circuit theory to system theory. Proc. IRE,1962,50(5): 856~865.
    [29]Chin-Teng Lin.Neural Network-Based Fuzzy Logic Control and Design System, IEEE Trans.on Computer,1991,40(12):1320~1336.
    [30]Ljung L. Convergence analysis of parametric identification methods. IEEE Trans on Automatic Control,1978,23:770~783.
    [31]Graupe D., Jain V.K., Salahi J.. A comparative analysis of various least-squares identification algorithms. Automatica,1980,16(6):663~681.
    [32]Liu X., Lu J.. Least squares based iterative identification for a class of multirate systems. Automatica,2010,46(3):549~554.
    [33]王萍,郭巧,赵静.极大似然法在间接测热系统参数估计中的应用.系统工程与电子技术,2003,25(11):1404-1406.
    [34]Al-Hamadi H. M., Soliman S. A.. Kalman filter for identification of power system fuzzy harmonic components. Electric Power Systems Research,2002,62 (3): 241~248.
    [35]AL-Kandari A. M., EL-Naggar K. M.. Recursive identification of harmonic loads in power systems International Journal of Electrical Power & Energy Systems, Volume 28, Issue 8, October 2006, Pages 531~536.
    [36]Lei X., Povh D. Optimization of power system controls within a simulation software package Control Engineering Practice,2000,8 (1):155~163.
    [37]Maffezzoni C., Marchese V.. Structural parameter estimation in power systems Automatica,1981,17(2):263~279.
    [38]Vazquez Feijoo J. A., Worden K., Stanway R.. System identification using associated linear equations. Mechanical Systems and Signal Processing,2004, 18(3):431~455.
    [39]Dash P. K., Liew A. C., Salama M. M. A., et al. A new approach to identification of transient power quality problems using linear combiners. Electric Power Systems Research,1999,51(1):1~11.
    [40]Qui J., Girgis A. A.. Determining the stability and realizability of a type of identified power system linear dynamic equivalent model. Electric Power Systems Research,1994,28(3):211~216.
    [41]Maffezzoni C., Marchese V.. Structural parameter estimation in power systems. Automatica,1981,17(2):263~279.
    [42]Billings S. A., Fakhovri S. V.. Nonlinear system identification using the Hammerstein model. Int. J. System Science,1979,10(5):23-39.
    [43]袁廷奇.一类多变量Hammerstein模型的参数辨识方法.控制与决策,2010,25(3):478-480.
    [44]李妍,毛志忠,王琰,等.基于偏差补偿递推最小二乘的Hammerstein-Wiener模型辨识.自动化学报,2010,36(1):163-168.
    [45]徐小平,钱富才,王峰.基于混合粒子群优化算法辨识Hammerstein模型.工程数学学报,2010,27(1):47-52.
    [46]朱全民.非线性系统辨识.控制理论与应用,1994,11(6):641-652.
    [47]Winener N.. Nonlinear problems in random theory. Wiley, Chichester,1958.
    [48]Hazem M. Abbas, Mohamed M. Bayoumi. Volterra system identification using adaptive genetic algorithms. Applied Soft Computing,2004 5(1):75~86.
    [49]刘立峰,汤建华,田兴志.三阶非线性Volterra模型的自适应快速辨识.光学精密工程,2009,17(10):2600-2605.
    [50]Leonlaritis I. J., Billings S. A.. Input-output parametric models for nonlinear systems Part Ⅱ:stochastic nonlinear systems.Int. J. Control,1985,41(2):329~334.
    [51]Chen S, Billings S. A. Representations of nonlinear systems:the NARMAX model. Int. J. control,1989,49(3):1013~1032.
    [52]Billings S.A, Chen S. Extended model set, global data and threshold model identification of severely nonlinear systems. Int. J. Control,1989,50:1897~1892.
    [53]Chen S, Billings S.A.Neural network for nonlinear dynamic system modeling and identification. Int. J. control,1992,5:319~346.
    [54]Chen S, Billings S. A., Grant P.. Nonlinear system identification using neural network Int. J. control,1990,51:1191~1214.
    [55]Narendra K.S,Parthasarathy L.Identification and Control of Dynamical Systems Using Neural Net works.IEEE Trans On Neural Networks,1990,1(1):4-27.
    [56]陈平,裘丽华,王占林.基于对角回归网络的非线性系统建模.北京航空航天大学学报,2003,29(3):248-251.
    [57]丛爽,高雪鹏.几种递归神经网络及其在系统辨识中的应用.系统工程与电子技术,2003,25(2):194-197.
    [58]洪炳熔,金飞虎,高庆吉.基于蚁群算法的多层前馈神经网络.哈尔滨工业大学学报,2003,35(7):823-825.
    [59]吴德会.非线性动态系统的Wiener神经网络辨识法.控制理论与应用,2009,26(11):1192-1196.
    [60]王秀峰,卢桂章.系统建模与辨识.北京:电子工业出版社,2004.
    [61]Cao S. G, Rees N. W.. Identification of dynamic fuzzy models. Fuzzy Sets and Systems,1995,74(3):307~320.
    [62]Zadeh L. A.. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Systems Man Cybernet,1973, (3):28~44.
    [63]Nakanishi H., Turksen I. B., Sugeno M.. A review and comparison of six reasoning methods. Fuzzy Sets and Systems,1993,57:257~294.
    [64]Xu C.W., Lu Y.Z.. Fuzzy model identification and self-learning for dynamic systems. IEEE Trans Syst Man Cybern,1987,17:683~689.
    [65]Chiu S.. Selecting input variables for fuzzy models. J Intell Fuzzy Syst,1996,4: 243~56.
    [66]Tanaka K., Sano M.. A robust stabilization problem of fuzzy control systems and its application to backing up control of a truch-trailer. IEEE Trans. Fuzzy Syst.,1994, (2):119~134.
    [67]Bagis A., Fuzzy rule base design using tabu search algorithm for nonlinear system modeling. ISA Transactions 2008,47(1):32~44.
    [68]Wang Y., Rong G., Wang S.. Hybrid fuzzy modeling of chemical processes. Fuzzy Sets Syst,2002,130:265~275.
    [69]Chiang J. H., Hao P. Y.. Support vector learning mechanism for fuzzy modeling:a new approach. IEEE Trans Fuzzy Syst,2004,12:1~12.
    [70]Kroll A.. Identification of functional fuzzy models using multidimensional reference fuzzy sets. Fuzzy Sets Syst,1996,80:149~158.
    [71]Kim E., Park M., Kim S., et al. A transformed input-domain approach to fuzzy modeling. IEEE Trans Fuzzy Syst,1998, (6):596~604.
    [72]Li C., Zhou J., An X., et al. T-S Fuzzy Model Identification Based on Chaos Optimization. In:Proceedings of ISNN, Beijing,2008,786~795.
    [73]Lee S. J., Ouyang G. S.. A neuro-fuzzy system modeling with selfconstructing rule generation and hybrid SVD-based learning. IEEE Trans Fuzzy Syst,2003,11: 341~353.
    [74]张霄元,蒋诚志,洪听,等.水轮机传递参数在线辨识.自动化与仪器仪表,1999,(5):11-13.
    [75]刘宪林,杜晓勇.利用功率扰动辨识水电站水力系统模型.郑州大学学报(工学版),2006,27(3):104-106.
    [76]张承慧,刘玉庆.水轮机建模与参数识别.电力系统自动化,1997,21(5):53-56.
    [77]刘昌玉,梁学磊.水轮机调节系统被控对象模型辨识.水电能源科学,2007, 25(2):77-79.
    [78]杜庆东,徐凌宇,赵海.基于神经融合算法的水电厂压力引水系统的辨识.控制与决策,2001,16(s1):787-790.
    [79]韩璞,张婧,王东风,等.一种基于神经网络的执行器死区补偿方法.仪器仪表学报,2006,27(s3):1993-1994.
    [80]常江,谢云敏.混流式水轮机神经网络模型非线性仿真.中国农村水利水电,2004,(6):75-77.
    [81]常江,陈光大.轴流转桨式水轮机神经网络建模与非线性仿真.中国农村水利水电,2004,(7):82-85.
    [82]程远楚,叶鲁卿,蔡维由.水轮机特性的神经网络建模.华中科技大学学报(自然科学版),2003,31(6):68-70.
    [83]王淑青,李朝晖.基于自适应模糊神经网络的水轮机特性辨识研究.武汉大学学报(工学版),2006,39(2):24-27.
    [84]李悝,张靖,孙海顺,等.水轮机及其调速系统建模与参数辨识方法.水电能源科学,2006,24(4):79-82.
    [85]杨小东,董宸,卢文华,等.基于遗传算法的水轮发电机组调速系统参数辨识.继电器,2006,34(1):27-30.
    [86]杨全潮.基于非线性模型的水轮机调速系统智能辨识.电机技术,2008,(9):79-81.
    [87]Takagi T., Sugeno M.. Fuzzy identification of systems and its application to modeling and control. IEEE Transactions on Systems, Man and Cybernetics,1985, 15(1):116~132.
    [88]Subramanian K. R., Fussell D. S.. Applying space subdivision techniques to volume rendering. In:Proceedings of the First IEEE Conference on Visualization. San Francisco:IEEE Press,1990,150~159.
    [89]王宏伟,顾宏.基于模糊模型的结构和参数的一体化辨识.计算机学报,2006, 29(11):1977-1981.
    [90]Plamen A.. An approach for fuzzy rule-base adaptation using on-line clustering. International Journal of Approximate Reasoning,2004,35:275~289.
    [91]Sugeno M., Yasukawa T.. A fuzzy-logic-based approach to qualitative modeling. IEEE Trans Fuzzy Syst,1993, (1):7-31.
    [92]Chiu S. L.. Fuzzy model identification based on cluster estimation. J. Intell. Fuzzy Systems,1994,2(3):267~278.
    [93]Gustafson D., Kessel W., Fuzzy clustering with a fuzzy covariance matrix. In:Proc. of the IEEE CDC, San Diego, CA, USA,1979,761~766.
    [94]Hoppner F., Klawonn F., Kruse R., et al. Fuzzy Cluster Analysis. New York:Wiley, 1999.
    [95]林金星,沈炯,李益国.基于递阶G-K聚类的热工过程多模型建模方法.中国电机工程学报,2006,26(11):23-28.
    [96]Kim E., Park M., Ji S, et al. A new approach to fuzzy modeling. IEEE Trans Fuzzy Syst 1997,5:328-37.
    [97]Li C., Zhou J., Xiang X., et al. T-S fuzzy model identification based on a novel fuzzy c-regression model clustering algorithm. Engineering Applications of Artificial Intelligence,2009,22(4-5):646-653.
    [98]Li C., Zhou J., Li Q., et al. A new T-S fuzzy-modeling approach to identify a boiler-turbine system. Expert Systems with Applications,2010,37(3):2214~2221.
    [99]王建国,李益国,明学星,等.基于超平面的T-S模糊模型辨识.电力自动化设备,2008,28(3):14-17.
    [100]李超顺,周建中,向秀桥,等.基于超平面原型聚类的水轮机调速系统模糊模型辨识.动力工程,2009,29(4):363-388.
    [101]赵宝江,李士勇.基于蚁群聚类算法的非线性系统辨识.控制与决策,2007,22(10):1193-1196.
    [102]丁园,高晓智,黄显林.基于微粒群优化算法的T-S模糊建模.哈尔滨工业大
    学学报,2007,39(5):700-702.
    [103]李超顺,周建中,安学利,等.基于T-S模糊模型的水轮机调节系统辨识.武汉大学学报(工学版),2010,43(1):108-111.
    [104]Angelov P. P., Buswell R. A.. Automatic generation of fuzzy rule-based models from data by genetic algorithms. Information Sciences,2003,150:17~31.
    [105]李益国,沈炯.基于v-支持向量回归的T-S模糊模型辨识.中国电机工程学报,2006,26(18):148-153.
    [106]陈喜阳,王善永,孙建平,等.基于CWT灰度矩的水电机组振动征兆提取.电力系统自动化,2007,31(9):68-71.
    [107]陈果.一种转子故障信号的小波降噪新方法.振动工程学报.2007,20(3):285-290.
    [108]陈果.基于小波分析的转子故障信号自适应降噪技术研究.航空动力学报.2008,23(1):9-16.
    [109]彭文季,罗兴锜,郭鹏程.基于第2代小波的水电机组振动信号预处理.中国电机工程学报,2007,27(30):103-107.
    [110]程发斌,汤宝平,钟佑明.基于最优Morlet小波和SVD的滤波消噪方法及故障诊断的应用.振动与冲击,2008,27(2):91-94.
    [111]刘利娜,韩凤琴,张双全,等.水轮发电机组故障诊断系统中几种征兆的获取.华中科技大学学报(自然科学版),2003,31(3):86-88.
    [112]吴波,何岭松,蔡志强,等.基于小波变换的波形特征抽取与识别.华中理工大学学报,1993,21(1):77-80.
    [113]刘忠,周建中,张勇传,等.基于水电机组复合特征提取的RBFNN故障诊断.电力系统自动化,2007,31(11):87-91.
    [114]倪传坤,周建中.基于SVD的水电机组轴心轨迹自动识别.水电自动化与大坝监测,2003,27(6):22-24.
    [115]陈喜阳,张克危.一种新矩在水电机组轴心轨迹识别中的应用.华中科技大学
    学报(自然科学版),2006,34(3):79-84.
    [116]付波,周建中,彭兵,等.基于仿射不变矩的轴心轨迹自动识别方法.华中科技大学学报(自然科学版),2007,35(3):119-122.
    [117]桂中华,潘罗平,张浩,等.小波包特征熵提取水电机组轴心轨迹形状.水力发电,2009,35(8):49-51.
    [118]武方方,赵银亮.一种基于Morlet小波核的约简支持向量机.控制与决策,2006,21(8):848-852.
    [119]杨奎河,单甘霖,赵玲玲.最小二乘支持向量机在故障诊断中的应用.计算机科学,2007,134(11):289-291.
    [120]彭文季,罗兴镝.基于小波包分析和支持向量机的水电机组振动故障诊断研究.中国电机工程学报,2006,26(24):164-168.
    [121]彭文季,罗兴锜.基于粗糙集和支持向量机的水电机组振动故障诊断.电工技术学报,2006,21(10):117-122.
    [122]Sorsa T., Koivo H. N.. Application of artificial neural networks in process fault diagnosis. Automatica,1993,29(4):843~849
    [123]Simani S., Fantuzzi C. Fault diagnosis in power plant using neural networks Information Sciences,2000,127(3-4):125~136.
    [124]Skoundrianos E N., Tzafestas S. G. Fault diagnosis via local neural networks. Mathematics and Computers in Simulation,2002,60(3-5):169~180.
    [125]Kowalski C. T., Orlowska-Kowalska T.. Neural networks application for induction motor faults diagnosis. Mathematics and Computers in Simulation,2003,63(3-5): 435~448.
    [126]杨晓萍,解建宝,孙超图.水轮发电机组振动故障诊断的神经网络方法研究.水利学报,1998,(s1):94-97.
    [127]陈长征,张省,虞和济.基于神经网络的旋转机械故障诊断研究.机械强度,2000,22(2):104-106.
    [128]万书亭,李和明,李永刚.自适应神经网络在发电机组故障诊断中的应用.华北电力大学学报,2002,29(2):99-102.
    [129]李辉,贾嵘,白亮.集成神经网络在水轮发电机组故障诊断中的应用.中国农村水利水电,2005,(1):100-102.
    [130]李郁侠,刘立峰,陈继尧,等.基于神经网络和证据理论融合的水电机组振动故障诊断研究.西北农林科技大学学报(自然科学版),2005,33(10):115-119.
    [131]高新波.模糊聚类分析及其应用.西安:西安电子科技大学出版社,2004.
    [132]陈铁华,陈启卷.模糊聚类分析在水电机组振动故障诊断中的应用.中国电机工程学报,2002,22(3):43-47.
    [133]张彼德,孙才新,欧健.诊断汽轮发电机组振动故障的一种模糊聚类分析方法.汽轮机技术,2002,44(5):289-291.
    [134]雷亚国,何正嘉,訾艳阳.混合聚类新算法及其在故障诊断中的应用.机械工程学报,2006,42(12):116-121.
    [135]刘晓波,黄其柏.基于动态核聚类分析的水轮机组故障模式识别.华中科技大学学报(自然科学版),2005,33(9):47-52.
    [136]李超顺,周建中,杨俊杰,等.基于混合模糊聚类分析的汽轮发电机组振动故障诊断.电力系统自动化,2008,32(5):80-84.
    [137]李超顺,周建中,安学利,等.基于加权模糊核聚类的发电机组振动故障诊断.中国电机工程学报,2008,28(35):79-83.
    [138]沈祖诒.水轮机调节(第三版).北京:中国水利水电出版社,1998.
    [139]廖忠.小波网络及其在水轮机调节系统中的应用研究:[博士学位论文].南京:河海大学图书馆,2005.
    [140]程远楚.水电机组智能控制策略与调速励磁协调控制的研究:[博士学位论文].武汉:华中科技大学图书馆,2002.
    [141]杜思存.水轮机调速系统非线性建模研究与算法实现:[硕士学位论文].武汉:华中科技大学图书馆,2007.
    [142]孔昭年.在水轮机调节系统动力学分析中描述水轮机特性的一种新方法.水利水电技术,1990,(7):26-29
    [143]Hannett L. N., Feltes J. W., Fardanesh B., et al. Modeling and control tuning of a hydro station with units sharing a common penstock section. IEEE Transactions on Power Systems,1999,14(4):1407~1414.
    [144]叶鲁卿.水力发电过程控制——理论、应用及发展.武汉:华中科技大学出版社,2002.
    [145]梁宏柱,叶鲁卿,孟安波.一种基于精确模型的水电站弹性水击计算新方法.大电机技术,2004,(5):49-52.
    [146]陈嘉谋.水轮机调节系统计算机仿真.北京:水利电力出版社,1993.
    [147]秋元德三.水击与水压脉动.支培法等译.北京:电力工业出版社,1981.
    [148]Jiang C. B. and Kawahara M. The analysis of unsteady incompressible flows by a thee-step finite element method. Int. J. for Numerical Methods in Fluids,1993,16: 793~811.
    [149]常近时.水力机械过渡过程.北京:机械工业出版社,1991.
    [150]晏敏,张昌期.水轮机特性的超曲面正交多项式最小二乘拟合.大电机技术,1986,(4):60-63.
    [151]焦李成.神经网络系统理论.西安:西安电子科技大学出版社,1990.
    [152]刘玉梅,王金华.水轮机被控系统的特征及其数学模型的建立.大电机技术,1999,(5):44-50.
    [153]Unbehauen H., Rao G. P. Continuous-time approaches to system identification—a survey. Automatica,1990,26(1):23~35.
    [154]Unbehauen H, Rao G. P.. A review of identification in continuous-time system. Annual Review in Control,1998,22:145~171.
    [155]Daniel-berhe S., Unbehauen H.. Bilinear continuous-time system identification via Hartley-based modulating functions. Automatica,1998,34(4):499~503.
    [156]Daniel-berhe S., Unbehauen H.. Physical parameters estimation of the nonlinear continuous-time dynamics of a dc motor using hartley modulating functions method. Journal of the Franklin Institute,1999,36:481~501.
    [157]Mensler M., Joe S., Kawabe T.. Identification of a toroidal continuously variable transmission using continuous-time system identification methods. Control Engineering Practice,2006,14(1):45~58.
    [158]贺尚红,陈慧勇,杨甫.用Hartley变换实现连续动力学系统参数模型直接辨识.中南大学学报(自然科学版),2007,38(1):122-127.
    [159]贺尚红,钟掘.基于小波调制的连续系统模型辨识.信息与控制,2002,31(6):495-498.
    [160]Sinbrot M.. On the analysis of linear and nonlinear systems. Trans. ASME,1957, 79(3):547~552.
    [161]王良,沈善德,朱守真,等.基于EE模型的励磁系统参数时域辨识法.电力系统自动化,2002,26(8):25-28.
    [162]施保昌,郭照立,王能超.Haar类变换的演化生成和快速算法.数学杂志,1998,18:1-6.
    [163]Chen C. F., Hsiao C. H.. Time-domain synthesis via walsh function. Proc. IEE, 1975,122(5):565~570.
    [164]徐科军,张颖,张崇巍.基于沃尔什函数的传感器动态建模方法.电子测量与仪器学报,1996,10(2):24-29.
    [165]毕海,孔德仁,朱明武.基于沃尔什函数的最小二次动态建模方法及应用.计量学报,1998,19(1):16-80.
    [166]Liu L., Liu W., Cartes D. A.. Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors. Engineering Applications of Artificial Intelligence,2008,21(7):1092~1100.
    [167]Quispe Puma J., Graciela Colome D.. Parameters identification of excitation system models using genetic algorithms. IET Gener. Transm. Distrib.,2008,2(3): 456~467.
    [168]Dionysios C. Aliprantis, Scott D. Sudhoff, Brian T. Kuhn. Genetic algorithm-based parameter identification of a hysteretic brushless exciter model. IEEE Transactions on Energy Conversion,2006,21(1):148~154.
    [169]Leite J. V., Avila S. L., Batistela N. J., et al. Real coded genetic algorithm for jiles-atherton model parameters identification, IEEE Transactions on Magnetics, 2004,40(2):888~891.
    [170]J. A. Carlos Canedo Medeiros, Roberto Schirru. Identification of nuclear power plant transients using the Particle Swarm Optimization algorithm. Annals of Nuclear Energy,2008,35(4):576~582.
    [171]Diego Martinez Prata, Marcio Schwaab, Enrique Luis Lima, et al, Nonlinear dynamic data reconciliation and parameter estimation through particle swarm optimization:Application for an industrial polypropylene reactor. Chemical Engineering Science,2009,64 (18):3953~3967.
    [172]Rasmus K. Ursem, Pierre Vadstrup. Parameter identification of induction motors using stochastic optimization algorithms. Applied Soft Computing,2004,4(1): 49~64.
    [173]Man K. F., Tang K. S., Kwong S.. Genetic algorithms:concepts and applications. IEEE Trans. Industrial Electronics,1996,43(5):519~534.
    [174]Liu B., Wang L., Jin Y., et al. Improved particle swarm optimization combined with chaos. Chaos, Solitons & Fractals,2005,25(5):1261~1271.
    [175]Esmat Rashedi, Hossein Nezamabadi-pour, Saeid Saryazdi. GSA:A Gravitational Search Algorithm. Information Sciences,2009,179(13):2232~2248.
    [176]Kennedy, J., Eberhart, R... Particle swarm optimization. In:Proceedings of the IEEE International Conference on Neural Networks. Perth, Australia,1995, 1942~1948.
    [177]Tang K. S., Man K. F., Kwong S., et al. Genetic algorithms and their applications. IEEE Signal Processing Magazine,1996,13(6):22~37.
    [178]Dorigo M., Maniezzo V., Colorni A.. The ant system:optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996,26(1):29~41.
    [179]Schutz B.. Gravity from the Ground Up. Cambridge University Press,2003.
    [180]Wang L., Reza L.. Complex systems modeling via fuzzy logic. IEEE Transactions on Systems, Man and Cybernetics-A,1996,26(1):100~106.
    [181]Liu J., Chen Y.. Identification of a boiler-turbine system using T-S fuzzy model. In: Proceedings of IEEE Tencon, Beijing,2002,1278~1281.
    [182]张彤,王宏伟,王子才.变尺度混沌优化方法及其应用.控制与决策,1999,14(3):285-287.
    [183]蔡开龙,谢寿生,吴勇.基于T-S模糊模型的航空发动机模型辨识.推进技术,2007,28(2):194-198.
    [184]陆伟峰.聚类法模糊系统建模的研究与进展.无锡南洋学院学报,2007,6(4):76-81.
    [185]Kim E., Park M., Ji S., et al. A new approach to fuzzy modeling. IEEE Trans. Fuzzy Syst.,1997,5(3):328~337.
    [186]Wang L. X., Mendel J. M.. Fuzzy basis functions, universal approximation and orthogonal least squares learning. IEEE Trans Neural Netw,1992,3:807~814.
    [187]Nozaki K., Ishibuchi H., Tanaka H.. A simple but powerful method for generating fuzzy rules from numerical data. Fuzzy Sets Syst,1997,86:251~70.
    [188]Kung C. C., Su J. Y.. Affine Takagi-Sugeno fuzzy modelling algorithm by fuzzy c-regression models clustering with a novel cluster validity criterion. IET Control Theory Appl.,2007,1(5):1255~1265.
    [189]Farag W. A., Quintana V. H., Torres G. L.. A genetic based neuro-fuzzy approach for modeling and control of dynamical systems. IEEE Trans Neural Netw,1998, 9(5):756-67.
    [190]Wang S., Lee C. Fuzzy system modeling using linear distance rules. Fuzzy Sets and Systems,1999,108:179~91.
    [191]Evsukoff A., Branco A. C. S., Galichet S.. Structure identification and parameter optimization for non-linear fuzzy modeling. Fuzzy Sets Syst,2002,132:173-188.
    [192]Box G. E. P., Jenkins G. M.. Time series Analysis, forecasting and control. San Francisco, CA:Holden Day,1970.
    [193]Tong R. M.. The evaluation of fuzzy models derived from experimental data. Fuzzy Sets Syst,1980,4:1~12.
    [194]Pedrycz W.. An identification algorithm in fuzzy relational systems, Fuzzy Sets Syst,1984,13:153~167.
    [195]Chen J. Q., Xi Y. G., Zhang Z. J.. A clustering algorithm for fuzzy model identification. Fuzzy Sets Syst,1998,98:319~329.
    [196]Tsekouras G. E.. On the use of the weighted fuzzy c-means in fuzzy modeling. Advances in Engineering Software,2005,36(5):287~300.
    [197]Lin Y., Cunningham G. A.. A new approach to fuzzy-neural modeling. IEEE Trans Fuzzy Syst,1995,3:190~197.
    [198]Kim E., Lee H., Park M.. A simply identified Sugeno-type fuzzy model via double clustering. Inf Sci,1998,110:25~39.
    [199]魏瑞轩,韩崇昭,左东广.非线性系统广义脉冲响应函数的盲辨识.控制与决策,2003,17(3):278-281.
    [200]李兵,蒋慰孙.混沌优化方法及其应用.控制理论与应用,1997,14(4)613-615.
    [201]李洁,高新波,焦李成.基于特征加权的模糊聚类新算法.电子学报,2006,34(1):89-92.
    [202]Yeung D. S.,Wang X. Z.. Improving performace of similarity-based clustering by feature weight learning. IEEE Transaction On Pattern Analysis and Machine Intelligence,2002,24(4):556~561.
    [203]Pakhira M. K., Bandyopadhyay S., Maulik U.. A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification. Fuzzy Sets and Systems,2005,155(2):191~214.
    [204]李化.汽轮发电机组振动故障智能诊断模型的理论及方法研究:[博士学位论文].重庆:重庆大学图书馆,1999.
    [205]张莉,周伟达,焦李成.核聚类算法.计算机学报,2002,25(6):587-590.
    [206]Zhang R., Rudnicky A. I... A large scale clustering scheme for kernel k-means. In: The Sixteenth Int. Conf. on Pattern Recognition,2002,289~292.
    [207]Burges C. J. C. Geometry and invariance in kernel based methods. In:Schlkopf B, Burges C, Smola A Eds. Advance in Kernel Methods-Support Vector L earning. Cambridge, MA:MIT Press,1999,89~116.
    [208]Swagatam Das, Ajith Abraham, Amit Konar. Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm. Pattern Recognition Letters, 2008,29(5):688~699.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700