用户名: 密码: 验证码:
认知无线网络的容量分析及QoS性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的迅猛发展,可利用的频谱资源正变得越来越匮乏,然而另一方面,在现有的固定频谱分配制度下,已分配的授权用户频段内却存在着大量的空闲频谱。认知无线网络作为解决这一频谱利用率低下问题的关键技术成为了近十年来无线通信领域的一个研究热点。
     本文以信息论、排队论和渗透理论为主要工具着重研究了认知无线网络的容量和服务等级(Quality-of-Service,QoS)性能。其中容量部分包括考虑授权用户信号变化影响的小型认知无线网络的容量分析、基于时延QoS限制的有效容量分析和大型ad hoc交织式(interweave)认知无线网络的容量尺度规律分析;而QoS性能部分则研究了集中式认知无线网络的主要性能参数。全文的主要内容和贡献如下:
     第一章介绍了论文的工作背景,综述了认知无线网络的发展与现状,并详细介绍了认知无线网络容量领域的研究进展,列出了本文的工作意义和内容。
     第二章研究了单认知用户和单授权用户共存的小型认知无线网络的容量问题。和现有的研究假设认知用户两次感知间歇期间授权用户的活跃性不发生变化不同,本文考虑了授权用户在这段时间内发起或结束通信对系统容量造成的影响,并建立了相应的分析模型。通过推导,揭示了认知用户的容量、感知周期、授权用户活跃程度之间的关系,其结果可以作为认知用户帧结构设计的理论依据。此外第二章还从排队论的角度分析了突发通信和泊松流两种业务下系统的分组传输时延,其结果可作为不同业务认知用户选择接入信道的参考。在现代无线通信系统中,用户的通信都是在确保一定QoS的条件下进行的。为此,第二章还研究了认知无线网络在时延受限条件下的容量,即用户的有效容量。与现有文献主要针对认知用户收发端均具有完美信道边信息不同,本文将考虑认知用户只在发送端进行信道感知的情形。通过数学分析,得到了有效容量与时延限制以及感知时间之间的关系,并提供了一种QoS限制下分析用户性能的方法。
     大型ad hoc认知无线网络的容量也是近期的研究热点之一,目前对此类问题的研究集中在采用下垫式(underlay)认知模式的网络中,而对采用交织式认知模式的网络容量的研究则集中在单认知用户和单授权用户的小型网络中。为此,第三章推导了ad hoc交织式认知无线网络的容量,从而把现有对交织式网络容量的研究从小型认知无线网络扩展到了大型的认知无线网络。通过构建辅助网络我们得到了授权用户和认知用户的容量上界;为了计算容量下界我们利用渗透理论设计了一个协同传输机制,通过计算发现利用设计的机制,授权和认知用户的容量下界和上界一致,从而得到了用户的容量尺度规律。研究结果表明授权用户可以通过与认知用户的协同获得比单独使用频谱更大的容量。这将可能会成为授权用户与认知用户分享频谱资源的重要动力之一。
     第四章给出了研究集中式认知无线网络主要QoS性能参数的分析模型。和现有的研究相比,该模型考虑了认知用户的感知差错以及多信道接入和切换过程对系统性能的影响,因而更贴近实际。利用该模型我们推导了集中式认知无线网络的一些重要QoS参数指标,例如:授权和认知业务的阻塞率、中断率以及认知无线网络的频谱利用效率等。结果表明:尽管存在感知误差,通过认知技术仍然能够显著地提高频谱利用效率。此外从仿真结果我们也看到通过控制认知用户的接入量,授权用户的QoS需求也是可以得到保证的。所提出的方法可以用于未来认知无线网络的QoS性能分析。
     最后第五章总结了全文,并对下一步的研究提出了建议。
Due to the rapid development of wireless technologies, the scarcity of spectrumresource becomes a serious problem for next-generation wireless networks. However,recent researches have shown that the allocated spectrum bands are severelyunderutilized. As a potential way to solve this problem, cognitive radio, has drawn a lotof attentions in the past decade.
     In this dissertation, from the perspectives of information theory, queuing theory andpercolation theory, the performance of cognitive radio networks are mainly investigatedin terms of two aspects: the capacity and the Quality-of-Service (QoS). For capacityanalysis, the capacity of small cognitive networks by taking consideration of theinfluence from primary users’ activity, the effective capacity with delay QoS constraintsand the scaling laws in interweaved ad hoc cognitive networks are investigated,respectively. For QoS analysis, some important QoS parameters are derived incentralized cognitive networks. The main contents of this dissertation are summarizedas follows:
     In Chapter1, the research background of our work is introduced, related researcheson cognitive radio networks are summarized, and the main contributions and contents ofthis dissertation are listed.
     In Chapter2, the capacity of cognitive radio networks with a primary user and asecondary user is investigated. Existing works are all based on the assumptions thatprimary activity does not change between two secondary sensing periods. However, inpractical scenarios, primary user may begin or finish its transmission during this period.In Chapter2, the influence of this event is considered. By deriving the capacity ofsecondary user, the relationship among primary activity, secondary sensing duration andcognitive capacity is discovered. The results can be used for frame designing ofsecondary user. Furthermore, the secondary packets transmission delays in the networkwith both Poisson arrival process and bursty traffic are also studied based on queuingtheory. In next generation wireless networks, all users will communicate with specific QoS requirements. Therefore, the capacity of secondary user with a QoS constraint incognitive networks is investigated, which is referred as an effective capacity problem.Unlike existing works in which both secondary transmitter and receiver have perfectchannel side information, only sensing result is known to secondary transmitter in ourmodel. The effective capacity is analyzed with respects to delay constraints and sensingduration. The results can be used to analyze cognitive network performance with QoSconstraints.
     The capacity of cognitive ad hoc networks is under hot discussion recently. However,the existing researches are all based on underlay cognitive networks, and the capacitiesof interweave cognitive networks are only discussed in small scale networks, i.e., anetwork with only one primary user and one secondary user. In Chapter3, we extendedthe study of information theoretic limits of interweaved cognitive networks from smallscale networks to large scale networks. By constructing two auxiliary networks, theupper bounds of the throughput of per primary user and per secondary user are obtained,respectively. By using the percolation theory, a cooperative relay scheme for this type ofcognitive network is proposed. It has shown that the achievable throughput in ourproposed scheme can meet the upper bounds of the network. It has shown that primaryusers can obtain higher transmission rates in interweaved cognitive networks thanunderlay cognitive networks, which may become a strong motivation for primary usersto share their spectrum resource.
     In Chapter4, an analytical model for evaluating the performance of centralizedcognitive networks is proposed, where the spectrum sensing is imperfect. Comparedwith existing researches, our model is more suitable for a multi-channel network.Moreover, the influence of sensing mistakes in spectrum handoff process is alsoconsidered. Thus, our model is close to reality more. The expressions for someimportant system QoS parameters are derived, such as, the primary (secondary)blocking ratio, the primary (secondary) forced termination ratio, and the spectrumutilization ratio. The results show that spectrum utilization improves significantly byintroducing cognitive radio technology, as well as by controlling the secondary traffic.Moreover, a certain QoS requirement of primary network may be guaranteed.
     Finally, the dissertation is concluded in Chapter5. Some suggestions for futureworks are also given in this chapter.
引文
[1] J. G. Proakis. Digital communications4th edition[M]. New York: McGraw-Hill,2006,1-16
    [2] J. Mitola, G. Q. Maguire. Cognitive radio: making software radios more personal[J]. IEEEpersonal communications,1999,6(4):13-18
    [3] A. Goldsmith. Wireless communications[M].(杨鸿文,李卫东,郭文彬等译).北京:人民邮电出版社,2007,1-21
    [4] ITU-R. SM.2152. Definitions of software defined radio (SDR) and cognitive radio system(CRS)[S].2009,9
    [5] S. Jafar and S. Srinivasa. Capacity limits of cognitive radio with distributed and dynamicspectral activity[J]. IEEE Journal on Selected Areas in communications,2007,25(3):529-537
    [6] S. Jafar. Capacity with causal and non-causal side information-A unified view[J]. IEEETransactions on Information Theory,2006,52(3):5468-5475
    [7] O. Simeone, U. Spagnolini and Y. Bar-Ness. Stable throughput of cognitive radios with andwithout relaying capability[J]. IEEE Transactions on Communications,2007,55(12):2351-2360
    [8] J. Gambini, O. Simeone, U. Spagnolini, et al.. Stability analysis of a cognitive multipleaccess channel with primary QoS constraints[C]. In Proc. of Conference Record of theForty-First Asilomar Conference on Signals, Systems and Computers,2007,787-791
    [9] S. Kizhakkemadam and D. Rajan. Random message arrivals in a Gaussian cognitive radio[C].In Proc. of IEEE International Symposium on Information Theory,2008,1343-1347
    [10] N. Pappas, J. Jeon, A. Ephremides et al.. Optimal utilization of a cognitive shared channelwith a rechargeable primary source node[J]. Journal of Communications and Networks,2012,14(3):162-168
    [11] Y. C. Liang, Y. H. Zeng, E. Peh, et al.. Sensing-throughput tradeoff for cognitive radionetworks[J]. IEEE Transactions on Wireless Communications,2008,7(4):1326-1337
    [12] J. Y Shen, T. Jiang, S. Y. Liu, et al.. Maximum channel throughput via cooperative spectrumsensing in cognitive radio networks[J]. IEEE Transactions on Wireless Communications,2009,8(10):5166-5175
    [13] S. Stergios and N. Arumugam. Optimal sensing time and power allocation in multibandcognitive radio networks[J]. IEEE Transactions on Communications,2011,59(1):226-235
    [14] K. B. Letaief and W. Zhang. Cooperative communications for cognitive radio networks[J].Proceedings of the IEEE,2009,97(5):878-893
    [15] D. Lee and M. Jang. Optimal spectrum sensing time considering spectrum handoff due tofalse alarm in cognitive radio networks[J]. IEEE Communications Letters,2009,13(12):899-901
    [16] Z. Quan, S. Cui and A. H. Sayed. Optimal multiband joint detection for spectrum sensing incognitive radio networks[J]. IEEE Transactions on signal processing,2009,57(3):1128-1140
    [17] S. Stergios and N. Arumugam. On the throughput and spectrum sensing enhancement ofopportunistic spectrum access cognitive radio networks[J]. IEEE Transactions on WirelessCommunications,2012,11(1):97-107
    [18] Y. Rong and Z. Yan. Secondary users cooperation in cognitive radio networks: balancingsensing accuracy and efficiency[J]. IEEE Wireless Communications,2012,19(2):30-37
    [19] FCC spectrum policy task force. Report of the spectrum efficiency working group,technology report02-135[EB/OL]. http://www.fcc.gov/sptf/files/SEWGFinalReport_1.pdf,2012,7
    [20] P. J. Kolodzy. Interference temperature: A metric for dynamic spectrum utilization[J].International Journal of Network Management,2006,16(2):103-113
    [21] Q. Zhao and B. M. Sadler. A survey of dynamic spectrum access[J]. IEEE Signal ProcessingMagazine,2007,24(3),79-89
    [22] M. Gastpar. On capacity under receive and spatial spectrum-sharing constraints[J]. IEEETransactions on Information Theory,2007,53(2),471-487
    [23] A. Ghasemi, E. Sousa. Capacity of fading channels under spectrum-sharing constraints[C]. InProc. of IEEE International Conference on Communications,2006:4373-4378
    [24] A. Ghasemi and E. Sousa. Fundamental limits of spectrum-sharing in fading environments[J].IEEE Transactions on Wireless Communications,2007,6(2):649-658
    [25] H. Suraweera, J. Gao, P. Smith, et al.. Channel capacity limits of cognitive radio inasymmetric fading environments[C]. In Proc. of IEEE International Conference onCommunications,2008,5:4048-4053.
    [26] H. Suraweera, P. Smith, M. Shafi. Capacity Limits and Performance Analysis of CognitiveRadio With Imperfect Channel Knowledge[J]. IEEE Transactions on Vehicular Technology,2010,59(4):1811-1822
    [27] W. Zhang, U. Mitra. Spectrum shaping: A new perspective on cognitive radio-part I:coexistence with coded legacy transmission[J]. IEEE Transactions on Communications,2010,58(6):1857-1867
    [28] W. Zhang, U. Mitra. Spectrum Shaping: A new perspective on cognitive radio-part II:coexistence with uncoded legacy transmission[J]. IEEE Transactions on Communications,2010,58(10):2971-2983
    [29] P. Popovski, H. Yomo, K. Nishimori, et al.. Opportunistic interference cancellation incognitive radio systems[C]. In Proc. of2nd IEEE International Symposium on New Frontiersin Dynamic Spectrum Access Networks,2007,472-475
    [30] K. Nishimori, H. Yomo, P. Popovski. Distributed interference cancellation for cognitiveradios using periodic signals of the primary system[J]. IEEE Transactions on WirelessCommunications,2011,10(9):2971-2981
    [31] W. Wang, W. Wang, Q. Lu, et al.. Geometry-based optimal power control of fading multipleaccess channels for maximum sum-rate in cognitive radio networks[J]. IEEE Transactions onWireless Communications,2010,9(6):1843-1848
    [32] Y. Xing, C. N. Mathur, M. A. Haleem, et al.. Dynamic spectrum access with QoS andinterference temperature constraints[J]. IEEE Transactions on Mobile Computing,2007,6(4):423-433
    [33] A. Attar, M. R. Nakhai and A. H. Aghvami. Cognitive radio game for secondary spectrumaccess problem[J]. IEEE Transactions on Wireless Communications,2009,8(4):2121-2131
    [34] S.-Y. Lien, Y.-Y. Lin, K.-C. Chen. Cognitive and game-theoretical radio resourcemanagement for autonomous femtocells with QoS Guarantees[J]. IEEE Transactions onWireless Communications,2011,10(7):2196-2206
    [35] T. Nadkar, V. Thumar, G. Tej, et al.. Distributed power allocation for secondary users in acognitive radio scenario[J]. IEEE Transactions on Wireless Communications,2012,11(4):1576-1586
    [36] Y. Xu, J. Wang, Q. Wu, et al.. Opportunistic spectrum access in cognitive radio networks:global optimization using local interaction games[J]. IEEE Journal of Selected Topics inSignal Processing,2012,6(2):180-194
    [37] P. Zhou, Y. Chang, J. A. Copeland. Reinforcement Learning for Repeated Power ControlGame in Cognitive Radio Networks[J]. IEEE Journal on Selected Areas in Communications,2012,30(1):54-69
    [38] Y. C. Liang, K. C. Chen, G. Li, et al.. Cognitive Radio Networking and Communications: AnOverview[J]. IEEE Transactions on Vehicular Technology,2011,60(7):3386-3407
    [39] E. Telatar. Capacity of multi-antenna Gaussian channels[J]. European Transactions onTelecommunications,1999,10(6):585-596
    [40] R. Zhang and Y. C. Liang. Exploiting multi-antennas for opportunistic spectrum sharing incognitive radio networks[J]. IEEE Journal of Selected Topics in Signal Processing,2008,2(1):88-102
    [41] I. Maric, A. Goldsmith, G. Kramer, et al.. On the capacity of interference channels with apartially cognitive transmitter[C]. In Proc. of IEEE International Symposium On InformationTheory, Nice, France,2007,2156-2160
    [42] N. Devroye, P. Mitran and V. Tarokh. Achievable rates in cognitive radio channels[J]. IEEETransactions on Information Theory,2006,52(5):1813-1827
    [43] N. Devroye, P. Mitran, M. Sharif, et al.. Cognitive wireless communication networks chapter2: Information theoretic analysis of cognitive radio systems[M]. New York, Springer,2010,2,45-77
    [44] N. Devroye, P. Mitran and V. Tarokh. Limits on communications in a cognitive radiochannel[J]. IEEE Communications Magazine,2006,44(6):44-49
    [45] N. Devroye and V. Tarokh. Fundamental limits of cognitive radio networks in CognitiveWireless Networks: Concepts, Methodologies and Vis ion[M]. New York, Springer,2007,33-66
    [46] W. Wu, S. Vishwanath and A. Arapostathis. Capacity of a Class of Cognitive Radio Channels:Interference Channels With Degraded Message Sets [J]. IEEE Transactions on InformationTheory,2007,53(11),4391-4399
    [47] A. Jovicic and P. Viswanath. Cognitive radio: An information-theoretic perspective[J]. IEEETransactions on Information Theory,2009,55(9):3945-3958
    [48] I. Maric, R. Yates and G. Kramer. Capacity of interference channels with partial transmittercooperation[J]. IEEE Transactions on Information Theory,2007,53(10):3536-3548
    [49] H. Permuter, S. Shamai and A. Somekh-Baruch. Message and state cooperation in multipleaccess channels[J]. IEEE Transactions on Information Theory,2011,57(10):6379-6396
    [50] H. Charmchi and M. Nasiri-Kenari. Achievable rates with quantised channel stateinformation in a multiple-access channel with one cognitive transmitter[J]. IETCommunications,2010,4(11):1373-1380
    [51] S. Sridharan and S. Vishwanath. On the capacity of a class of MIMO cognitive radios[J].IEEE Journal of Selected Topics in Signal Processing,2008,2(1):103-117
    [52] T. Cover. Broadcast channels[J]. IEEE Transactions on Information Theory,1972,18(1):2-14
    [53] D. Slepian and J. K. Wolf. A coding theorem for multiple access channels with correlatedsources[J]. Bell Systems Technical Journal,1973,52(7):1037-1076
    [54] F. M. J. Willems. Information-theoretical results for the discrete memoryless multiple accesschannel[D]. Leuven, Belgium, Katholieke University Leuven,1982,10-25
    [55] J. Jiang, Y. Xin and H. Garg. Interference channels with common information[J]. IEEETransactions on Information Theory,2008,54(1):171-187
    [56] Y. Liang, A. Somekh-Baruch and V. Poor, et al.. Cognitive interference channels withconfidential messages[C]. In Proc. of Annual Allerton Conference on Communication,Control and Computing, Monticello,2007,272-283
    [57] Y. Liang, A. Somekh-Baruch and V. Poor, et al.. Capacity of Cognitive Interference ChannelsWith and Without Secrecy[J]. IEEE Transactions on Information Theory,2009,55(2):604-619
    [58] R. Liu, Y. Liang and V. Poor. Fading cognitive multiple-access channels with confidentialmessages[J]. IEEE Transactions on Information Theory,2011,57(8):4992-5005
    [59] J. Jiang and Y. Xin. On the achievable rate regions for interference channels with degradedmessage sets[J]. IEEE Transactions on Information Theory,2008,54(10):4707-4712
    [60] S. Rini, D. Tuninetti, N. Devroye. New inner and outer bounds for the memoryless cognitiveinterference channel and some new capacity results[J]. IEEE Transactions on InformationTheory,2011,57(7):4087-4109
    [61] S. Rini, D. Tuninetti, N. Devroye. Inner and outer bounds for the gaussian cognitiveinterference channel and new capacity results[J]. IEEE Transactions on Information Theory,2012,58(2):820-848
    [62] A. Goldsmith, S. A. Jafar, I. Maric, et al.. Breaking spectrum gridlock with cognitive radios:an information theoretic perspective[J]. Proceedings of the IEEE,2009,97(5):894-914
    [63] H. Xiang, A. Yener. The Gaussian many-to-one interference channel with confidentialmessages[J]. IEEE Transactions on Information Theory,2011,57(5):2730-2745
    [64] A. Jafarian, S. Vishwanath. Achievable rates for K-user Gaussian interference channels[J].IEEE Transactions on Information Theory,2012,58(7):4367-4380
    [65] S. Changho, D. Tse. Feedback capacity of the Gaussian interference channel to within2bits[J]. IEEE Transactions on Information Theory,2011,57(5):2667-2685
    [66] D. Zahavi, R. Dabora. Capacity theorems for the fading interference channel with a relay andfeedback links[J]. IEEE Transactions on Information Theory,2012,58(8):5185-5213
    [67] Y. Shuang, D. Tuninetti. Interference channel with generalized feedback (a.k.a. with sourcecooperation): part I: achievable region[J]. IEEE Transactions on Information Theory,2011,57(5):2686-2710
    [68] T. Cover and A. E. Gamal. Capacity theorems for the relay channel[J]. IEEE Transactions onInformation Theory,1979,25(5):572-584
    [69] A. B. Carleial. Interference channels[J]. IEEE Transactions on Information Theory,1978,24(1):60-70
    [70] D. Chatterjee, T. F. Wong and O. Oyman. On achievable rate regions for half-duplex causalcognitive radio channels[C]. IEEE International Symposium on Information TheoryProceedings,2010,435-439
    [71] M. H. M. Costa. Writing on dirty paper[J]. IEEE Transactions on Information Theory,1983,29(5):439-441
    [72] P. Grover and A. Sahai. On the need for knowledge of the phase in exploiting known primarytransmissions[C]. In Proc. of2nd IEEE International Symposium on New Frontiers inDynamic Spectrum Access Networks,2007,462-471
    [73] E. C. V. D. Meulen. Three-terminal communication channels[J]. Advances in AppliedProbability,1971,3(1):120-154
    [74] G. Kramer, M. Gastpar and P. Gupta. Cooperative strategies and capacity theorems for relaynetworks[J]. IEEE Transactions on Information Theory,2005,51(9):3037-3063
    [75] M. Katz and S. Shamai (Shitz). Relaying protocols for two co-located users[C]. In Proc.International Symposium on Information Theory,2005,936-940
    [76] N. Jindal, U. Mitra, and A. Goldsmith. Capacity of ad hoc networks with nodecooperation[C]. In Proc. International Symposium on Information Theory,2004,271
    [77] A. Ozgur, O. Leveque and D. Tse. Hierarchial cooperation achieves optimal capacity scalingin ad hoc networks[J]. IEEE Transactions on Information Theory,2007,53(10):3549-3572
    [78] P. Gupta, P. R. Kumar. The capacity of wireless networks[J]. IEEE Transactions onInformation Theory,2000,46(2):388-404
    [79] N. Devroye, P. Mitran and V. Tarokh. Cognitive decomposition of wireless networks[C]. InProc.1st International Conference on Cognitive Radio Oriented Wireless Networks andCommunications,2006,1-5
    [80] N. Devroye, P. Mitran and V. Tarokh. Cognitive multiple access networks[C] In Proc.International Symposium on Information Theory,2005,57-61
    [81] W. Su, X. Liu. On optimum selection relaying protocols in cooperative wireless networks[J].IEEE Transactions on Communications,2010,58(1):52-57
    [82] C. E. Perkins. Mobile networking through mobile IP[J]. IEEE Internet Computing,1998,2(1):58-69
    [83] D.-M. Han and J.-H. Lim. Smart home energy management system using IEEE802.15.4andzigbee[J]. IEEE Transactions on Consumer Electronics,2010,56(3):1403-1410
    [84] L. Kant, K. Young, O. Younis, et al.. Network science based approaches to design andanalyze MANETs for military applications[J]. IEEE Communications Magazine,2008,46(11):55-61
    [85] O. Akan, O. Karli and O. Ergul. Cognitive radio sensor networks[J]. IEEE Network,2009,23(4):34-40
    [86] M. Vu, V. Tarokh. Scaling laws of single-hop cognitive networks[J]. IEEE Transactions onWireless Communications,2009,8(8):4089-4096
    [87] C. Yin, L. Gao, S. Cui. Scaling laws for overlaid wireless networks: a cognitive radionetwork versus a primary network. IEEE/ACM Transactions on Networking[J].2010,18(4):1317-1329
    [88] S.-W. Jeon, N. Devroye, M. Vu, et al.. Cognitive networks achieve throughput scaling of ahomogeneous network[J]. IEEE Transactions on Information Theory,2011,57(8):5103-5115
    [89] S. Y. Jiang, C. Hou, Y. T. Kompella. On capacity scaling law of cognitive radio ad hocnetworks[C]. In Proc. of IEEE International Conference on Computer CommunicationNetworks, Maui, USA,2011,1-8
    [90] Q. Zhang, J. Jia, J. Zhang. Cooperative relay to improve diversity in cognitive radionetworks[J]. IEEE Communications. Magazine,2009,47(2):111-117
    [91] I. Akyildiz, W. Lee, M. Vuran, et al.. Next generation/dynamic spectrum access/cognitiveradio wireless networks: a survey[J]. Computer Networks,2006,50(13):2127-2159
    [92] T. Yücek and H. Arslan. A survey of spectrum sensing algorithms for cognitive radioapplications[J]. IEEE Communications Surveys and Tutorials,2009,11(1):116-129
    [93] A. Erik, L. Geert, G. L. Erik, et al.. Spectrum sensing for cognitive radio: state-of-the-art andrecent advances [J]. IEEE Signal Processing Magazine,2012,29(3):101-116
    [94] A. Ghasemi and S. Sousa. Collaborative spectrum sensing for opportunistic access in fadingenvironments[C]. In Proc.1st IEEE International Symposium on New Frontiers in DynamicSpectrum Access Networks, Baltimore, United States,2005,131-136
    [95] G. Ganesan and Y. Li. Cooperative spectrum sensing in cognitive radio, part I: two usernetworks[J]. IEEE Transactions on Wireless Communications,2007,6(6):2204-2212
    [96] G. Ganesan and Y. Li. Cooperative spectrum sensing in cognitive radio, part II: multiusernetworks[J]. IEEE Transactions on Wireless Communications,2007,6(6):2214-2222
    [97] G. Amir and S. S. Elvino. Opportunistic spectrum access in fading channels throughcollaborative sensing[J]. Journal of Communications,2007,2(6):71-82
    [98] S. Stotas and A. Nallanathan. Optimal sensing time and power allocation in multibandcognitive radio networks[J]. IEEE Transactions on Communications,2011,59(1):226-235
    [99] W. Yin, P. Ren, Q. Du, et al.. Delay and throughput oriented continuous spectrum sensingschemes in cognitive radio networks[J]. IEEE Transactions on Wireless Communications,2012,11(6):2148-2159
    [100] Z. Liang, S. Feng, D. Zhao, et al.. Delay performance analysis for supporting real-time trafficin a cognitive radio sensor network[J]. IEEE Transactions on Wireless Communications,2011,10(1):325-335
    [101] S. Wang, J. Zhang, L. Tong. A characterization of delay performance of cognitive mediumaccess[J], IEEE Transactions on wireless communications,2012,11(2):800-809
    [102] Y. Chen, V. K. N. Lau, S. Zhang, et al.. Protocol design and delay analysis of half-duplexbuffered cognitive relay systems[J]. IEEE Transactions on Wireless Communications,2010,9(3):898-902
    [103] W. Ren, Q. Zhao, A. Swami. On the connectivity and multihop delay of ad hoc cognitiveradio networks[J]. IEEE Journal on Selected Areas in Communications,2011,29(4):805-818
    [104] F. Wang, J. Huang, Y. Zhao. Delay sensitive communications over cognitive radionetworks[J]. IEEE Transactions on Wireless Communications,2012,11(4):1402-1411
    [105] D. Lee, H. Wu. Spectrum sensing time minimizing access delay of IEEE802.11-like mac incognitive radio networks[J]. IEEE Communications Letters,2011,5(11):1249-1251
    [106] S. C. Liew. Performance of various input-buffered and output-buffered ATM switch designprinciples under bursty traffic: simulation study[J]. IEEE Transactions on Communications,1994,42(234-part2):1371-1379
    [107]唐应辉,唐小我.排队论——基础与应用[M].成都:电子科技大学出版社,2000,329-332
    [108] D. Wu and R. Negi. Effective capacity: a wireless link model for support of quality ofservice[J]. IEEE Transactions on Wireless Communications,2003,2(4):630-643
    [109] C.-S. Chang. Stability, queue length, and delay of deterministic and stochastic queueingnetworks[J]. IEEE Transactions on Automatic Control,1994,39(5):913-931
    [110] J. Tang and X. Zhang. Quality-of-service driven power and rate adaptation over wirelesslinks[J]. IEEE Transactions on Wireless Communications,2007,6(8):3058-3068
    [111] M. C. Gursoy, D. Qiao, and S. Velipasalar. Analysis of energy efficiency in fading channelunder QoS constraints[J]. IEEE Transactions on Wireless Communications,2009,8(8):4252-4263
    [112] L. Musavian and S. Aissa. Effective capacity of delay-constrained cognitive radio inNakagami fading channels[J]. IEEE Transactions on Wireless Communications,2010,9(3):1054-1062
    [113] L. Musavian, S. Aissa and S. Lambotharan. Effective capacity for interference and delayconstrained cognitive radio relay channels[J]. IEEE Transactions on WirelessCommunications,2010,9(5):1698-1707
    [114] S. Akin and M. Gursoy. Effective capacity analysis of cognitive radio channels for quality ofservice provisioning[J]. IEEE Transactions on Wireless Communications,2010,9(11):3354-3364
    [115] L. Liu and J.-F. Chamberland. On the effective capacities of multiple antenna Gaussianchannels[C]. In Proc. IEEE International Symposium on Information Theory, Toronto,2008,2583-2587
    [116] X. Zhu, L. Shen and T-S. P. Yum.. Analysis of cognitive radio spectrum Access with optimalchannel reservation[J]. IEEE communications letters,2007,11(4):304-306
    [117] W. Ahmed, J. Gao, H. A. Suraweera et al.. Comments on “Analysis of cognitive radiospectrum Access with optimal channel reservation”[J]. IEEE Transactions on WirelessCommunications,2009,8(9):4488-4491
    [118] Y. Xing, R. Chandramouli, S. Mangold et al.. Dynamic spectrum access in open spectrumwireless networks[J]. IEEE Journal on Selected Areas in Communications,2006,24(3):626-637
    [119] J. Lee, H. Wang, S. Kim et al.. Sensing threshold control for fair coexistence ofheterogeneous systems in open spectrum[J]. IEEE Transactions on Wireless Communications,2009,8(12):5773-5778
    [120] S. Tang and B. L. Mark. Modeling and analysis of opportunistic spectrum sharing withunreliable spectrum sensing[J]. IEEE Transactions on Wireless Communications,2009,8(4):1934-1943
    [121] L. kleinrock. Queuing systems[M]. New York: John Wiley&Sons,1975
    [122] M. Iosifescu. Finite Markov processes and their applications[M]. New York: Wiley,1980
    [123] M. Franceschetti, O. Dousse, D. N. C. Tse, et al.. Closing the gap in the capacity of wirelessnetworks via percolation theory[J]. IEEE Transactions on Information Theory,2007,53(3):1009-1018
    [124] T. H. Cormen, R. L. Rivest. Introduction to algorithms[M]. Cambridge, MIT press,2001,56-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700