用户名: 密码: 验证码:
面板堆石坝地震反应加速度分布规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震作为一种严重的自然灾害,一旦发生强震便会给人们的生命财产带来巨大的损失。面板堆石坝作为一种常见的坝型,在导致其垮坝的各种要素中,失稳是最普遍的现象,目前我国的面板堆石坝建设方兴未艾,所以面板堆石坝的抗震稳定成为工程安全的关键,高坝大库的潜在风险使得高面板堆石坝抗震安全研究的意义重大而迫切。
     规范中规定的拟静力法在面板堆石坝动力稳定分析中的得到广泛的应用,加速度分布系数是拟静力法中的关键数据。但由于规范制定时间较早,且其中的数据主要来自二维分析,不能反应现代高面板堆石坝地震反应的特点以及河谷形状、地震动特性等对坝体动力反应的影响。随着计算机水平的发展,大规模面板堆石坝三维有限元动力稳定分析已经成为可能。采用三维有限元分析对高面板堆石坝的地震反应特性进行研究,特别是对坝体加速度分布进行研究,从而为面板堆石坝的抗震稳定分析提供依据,具有理论和实际应用价值。采用等价线性粘弹性模型对三维面板堆石坝进行了大量计算,并进行统计分析等研究工作。
     对面板堆石坝抗震稳定分析方法进行了比较研究。认为剪切梁法和集中质量法只能应用在有限的边界条件,无法准确模拟不同土质的坝体和坝基情况,也无法考虑水平截面上动剪应力的不同分布,特别是堆石体材料具有较明显的动力非线性性质,仅依靠线弹性模型或粘弹性模型是远远不够的。有限元法具有可用于非均质非线性问题,可适应复杂边界条件,既可以用于静力计算也可以用于动力计算等优点,高面板堆石坝的地震反应分析采用有限元数值解法,能够给出相对准确的解。
     采用非线性有限元法和等价线性化模型进行动力分析,对混凝土面板堆石坝坝高、河谷岸坡坡比、河谷宽度等对坝体加速度分布的影响进行了研究,特别是针对面板堆石坝坝高变化时引起的中心断面边坡点顺河向加速度分布规律进行了系统分析。得到一些有益的结论:加速度分布规律表现为在0~5/6H段加速度放大倍数较小,超过5/6H后,加速度放大倍数显著增加;河谷宽阔且河岸陡峭时,坝高对坝顶顺河向加速度的放大倍数几乎没有影响。对于高面板堆石坝,随岸坡坡度变缓,坝顶加速度最大值减少;处在宽阔河谷中的非高坝,河岸坡度对其顺河向加速度放大倍数几乎没有影响。对于中、高面板堆石坝,河岸陡峭时,河谷宽度对面板堆石坝顺河向加速度放大倍数有明显的影响,河谷越窄,加速度放大倍数就越大。
     研究了地震动特性对坝体地震反应的影响。随着基础输入加速度增加,面板堆石坝中心断面坝顶顺河向加速度放大倍数呈减小趋势。地震波频谱特性对坝体的加速度反应有较大的影响,其规律如下:坝体自振周期如果和输入的地震波卓越周期相近,则坝体加速度放大倍数较大;具有较宽频带的地震波对不同高度的面板堆石坝的加速度都有较大的放大作用。
     研究了面板堆石坝坝顶点顺河向加速度沿坝轴线的分布规律。结果表明,面板堆石坝坝顶点顺河向加速度沿坝轴线的分布规律表现为以坝中线为对称轴呈对称分布;在坝高相同、基础输入加速度不变情况下,随河谷宽度增加,坝顶点最大加速度位置由中间向两岸对称移动;对狭窄河谷,最大加速度在坝轴线中间坝顶部位,大于二维计算结果,对宽阔河谷,最大加速度在靠近两岸的部位,同样二维动力计算不能给出最大加速度位置。这一结果否定了以往对宽河谷采用二维动力计算结果的做法。进而提出对高面板堆石坝,地震反应除应给出沿坝高的地震放大系数外,还应给出沿坝轴线的地震放大系数。
     对面板堆石坝地震反应加速度分布规律进行了统计分析,给出了计算坝体最大加速度放大倍数的经验公式,为实际工程中进行基于拟静力法的面板堆石坝抗震稳定分析提供了参考依据。
     对两个实际面板堆石坝工程“四川硕曲河去学水电站混凝土面板堆石坝”和“山西西龙池抽水蓄能电站下库沥青混凝土面板堆石坝”进行三维有限元网格剖分,并进行了土石坝的三维非线性地震反应分析研究,特别是坝体的地震加速度分布的研究,以此验证工程的设计并为实际工程施工提供参考经验。
As a serious natural disaster, severe earthquakes bring great losses to both property and life. Concrete faced rockfill dam, as a familiar type of dams, its instability is the most frequent reason between all of those who cause the break down. Nowadays, high rockfill dam construction is in the ascendance in China. Therefore, the antiseismic stability is the key factor for the engineering safety of the high rockfill dams and this research is important and exigent considering the latency risk of large reservoirs.
     The pseudo-static method stated in the criterion is widely used in antiseismic stability analysis of rockfill dams, and seismic coefficient is the key data in this method. But the criterion has been established in quite a early time and the data is mainly adopted form 2-D calculation, which nowadays cannot incarnate the seismic response of high rockfill dam, neither include the effect of valley shape and ground motion characteristic. With the development of computer science, large-scale 3-D finite element analysis of rockfill dams is now possible for the seismic characteristic research, especially the seismic coefficient research using 3-D finite element analysis to high rockfill dams, in providing the theoretic valuable data in theory and practice for the antiseismic analysis of the rockfill dams. A great quantity of calculation is performed to rockfill dams using the equivalent linear visco-elastic model, and statistical analysis is also realized.
     By the comparing analysis of the antiseismic stability methods of rockfill dams, the shear wedge method and the lumped-mass method can only be applied to limited boundary conditions; they cannot simulate dam-foundation system with different terrene situation and cannot simulate the dynamic shear stress distribution on the plane section. It is not enough if only use linear elastic model or visco-elastic model to situations that the rockfill material has obvious dynamic nonlinear character. The finite element method has the advantages of applicability to nonlinear heterogeneity problem, adaptation to complex boundary condition, applicability to static as well as dynamic calculation. Using finite element numerical method can obtain relative accurate solution for seismic response analysis of high rockfill dams.
     Using the above method, the effect of dam height, slope ratio and valley width to the seismic coefficient is studied. Especially, systematical analysis is performed to the acceleration distribution orderliness of the center section. Some meaningful conclusions are obtained. The amplification effect between 0-5/6H is relatively small. When the height is above 5/6H, the amplification effect will increase remarkably. When the valley is confined, the amplification effect at the top of a 300m-height dam is smaller than a 100m-height dam. When the valley is openness and the slope is cliffy, the dam height almost has no effect to the acceleration at the top of the dam. To high concrete faced rockfill dam, with the slope less cliffy, the maximum value of acceleration at the top of the dam becomes small. When the dam in a wide valley is not so high, the slope ratio almost has no effect to the amplification effect. But to high dams, when the slope is cliffy, the width of the valley has obvious effect to the amplification effect.
     The effect of earthquake characteristics to seismic response is also studied, and in the calculation four typical seismic waves are adopted. It is indicated that, with the increase of amplitude of acceleration inputted, the amplification effect at the top of the dam is diminished. This is because when the acceleration becoming larger, the shear stress becomes larger and the shear modulus becomes smaller. The spectrum characteristic of a seismic wave has great effect to the seismic acceleration response of the dam.
     The acceleration distribution along the dam axis at the top of the dam is studied. It is indicated that the acceleration distribution along the dam axis is symmetrical about the midline of the dam. With the valley width increasing, the maximum acceleration moves from the center section to the sideward section symmetrically. For confined valley, the maximum acceleration calculated using 3-D model is larger than that calculated using 2-D model. For wide valley, the maximum acceleration located at the place nearing the bank.2-D calculation cannot show the place where the maximum acceleration is happen. Therefor, the 2-D calculation is not anymore applicable for the wide valley because of the above results. It is commended that, to high rockfill dams, the seismic coefficient along the dam height as well as along the dam axis should be afforded.
     Statistical analysis is also made to the seismic coefficient, and an empirical equation for calculating the maximum acceleration is provided. Seismic stability analysis of rockfill dams using pseudo-static method can be modified according to the equation.
     Two actual projects of rockfill dam engineering are researched, they are'Quxue concrete faced rockfill dam on the Shuoqu River in Sichuan province'and'Xilongchi asphalt concrete faced rockfill dam in Shanxi province'. They are first meshes using 3-D finite element method, and then seismic response analysis is studied. The acceleration distribution of the dams is especially studied. The calculation result can prove the design scheme and offer some experiences to practical engineering construction.
引文
[1]贾金生,袁玉兰,李铁浩.2003年中国及世界大坝情况.中国水利,2004.13:25-33.
    [2]贾金生,袁玉兰,马忠丽.2005年中国与世界大坝建设情况.水电2006国际研讨会,2006.1205-1209.
    [3]韩国城,孔宪京,李俊杰,面板堆石坝动力破坏性态及抗震措施试验研究.水利学报,1990,5:61-66.
    [4]孔宪京,韩国城,李俊杰等.防渗面板对堆石坝体自振特性的影响.大连理工大学学报,1989,5:583-588.
    [5]李俊杰,韩国城,孔宪京.钢筋混凝土面板堆石坝动力模型破坏的初步试验研究.东北水利发电学报,1990,6(1):1-8.
    [6]孔宪京,韩国城,李俊杰.关门山面板堆石坝二维地震反应分析.大连理工大学学报,1992,7Vol.32 No.4:434-439.
    [7]李俊杰,韩国城,孔宪京.关门山面板堆石坝三维地震反应分析和研究.水利学报,1994,2:76-83.
    [8]李俊杰,韩国城,孔宪京.面板堆石坝动力破坏计算初探.第三届全国地震工程会议论文集,1990,10.
    [9]李俊杰.面板堆石坝抗震设计方法研究.土石坝工程,1992,1:11-15.
    [10]李俊杰,韩国城,林皋.面板堆石坝动力破坏计算方法研究.大连理工大学学报,1993,5:576-583.
    [11]李俊杰.堆石材料弹塑性力学模型及其在面板堆石坝地震反应和变形分析中的应用.首届全国岩土力学与工程青年工作者学术讨论会论文集,1992,11杭州.
    [12]Guocheng Han, Xianjing Kong, Junjie Li, Dynamic Experiments and Numerical Simulation of Model Concrete faced Rockfill Dams. Proc. of 9WCEE, ToKyo, Japan,1988,8.
    [13]韩国城,孔宪京.混凝土面板堆石坝抗震研究进展.Journal of Dalian University of Technology,Vol 36, No.6 Nov.1996:708-720.
    [14]迟世春.不同地震输入对混凝土面板堆石坝动力反应的影响(J).世界地震工程,2002,02:69-74
    [15]陈在铁,任表文.大坝抗震安全性研究进展(J).世界地震工程,2005,04:66-70.
    [16]迟世春.不同高度面板堆石坝幅频反应的比较研究(J).世界地震工程,2002,18(3):6-9.
    [17]迟世春,顾淦臣.混凝土面板堆石坝的幅频反应研究(J).岩土工程学报,1996,04:75-79.
    [18]谭靖夷.我国坝工技术的发展.水力发电,2004,12:60-63.
    [19]程念高.我国坝土技术的发展、展望和挑战.大坝与安全,2001,2:20-22.
    [20]陈在铁,任表文.大坝抗震安全性研究进展(J).世界地震工程,2005,04:66-70.
    [21]王柏乐,刘瑛珍,吴鹤鹤.中国土石坝工程建设新进展.水力发电,2005,1:63-65.
    [22]吴兆营,景立平,薄景山.土石坝地震稳定性分析评述.世界地震工程,2003,3:44-50.
    [23]周建平,杨泽艳,陈观福.我国高坝建设的现状和面临的挑战.水利学报,2006,12:1433-1438.
    [24]Mononobe H. A. Seismic stability of the earth dam. Proceedings of 2nd Congress of Large Dams, Washington DC,1986.
    [25]田景元.土石坝多点输入地震反应分析及相关方法研究.(博士学位论文).南京:河海大学,2007.
    [26]李湛,栾茂田.土石坝地震响应的非线性剪切条模型与对比分析.地震工程与工程振动,2005,25(5):41-49.
    [27]栾茂田,李湛.堤坝非线性地震响应的离散型剪切条模型等价线性化方法.岩石力学与工程学报,2006,25(1):40-46.
    [28]张克绪.土坝等价地震系数和水平剪应力最大幅值简化计算.水利学报,1985,16(9):35-42.
    [29]李湛.土石坝地震永久变形及抗震稳定性数值分析方法研究.(博士学位论文).大连:大连理工大学,2005.
    [30]Gazetas G. Seismic response of earth dams:some recent developments. Soil Dynamics and Earthquake Engineering.1987,6(1):2-47.
    [31]Gazetas G. A new dynqmic model for earth dams evaluated through case histories. Soils and Foundations,1981,21(1):67-78.
    [32]Dakoulas P, Gazetas G. A class of inhomogeneous shear models for seismic response for dams and embankments. Soil Dynamics and Earthquake Engineering,1985,4(4):166-182.
    [33]Gazetas G. Vertical oscillation of earth and rockfill dams:analysis and field observation. Soils and Foundations,1981,21(4):56-68.
    [34]Gazetas G. Longitudinal vibration of embankment dams. Journal of the Geotechnical Engineering Division, ASCE,1981,107(1):21-40.
    [35]栾茂田,金崇磐,林皋.非均质堤坝振动特性简化分析.大连理工大学学报,1989,29(4):479-488.
    [36]Oner M. Shear vibration of inhomogeneous earth dams in rectangular canyons. Soil Dynamics and Earthquake Engineering,1984,3(1):19-26.
    [37]Dakoulas P, Gazetas G. Seismic shear vibration of embankment dams in semi-cylindrical valleys. Earthquake Engineering and Structural Dynamics,1986,14(1):19-40.
    [38]Dakoulas P, Hsu C. Lateral response of earth dams in semi-elliptical rigid canyons. Soil Dynamics and Earthquake Engineering,1993,12(8):497-507.
    [39]徐志英.V形河谷内土石坝横向振动分析简化法.河海大学学报,1994,22(5):82-86.
    [40]沈振中,徐志英.V形河谷中土石坝纵向地震反应的简化解析解.水电能源科学,1999,17(4):9-12.
    [41]沈振中,徐志英.V形河谷中土石坝垂直振动的近似解析.河海大学学报,2002,30(2):85-89.
    [42]沈振中,徐志英.V形河谷中非均匀土石坝振动的简化分析.水利学报,2002,33(3):74-79.
    [43]Dakoulas P, Hsu C. Response of Dams in Semi-elliptical canyons to Oblique SH Waves. Journal of Engineering Mechanics,121 (3):379-391.
    [44]栾茂田,金崇磐,林皋.非均质土石坝及地基竖向地震反应简化分析.水力发电学报,1990,9(1):48-62.
    [45]孔宪京,韩国城,张天明.土石坝与地基地震反应分析的波动—剪切梁法.大连理工大学学报,1994,34(2):173-179.
    [46]Dakoulas P, Gazetas G. Nonlinear response of embankment dams. Proceedings of 2nd International Conference on Soil Dynamics and Earthquake Engineering, Springer-Verlag,1985,29-44.
    [47]Elgamal A W M, Abdel-Ghaffar A M, Prevost J H. Elasto-plastic earthquake shear response of one-dimensional earth dam models. Earthquake Engineering and structural Dynamics,1985,13(5):617-633.
    [48]Elgamal A W M, Abdel-Ghaffar A M, Prevost J H.2-D Elasto-plastic seismic shear response of earth dams:theory. Journal of Engineering Mechanics, ASCE,1987,113(5):689-701.
    [49]孔宪京,刘君,韩国城等.混凝土面板堆石坝地震反应分析的剪切梁法.水利学报,2000,31(7):55-60.
    [50]Gazetas G, Debchaudhury A, Gasparini D A. Rand vibration analysis for the seismic response of earth dams. Geotechnique,1981,31(2):261-277.
    [51]Towhata I. Seismic wave propagation in elastic soil with continuous variation of shear modulus in the vertical direction. Soils and Foundations,1996,36(1):61-72.
    [52]栾茂田,金崇磐,林皋.非均质地基振动特性及地震反应分析.大连理工大学学报,1992,32(1):81-87.
    [53]楼梦麟.变参数土层的动力特性和地震反应分析.同济大学学报,1997,25(2):155-160.
    [54]栾茂田,刘占阁.成层场地振动特性及地震反应简化解析解的完整形式.岩土工程学报,2003,25(6):747-749.
    [55]钱家欢,殷宗泽.土工原理与计算.北京:中国水利水电出版社,2000.
    [56]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述.地震工程与工程振动,2005,25(1):164-171.
    [57]谢康和,周健.岩土工程有限元分析理论与应用.北京:科学出版社,2000.
    [58]Clough R W, Chopra A K. Earthquake stress analysis in earth dams. Journal of the Engineering Mechanics Division, ASCE,1966,92(2):197-212.
    [59]Seed H B, Lee K L, Idriss I M. Analysis of Sheffield Dam Failure. ASCE,1969,95(SM6): 1453-1490.
    [60]Idriss I M, Lysmer J, Huang R et al. QUAD-4:A computer program for evaluating the seismic response of soil structures by variable damping finite element procedures. Report No. EERC 73-16, College of Engineering University of California, Berkeley, California,1973.
    [61]Duncan J M, Chang C Y. Non-linear analysis of stress and strain in soils. ASCE, 1970,96 (SM5):1259-1301.
    [62]刘文廷.土石坝地基随机地震反应分析:(博士学位论文).大连:大连理工大学,1993.
    [63]Mejia L H, Seed H B. Three dimensional dynamic response analysis of earth dams. Report No. EERC 81-15, Earthquake Engineering Research Center, University of California, Berkeley, California, Berkeley,1981.
    [64]周健,徐志英.土(尾矿)坝三维有效应力动力反应分析.地震工程与工程振动,1984,4(3):60-70.
    [65]徐志英,周健.土坝地震孔隙水压力产生、扩散和消散的三维动力分析.地震工程与工程振动,1985,5(4):57-72.
    [66]徐志英,周健.奥罗维尔土坝三维排水有效应力动力分析.水利学报,1991,22(6):19-27.
    [67]Angeliki P, Bielak J. Seismic elastic response of earth dams with canyon interaction. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(5):446-453.
    [68]顾淦臣.土石坝地震工程.南京:河海大学出版社.1989.
    [69]陈映坚,顾淦臣.钢筋混凝土面板堆石坝动力反应计算.岩土工程学报,1987,15(1):47-49.
    [70]顾淦臣,张振国.钢筋混凝土面板堆石坝三维非线性有限元动力分析.水利发电学报,1988,13(1):7-9.
    [71]钱家欢,曾力真,洪振舜.小浪底土坝地震后永久变形预估[J].河海科技进展,1993,13(4):70-72.
    [72]刘汉龙,陆兆漆,钱家欢.土石坝地震永久变形分析[J].河海大学学报,1996,24(1):91-96.
    [73]迟世春.高面板堆石坝动力反应分析和抗震稳定分析[D].南京:河海大学博士学位论文,1995.
    [74]李湛.土石坝地震永久变形及抗震稳定性数值分析方法研究[D].大连:大连理工大学博士学位论文,2005.
    [75]陈生水,沈珠江.钢筋混凝土面板堆石坝的地震永久变形分析[J].岩土工程学报,1990,12(3): 12-19.
    [76]汪闻韶,金崇磐,王克成.土石坝的抗震计算和模型试验及原型观测[J].水利学报,1987,(12).
    [77]李万红,汪闻韶.无粘性土动力剪应变模型[J].水利学报,1993,24(9):11-31.
    [78]李万红,汪闻韶.土石坝非线性动力反应分析[J].水利学报,1994,25(2):24-30.
    [79]刘小生,王钟宁,赵剑明,刘启旺.面板坝振动模型试验及动力分析研究[J].水利学报,2002,(2): 29-35.
    [80]赵剑明,汪闻韶,常亚屏,陈宁.面板坝三维真非线性地震反应分析方法及模型试验验证[J].水利学报,2003,(9):12-18.
    [81]孔宪京,娄树莲,邹德高等.筑坝堆石料的等效动剪切模量与等效阻尼比.水利学报,2001,32(8):20-25.
    [82]Fellinius W. Calculation of stability of earth dams. Proceedings of 2nd International Congress of Large Dams,1936:445.
    [83]Bishop A W. The use of the slip circle in the stability analysis of slopes. Geotechnique, 1955,5(1):7-17.
    [84]Janbu K N. Slope stability computations. In:Hirschfeld R C, Poulos S J. Embankment dam engineering. New York:Johnwiley,1973:47-86.
    [85]Dcuncan, Krahn J. Comparison of slope stability analysis methods. Canadian Geotechnical Journal,1977,14:429-439.
    [86]Morgenstern N R, Price V E. The analysis of the stability of general slip surfaces. Geotechnique,1965,15(1):79-93.
    [87]Chen Z Y, Morgenstern N R. Extensions to the generalized method of slices for stability analysis. Canadian Geotechnical Journal,1983,20(1):104-119.
    [88]Sarma S K. Stability analysis of embankments and slopes. Geotechnique,1973,23(3): 423-433.
    [89]Sarma S K. Stability analysis of embankments and slopes. Journal of geotechnical engineering division,1979,105(12):1511-1524.
    [90]孙涛,顾波.边坡稳定性分析评述.岩土工程界,2002,3(11):48-50.
    [91]Biondi G, Cascone G,Maugeri M, et al. Seismic Response of Saturated Cohesionless Slopes[J].Soil Dynamics and Earthquake Engineering,2000,20(1-40:209-215.
    [92]邵龙潭,唐洪祥,韩国城.有限元边坡稳定分析方法及其应用.计算力学学报,2001,18(1):81-87.
    [93]邵龙潭,韩国城.堆石坝边坡稳定分析的一种方法.大连理工大学学报,1994,34(3):365-369
    [94]邵龙潭,韩国城.水流作用下堆石边坡的稳定分析方法.水利学报,1997,28(1):51-55.
    [95]邵龙潭,唐洪祥,孔宪京等.随机地震作用下土石坝边坡的稳定性分析.水利学报,1999,30(11):66-71.
    [96]电力部中南勘测设计研究院主编.水工建筑物抗震设计规范(DL5073-1997).北京:中国电力出版社,1998.
    [97]Newmark, N. M., Effects of Earthquakes on Dams and Embankments, Geotechnique. Vol. 15, No.2,1965.
    [98]李湛,栾茂田.土工建筑物地震永欠变形计算方法研究进展评述[J].防灾减灾工程学报,2005,25(2):227-234.
    [99]Cail Z, Bathurst R J. Deterministic Sliding Block Methods for Estimating Seismic Displacements of Earth Structures[J]. Soil Dynamics and Earthquake Engineering,1996,15(4):255-268.
    [100]Sarma S K. Seismic Stability of Earth Dams and Embankments[J]. Geotechnique, 1975,25 (4):743-761.
    [101]Chowdhury R. Evalution of the Seismic Performance of Earth Structures[A]. In: Proceedings of the 11th World Conference on Earthquake Engineering[C]. New Zealand Society for Earthquake Engineering,1996, paper No.549.
    [102]Arrau, L., Noguera, G., Performance of Cogoti Dam under Seismic Loading, Concrete Faced Rockfill Dams-Design, Construction and Performance, ASCE, Convention, Oct. 21,1985.
    [103]Ling H I, Leshchinsky D, Mohri Y. Soil Slopes under Combined Horizontal and Vertical Seismic Accelerations[J]. Earthquake Engineering and Structural Dynamics,1997,26(12):1231-1241.
    [104]Simonelli A L, Stefano P D. Effects of Vertical Seismic Accelerations on Slope Displacements[A]. In:Proceedings of the Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics and Symposium in Honor of Professor W D Liam Finn[C].St. Louis:University of Missouri-Rolla, California,2001, paper No.5-34.
    [105]Yegian M K, Marciano E A, Ghagraman. Earthquake-induced Permanent Derformations: Probabilistic Approach[J]. Journal of Geotechnical Engineering, ASCE, 1986,112(1):44-59.
    [106]Lin J S, Whitman R V. Earthquake Induced Displacements of Sliding Blocks[J]. Journal of Geotechnical Engineering, ASCE,1986,112(1):44-59.
    [107]Yegian M K, Marciano E A, Ghahraman V G. Seismic Risk Analysis for Earth Dams[J]. Journal of Geotechnical Engineering, ASCE,1991,117(1):18-34.
    [108]吴再光,韩国城,林皋.随机土动力学概论[M].大连:大连理工大学出版社,1992.
    [109]Chang C J, Chen W F, Yao J T P. Seismic Displacements in Slopes by Limit Analysis[J]. Journal of Geotechnical Engineering, ASCE,1984,110(7):860-874.
    [110]栾茂田,金崇磐,林皋等.层状非均质土坡抗震稳定性的变分解法[J].地震工程与工程地震,1993,13(4):73-90.
    [111]Luan M, Jin C, Lin G. Evaluation Technique for Earthquake-induced Movements And Dynamic Stability of Embankments[A].In:Luan M, Ugai K. Proceeding of The Special Sino-Japanese Forum on Performance and Evaluation of Soil Slopes Under Earthquake and Rainstorms[C]. Dalian:Dalian University of Technology Press,1998,116-131.
    [112]San K C, Leshchisky D. Seismic Slope Stability Analysis:Pseudo-static Generalized Method[J]. Soils and Foundations,1994,34(2):73-77.
    [113]Makdisi F I, Seed H B. Simplified Procedure for Estimating Dam and Embankment Earthquake-induced Deformations[J]. Journal of the Geotechnical Engineering Division, ASCE,1978,104(7):849-867.
    [114]Seed, H. B., Seed, R. B., Lai, S. S., Khamenehpour, b., Seismic Design of Concrete Faced Rockfill Dams-Design, Construction and Performance, ASCE,1985:458-478.
    [115]Seed, H. B., Moduli and Damping Factor For Dynamic Analyses of Geotechnical Engineering Division, ASCE, Vol.107, No. GT.8, Augest,1981.
    [116]Lin J S, Whitman R V. Decoupling Approximation to the Evaluation of Earthquake
    -induced Plastic Slip in Earth Dams[J]. Earthquake Engineering and Structural Dynamics,1983,11(5):667-678.
    [117]Gazetas G, Uddin N. Permanent Deformation on Preexisting Sliding Surfaces In Dams[J]. Journal of Geotechnical Engineering, ASCE,1994,120(11):2041-2061.
    [118]李俊杰,邵龙潭,邵宇.面板堆石坝地震永久变形计算方法研究[J].大连理工大学学报,1998,38(5):580-585.
    [119]Kramer S L, Smith M V. Modified Newmark Model for Seismic Displacements of Compliant Slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1997, 123(7):635-644.
    [120]Rathje E M, Bray J D. Nonlinear Coupled Seismic Sliding Analysis of Earth Structures [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000,126(11):1002-1014.
    [121]Serff N, Seed H B, Makdisi F I, et al. Earthquake Induced Deformations of Earth Dams[R]. In:Report No. EERC 76-4, Earthquake Engineering Research Centre, University of California, Berkeley,1976.
    [122]张克绪,李明宰,常向前.地震引起的土坝永久变形分析[J].地震工程与工程振动,1989,9(1):91-100.
    [123]Kuwano J, Ishihara K. Analysis of Permanent Deformation of Earth Dams due to Earthquakes[J]. Soils and Foundations,1988,28(1):41-55.
    [124]Kuwano J, Ishihara K, Haya H, et al. Analysis on Permanent Deformation of Embankments by Earthquakes[J]. Soils and Foundations,1991,31(3):97-110.
    [125]何广讷,杨斌.计算软土震陷的综合应变势法[A].见:栾茂田编.土动力学理论与实践[C].大连:大连理工大学出版社,1998,215-218.
    [126]孟上九.不规则动荷载下土的残余变形及建筑物不均匀震陷研究[D].哈尔滨:中国地震局力学研究所博士论文,2002.
    [127]Taniguchi E, Whitman R V, Marr W A. Prediction of Earthquake Induced Deformation of Earth Dams[J]. Soils and Foundations,1983,23(4):126-132.
    [128]朱亚林,孔宪京,丁克伟,邹德高.高土石坝的抗震研究进展.安徽建筑工业学院学报(自然科学版),2009,17(3):1-10.
    [129]赵剑明,常亚屏,陈宁.龙首二级面板堆石坝三维真非线性地震反应分析和评价[J].岩土力学,2004,25(2):388-393.
    [130]韩国城,孔宪京,栾茂田等.堆石料的静力—动力本构特性和面板堆石坝三维耦合非线性数值分析[R].国家自然科学基金重点项目(59639250)研究报告,2001.
    [131]李俊杰.钢筋混凝土面板堆石坝地震反应分析及抗震设计方法的研究.大连:大连理工大学博士学位论文,1991.
    [132]郦能惠.高混凝土面板堆石坝新技术.北京:中国水利水电出版社.2007.
    [133]李俊杰,韩国城,林皋.混凝土面板堆石坝自振周期的简化公式.振动工程学报,1995,8(3):274-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700