用户名: 密码: 验证码:
有机污染型河口潮滩的修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机质在河口沉积物中的累积引起河口生态环境的退化,已成为沿海区域普遍存在的环境问题,因此,有机污染型沉积物的治理日益受到重视。目前常用的治理措施以物理、化学方法为主,虽然见效快,但成本高、对环境破坏大,而且不能从根本上解决污染问题。与物理、化学方法相比,微生物修复技术具有明显的优势,将高效微生物引入沉积物中,可降解其中的多种有机污染物,有效解决沉积物有机污染问题。本文以位于烟台市牟平区的三八河河口污染潮滩为例,研究了有机污染型河口潮滩的微生物修复技术,先后比较了生物促进技术、生物强化技术和Fenton-微生物联合修复技术对污染物的去除效果,探讨有机污染的修复机制,并提出适宜的修复方案,可为有机污染型河口潮滩的实地修复工作提供理论依据和技术支持。
     为了评价三八河河口潮滩中主要污染物的分布及土著微生物的修复潜力,研究了该潮滩的沉积物中w(TOC),w(油类),w(硫化物)和微生物的水平、垂直分布规律。利用单因子污染指数法对潮滩污染状况进行了分析。结果表明:各因子污染指数大小为:TOC>硫化物>油类,距离河口越近,表层(0~20 cm)沉积物的污染程度越高,说明潮滩沉积物的污染主要源于河流排污。在0~50 cm深度范围内,w(TOC),w(油类)和w(硫化物)随深度的增加呈先增大后减小的趋势,污染物主要集中在5~20 cm深度范围。微生物在潮滩中的分布规律表明,外源有机物的输入可提高沉积物中异养菌数量(HBC)和呼吸强度,潮滩微生物可通过呼吸过程实现有机质的矿化和输出,具有一定的修复潜力。
     为了促进沉积物中土著降解菌的生长,加快污染物的去除,向沉积物中投加NH_4-N、NO_3-N和PO_4-P,通过测定处理过程中微生物的生长情况、污染物和营养盐含量的变化情况,研究了营养盐种类及其用量对修复效果的影响,并利用红外光谱分析了修复过程中沉积物有机质结构组成的变化。结果表明:同时加入NO_3-N和PO_4-P,可促进反硝化自养菌和反硝化异养菌的生长,加快硫化物、油类和TOC的去除,而投加NH_4-N对污染物的去除有抑制效应。在NO_3-N用量为0.5mg·g~(-1)、N:P比例为10:1条件下处理40d,可获得较好的修复效果,硫化物、油类、TOC的去除率分别达到89.7%、90.6%和13.8%。红外光谱分析表明,NO_3-N和PO_4-P加入后,脂肪族化合物比芳香族化合物更容易被降解,处理后沉积物的芳构化程度增加。
     为了提高沉积物中降解菌数量,向沉积物中投加有效微生物菌剂(EM)、土著好氧异养菌富集液(IHM)以及增氧剂CaO_2。通过测定沉积物中微生物生长和污染物含量变化,研究了外源微生物种类及增氧剂的使用对修复效果的影响。结果表明,同时加入EM和CaO_2可以显著促进TOC的去除。利用正交试验对EM和CaO_2的用量、以及二者投加的时间间隔进行优化,并利用红外光谱表征处理过程中有机质结构组成的变化。结果表明:同时投加EM和CaO_2,可明显促进沉积物中芳香族化合物的降解,这种强化处理的最佳条件为:按照1%质量比投加CaO_2,间隔1 d后再以2×10~7 cells·g~(-1)的比例投加EM菌剂。处理40 d后,油类和TOC去除率分别达到44.4%和17.8%,而硫化物含量却升高34.8%。现场应用该技术时,硫化物的产生可能对周围生态环境造成不利影响。
     为了进一步提高修复效果,采用Fenton氧化作为微生物修复的预处理。首先研究了反应条件对基于CaO_2的Fenton反应的影响,在磷酸盐缓冲溶液中,通过单因素试验研究了催化剂种类、反应初始pH值、催化剂和CaO_2比例(n_(Fe)/n_(CaO2))以及缓冲溶液浓度对Fenton反应体系中HO·产率的影响。结果表明:Fe2+对基于CaO_2的Fenton反应有较好的催化效果,稳定反应体系的pH值对HO·产率非常重要。当反应初始pH值为2~4、n_(Fe)/n_(CaO2)为1/5~1/20、磷酸盐缓冲溶液浓度为40~100 mmol·L~(-1)时,HO·的产率较高。在此基础上,利用正交试验对作为微生物修复预处理的Fenton试剂最佳配比进行优化。之后,为了获得Fenton预处理与投加EM菌剂联合作用的最佳效果,以处理40 d后的硫化物、油类和TOC去除率为评价指标,结合处理过程中微生物生长及污染物含量的变化情况,对Fenton预处理强度、Fenton预处理时间和EM投加量进行优化,并利用红外光谱表征处理过程中有机质组成的变化,探讨Fenton-微生物联合修复机理。结果表明,Fenton预处理的适宜条件为:磷酸盐缓冲溶液浓度100 mmol·L~(-1),缓冲溶液初始pH=4,催化剂用量(n_(Fe)/n_(CaO2))=1/20,CaO_2投加量(mCaO_2/mTOC)=1/1;预处理进行5 d后,按照1×10~6 cells·g~(-1)的用量投加EM菌剂,可获得最佳处理效果,40 d后的沉积物中硫化物、油类和TOC去除率分别达到46.3%、43.8%和31.1%。
     为了确定有机污染潮滩的最佳修复方案,对三种修复技术的处理效果、处理成本及环境效应进行了综合比较。结果表明,生物促进技术处理成本最低、对环境产生的不利影响较小;Fenton氧化—微生物联合修复技术对环境产生的不利影响相对较大,但是其处理效果最好;而生物强化技术在各方面均不占优势。根据三八河河口潮滩不同区域的污染现状,为了经济有效地实现河口区域有机污染潮滩的修复,并将修复过程中产生的不利环境影响减少到最低程度,建议采用的修复模式为:以投加NO_3-N和PO_4-P的生物促进技术为主、辅以Fenton氧化—微生物联合修复技术。
The accelerated accumulation of organic matter in estuary sediments is a ubiquitous and significant environmental issue in the world. The excessive organic input may induce seriously negative effects which may lead to the deterioration of estuary environment. The remediation of organic-rich estuary sediments becomes increasingly prominent. The physical and chemical techniques have been currently used in the treatment of contaminated sediments. These methods, although effective, are usually with high cost and great damage to the environment. Compared with physical and chemical methods, microbial remediation has great advantages and has been applied to remove various organic pollutants. The application of microbial remediation in the removal of organic matter from organic-rich sediments is expected to be a fundamental method to solve the organically pollution problems. This study made use of biostimulation, bioaugmentation and combined Fenton-microbial treatment to eliminate excessive organic matter in the sediment. Both the effectiveness and removal mechanisms of each bioremediation method were evaluated and discussed. Results from this study may provide a theoretical basis and technical support for the in situ remediation of organic-rich sediments.
     In order to investigate the distribution of contaminants and the environmental bioremediation potential of indigenous microorganisms in the tidal beach of Sanba River estuary at Muping, Yantai, Shandong, the horizontal and vertical distribution characteristics of total organic carbon (TOC), oil, sulphide and microorganisms in the sediment samples collected from this area were determined. The environmental quality in this area was also evaluated using single factor pollution index method. The results showed that the pollution index was in an order of TOC > sulphide > oil. Moreover, the pollution degrees of TOC, oil and sulphide in contaminated estuary area were significantly higher than those in control site; and the further closer to the estuary the more serious pollution was found in this area. These results indicated that estuary pollution could be mainly attributed to the pollution discharge in the river. The investigation of the vertical profile of pollutants revealed that pollutant contents were highest in the subsurface layer(5-20 cm), and with the depth increasing (0-50 cm), they increase firstly but then decrease in the deep layer. For the distribution profile of microorganism, it suggested that the organic matter input could elevate the number of microorganisms and respiratory intensity of sediment. This indicated that indigenous microorganisms could improve the mineralization and output of organic material by respiration process, showing a bioremediation potential.
     Experiments was conducted to investigate the effects of ammonium, phosphorous and nitrate on bioremediation of organic-rich tidal beach sediment. Microbial growth and activity, dynamics of nutrients, electron acceptor, oil, sulfide, total organic carbon (TOC) and dissolved organic carbon were monitored. Infrared spectroscopy was used to study changes in structure and composition of sediment organic matter during the treatment process. After nitrate was added, oil and sulfide contents decreased due to the autotrophic and heterotrophic denitrification in the sediment. By contrast, the addition of ammonium showed negative effects on oil and sulfide removal, as well as on TOC reduction. The highest remediation efficiency was observed when 0.5 mg·g~(-1) NO_3-N was amended with N:P ratio of 10:1. After 40 days of treatment, the highest removal rate for sulphide, oil and TOC were 89.7%, 90.6% and 13.8%, respectively. Infrared spectroscopy showed that fatty compounds were degraded faster than aromatic compounds after the addition of nitrate and phosphorous, the biostimulation treatment caused an increase in the degree of aromatization.
     The effectiveness of effective microorganisms(EM) and indigenous aerobic heterotrophicl bacteria was compared. The effect of oxygen supply was also evaluated by the addition of CaO_2. Microbial growth and activity, dynamics of nutrients, oil, sulfide, total organic carbon(TOC) and dissolved organic carbon(DOC) were monitored. The orthogonal experimental design was used to optimize the amount of microorganisms and CaO_2, as well as the interval between the two additions. Infrared spectroscopy was used to study changes in structure and composition of sediment organic matter during the treatment process. The results indicated that the addition of EM in the presence of CaO_2 could effectively accelerate the removal of organic matter, especially for the aromatic organic compounds. The optimal treatment conditions were: CaO_2 dose of 1%, addition interval of 1d and EM dose of 2×10~7 cells·g~(-1). After 40 days of treatment under optimal conditions the removal rate of oil and TOC were 44.4% and 17.8%, respectively. However, an increase of 34.8% in sulphide content was observed, indicating negative effect of bioaugmentation on environment.
     In order to eliminate the excessive organic matter in organic-rich tidal beach sediment, a combined treatment of Fenton oxidation based on CaO_2 followed by microbial inoculation was carried out. Experiments were conducted in phosphate buffer to investigate influences of catalyst type, initial pH, CaO_2 dose, catalyst to CaO_2 molar ratio (n_(Fe)/n_(CaO2)), and phosphate buffer concentration on the production of hydroxyl radicals (HO·). The effects of Fenton reaction parameters as pretreatment for microbial remediation were investigated using the orthogonal experimental design. The optimal parameters were: initial buffer pH = 4; phosphate buffer concentration = 100 mmol·L~(-1); n_(Fe)/n_(CaO2) = 1/20; mCaO_2/mTOC = 1/1. Infrared spectroscopy study indicated that Fenton oxidation resulted in the decrease in aromatization and the increase in biodegradability of organic matter. Best efficiency was observed when 1×10~6 cells·g~(-1) EM was added after 5 days of Fenton pretreatment. The removal rates for sulphide, oil and TOC were 46.3%, 43.8% and 31.1%, respectively.
     Comprehensive assessment of the three remediation techniques was carried out by comparing the treatment efficiency, economic costs and environmental negative impacts. The results indicated that biostimulation treatment showed both the lowest economic cost and the smallest negative impact on environment. Using Fenton-microbial treatment, highest pollutant removal efficiency was observed, although the environmental negative impact was greater than the other two treatments. Considering both the remediation cost and the remediation effectivness, biostimulation by adding NO_3-N and PO_4-P was suitable for the recovery of the area far from the estuary. However, Fenton-microbial treatment was also essential for the recovery of heavily polluted areas.
引文
[1]张娇,张龙军.有机物在河口区迁移转化机理研究[J].中国海洋大学, 2008, 35(3): 489-494.
    [2]Hope D, Billet M F, Cresser M S. A review of the export of carbon in river water: fluxes and processes[J]. Environmental Pollution, 1994, 84: 301-324.
    [3]张龙军,张向上,王晓亮,等.黄河口有机碳的时空运输特征及其影响因素分析[J].水科学进展, 2007, 18(5): 674-682.
    [4]李学刚,宋金明.海洋沉积物中碳的来源、迁移和转化[J].海洋科学集刊, 2004, 46: 106-117.
    [5]葛晨东,王颖, Pedersen T.F.,等.海南岛万泉河口沉积物有机碳、氮同位素的特征及其环境意义[J].第四纪研究, 2007, 27(5): 845-852.
    [6]张龙军,宫萍,张向上.河口有机碳研究综述[J].中国海洋大学学报, 2005, 35(5): 737-744.
    [7]Dai J H., Sun M Y. Organic matter sources and their use by bacteria in the sediments of the Altamaha estuary during high and low discharge periods[J]. Organic Geochemistry, 2007, 38: 1-15.
    [8]Go?i M A, Teixeira M J, Perkey D W. Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA)[J]. Estuarine, Coastal and Shelf Science, 2003, 57: 1023-1048.
    [9]Wagener A L R. Burial of organic carbon in estuarine zones—estimates for Guanabara Bay, Rio de Janeiro[J]. Química Nova,1995, 18(6): 534-535.
    [10]Godoy J M, Moreira I, Bragan?a M J, et al. A study of Guanabara Bay sedimentation rates[J]. Journal of Radioanalytical and Nuclear Chemistry, 1998, 227 (1-2): 157-160.
    [11]Carreira R S, Wagener A L R, Readman J W, et al. Changes in the sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach[J]. Marine Chemistry, 2002, 79: 207-227.
    [12]Jia G D, Peng P A. Temporal and spatial variations in signatures of sedimented organic matter in Lingding Bay (Pearl estuary), southern China[J]. Marine Chemistry, 2003, 82: 47-54.
    [13]Cotano U, Villate F. Anthropogenic influence on the organic fraction of sediments in two contrasting estuaries: A biochemical approach[J]. Marine Pollution Buttetin, 2006, 52: 4040-414.
    [14]Rubio L, Linares-Rueda A, Due?as C, et al. Sediment accumulation rate and radiological characterisation of the sediment of Palmones River estuary (southern of Spain)[J]. Journal of Environmental Radioactivity, 2003, 65:267-280.
    [15]Belzunce M J, Solaun O, Franco J, et al. Accumutaltion of organic matter, heavy metals and organic compounds in surface sediments along the Nervión estuary (Northern Spain)[J]. Marine Pollution Bulletin, 2001, 42(12): 1407-1411.
    [16]罗孝俊,陈社军,余梅,等.多环芳烃在珠江口表层水体中的分布与分配[J].环境科学, 2008, 29(9): 2385-2391.
    [17]JafféR, Mead R, Hernandez M H, et al. Origin and transport of sedimentary organic matter in two subtrophical estuaries: a comparative, biomarker-based study[J]. Organic Geochemistry,2001, 32: 507-526.
    [18]袁栋林,胡恭任,于瑞莲.泉州湾洛阳江河口沉积物中磷的形态分布[J].生态学杂志, 2010, 29(1): 84-90.
    [19]陈友媛,赵文娟,贾永刚,等.黏粒和有机质对黄河口潮间带沉积物微团聚体的影响[J].海洋地质与第四纪地质, 2009, 29(1): 31-37.
    [20]浦晓强,钟少军,刘飞,等.胶州湾李村河口沉积物中硫化物形成的控制因素[J].地球化学, 2009, 38(4): 323-333.
    [21]Zhang L, Yin K, Wang L, et al. The sources and accumulation rate of sedimentary organic matter in the Pearl River Estuary and adjacent coastal area, Southern China[J]. Estuarine, Coastal and Shelf Science, 2009, 85: 190-196.
    [22]Hu J, Peng P, Jia G, et al. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China[J]. Marine Chemistry, 2006, 98: 274-285.
    [23]Liu M, Hou L J, Xu S Y, et al. Organic carbon and nitrogen stable isotopes in the intertidal sediments from the Yangtze Estuary, China[J]. Marine Pollution Bulletin, 2006, 52: 1625-1633.
    [24]Walsh J J, Row G T, Iverson R L, et al. Biological export of shelf carbon as a neglected sink of the global CO2 cycles[J]. Nature 1981, 291: 196-201.
    [25]Gray J S, Wu RS-S, Or YY. Effects of hypoxia and organic enrichment on the coastal environment[J]. Mar Ecol Prog Ser, 2002, 238:249-279.
    [26]Kaspar H F, Hall G M, Holland A J. Effects of sea cage salmon farming on sediment nitrification and dissimilatory nitrate reductions[J]. Aquaculture, 1988, 70: 333-344.
    [27]Vezzulli L, Chelossi E, Riccardi G, et al. Bacterial community structure and activity in fish farm sediments of the Ligurian sea (Western Mediterranean)[J]. Aquacult Int, 2002, 10: 123-14.
    [28]Weston D P. Quantitative examination of macrobenthic community changes along an organic enrichment gradient. Mar Ecol Prog Ser 1990, 61: 233-244.
    [29]Chávez-Crooker P, Obreque- Contreras J. Bioremediation of aquaculture wastes[J]. Current Opinion in Biotechnology, 2010, 21: 313-317.
    [30]Asaoka S, Yamamoto T. Blast furnace slag can effectively remediate coastal marine sediments affected by organic enrichment[J]. Marine Pollution Bulletin, 2001, 60: 573-578.
    [31]聂新华,郎印海,贾永刚.胶州湾河口沉积物中耗氧有机物的释放研究[J].海洋环境科学, 2006, 25(4): 11-14.
    [32]宁寻安,陈文松,李萍,等.污染底泥修复治理技术研究进展[J].环境科学与技术, 2006, 29(9): 100-103.
    [33]McAllister P E, Bebak J. Infectious pancreatic necrosis virus in the environment: relationship to effluent from aquaculture facilities[J]. J Fish Dis 1997, 20:201-207.
    [34]Sun H, Tateda M, Ike M, et al.Short- and long-term sorption/desorption of polycyclic aromatic hydrocarbons onto artificial solids: effects of particle and pore sizes and organic matters[J]. WaterRes.,2003, 37: 2960-2968.
    [35]Alvin-Ferraz M C M, Albergaria J T, Delerue-Matos C. Soil remediation time to achieve clean-up goals II: Influence of natural organic matter and water contents[J]. Chemosphere, 2006, 64:817-825.
    [36]Ferrarese E, Andreottola G, Oprea I A. Remediation of PAH-contaminated sediments by chemical oxidation[J]. Journal of Hazardous Materials, 2008, 152(1):128-139.
    [37]平李凤,骆永明.有机质对多环芳烃环境行为影响的研究进展[J].土壤, 2005, 37(4): 362-369.
    [38]Fagbenro J A, Agboola A A. Effect of different levels of humic acid on the growth and nutrient of teak seedlings[J]. Journal of Plant Nutrition,1993, 16: 1465-1483.
    [39]Atiyeh R M, Lee S, Edwards C A, et al. The influence of humic acids derived from earthworm-processed organic wastes on plant growth[J]. Bioresource Technology, 2002, 84: 7-14.
    [40]Ke L, Wong T W Y, Wong A H Y, et al. Negative effects of humic acid addition on phytoremediation of pyrene-contaminated sediments by mangrove seedlings[J]. Chemosphere, 2003, 52: 1581-1591.
    [41]Otis M J. New Bedford Harbor, Massachusetts Dredging/disposal of PCB Contaminated Sediments Dredging 94– Proceeding of the Second International Conference on Dredging and Dredged Material Placement [J]. American Society of Civil Engineers, 1994, 1: 579- 587.
    [42]Murphy T P, Lawson A, Kumagai M, et al. Review of emerging issues on sediment treatment [J]. Aquatic Ecosystem Health and Management, 1999, 2(4): 419- 434.
    [43]Perelo L W. Review: In situ and bioremediation of organic pollutants in aquatic sediments[J]. Journal of Hazardous Materials, 2010, 177: 81-89.
    [44]Zeller C, Cushing B. Panel discussion: remedy effectiveness: what works, what doesn’t[J]. Integr. Environ. Assess. Manage., 2005, 2: 75-79.
    [45]武丽,戴万宏.土壤污染现状及修复对策初探[J].亚热带水土保持, 2008, 20(2):25-27
    [46]张从,夏立江.污染土壤生物修复技术[M].北京:中国环境科学出版社, 2000.
    [47]戴兴春,徐亚同,黄民生.污染环境中微生物修复的几种办法[J].上海化工, 2004, 1:10-12.
    [48]Paquin D, Ogoshi R, Campbell S, Li Q X. Bench-scale phytoremediation of polycyclic aromatic hydrocarbon-contaminated marine sediment with tropical plants[J], Int. J. Pytoremediation, 2002, 4: 297-313.
    [49]Gomez-Hermosillo C, Pardue J, Reible D. Wetland plant uptake of desorptionresistant organic compounds from sediments, Environ. Sci. Technol. 2006, 40: 3229-3236.
    [50]Cuny P, Miralles G, Cornet-Barthaux V, et al. Influence of bioturbation by the polychaete Nereis diversicolor on the structure of bacterial communities in oil contaminated coastal sediments[J]. Marine Pollution Bulletin, 2007, 54:452-459.
    [51]陈惠彬.渤海典型海岸带滩涂生境、生物资源修复技术研究与示范[J].海洋信息, 2005, 3: 20-22.
    [52]金志刚,张彤,朱杯兰.污染物生物降解[M].上海:华东理工大学出版, 1997.
    [53]Fabiano M, Marrale D, Misic C. Bacteria and organic matter dynamics during a bioremediation treatment of organic-rich harbour sediments[J]. Marine Pollution Bulletin, 2003, 46: 1164-1173.
    [54]Canfield D E. Factors influencing organic carbon preservation in marine sediments[J]. Chem. Geol., 1994, 114: 315-329.
    [55]Fetzner S. Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions[J]. Appl. Microbiol. Biotechnol., 1998, 49: 237-250.
    [56]Kristensen E, Hansen K. Decay of plant detritus in organic poor marine sediment: Production rates and stoichiomtry of dissolved C and N compounds[J]. J. Mar. Res. 1995, 53: 675-702.
    [57]Kristensen E, Holmer M, 2001. Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, NO3-, and SO42-), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation. Geochimica et Cosmochimica Acta 65, 419-433.
    [58]Maki H, Hirayama N, Hiwatari T, Kohata K., et al.Crude oil bioremediation field experiment in the Sea of Japan[J]. Marine Pollution Bulletin, 2003, 47: 74-77.
    [59]Atlas R M, Bartha R. Degradation and mineralization of petroleum in seawater, limitation by nitrogen and phosphorus[J]. Biotechnology and Bioengineering , 1972, 14: 309-317.
    [60]李进道.用长效肥料提高微生物分解海面油膜试验[J].青岛海洋大学学报, 1990, 20(3): 84-89.
    [61]Pritchard P H, Mueller J G, Rogers J C, et al. Oil spill bioremediation: Experiences, lessons and results from the Exxon Valdez oil spill Alaska[J]. Biodegradation, 1992, 3: 109-132.
    [62]Pritchard P H, Costa C F, Suit L. Alaska Oil Spill Bioremediation Project. EPA/ 600/9-91/046 a&b, Office of Research and Development, U.S. EPA, Gulf Breeze, FL, 1991.
    [63]Xia W, Li J, Song Z, et al. Effects of nitrate concentration in interstitial water on the bioremediation of simulated oil-polluted shorelines[J]. Journal of Environmental Sciences, 2007, 19:1491-1495.
    [64]Oudot J, Merlin F X, Pinvidic P. Weathering rates of oil components in a bioremediation experiment in estuarine sediments[J]. Mar. Environ. Res. 1998, 45: 113-125.
    [65]陈静,胡俊栋,王学军,等.表面活性剂对土壤中多环芳烃解吸行为的影响[J].环境科学, 2006, 27 (2): 361-365.
    [66]马歌丽,彭新榜,马翠卿,等.生物表面活性剂及其应用[J].中国生物工程杂志, 2003, 23(5): 42- 45.
    [67]孟佑婷,袁兴中,曾光明,等.生物表面活性剂修复重金属污染研究进展[J].生态学杂志, 2005, 24 (6): 677- 680.
    [68]朱生凤,梁胜康,吴亮,等.生物表面活性剂对沉积物中菲的解吸附和生物降解作用的影响[J].中南民族大学学报(自然科学版), 2009, 28(3): 1-5.
    [69]唐全,徐向阳,朱有为.五氯酚在污染沉积物泥浆固液两相中厌氧生物降解[J].应用生态学报, 2005, 16(4): 683-687.
    [70]Venosa A D, Lee K, Suidan M.T., et al. Bioremediation and biorestoration of a crude oilcontaminated fresh-waterwetland on the St Lawrence River[J]. Bioremediation Journal, 2002, 6(3): 261-281.
    [71]Shin W S, Tate P T, Jackson W A, et al. Bioremediation of an experimental oil spill in a salt marsh. In: Means andHinchee (Eds). Wetlands and Remediation: An international Conference. Battelle Press, Columbus, OH, 1999, 33~40.
    [72]张从,夏立江.污染土壤生物修复技术[M].北京:中国环境科学出版社, 2000.
    [73]叶淑红,丁鸣,马达,等.微生物修复辽东湾油污染湿地研究[J].环境科学, 2005, 26(5): 143-146.
    [74]Arienzo M. Degradation of 2,4,5-trinitrotoluene in water and soil slurry utilizing a calcium peroxide compound[J]. Chemosphere, 2000, 40:331-337.
    [75]Caldwell M E, Garrett R M, Prince R C, et al. Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions[J]. Environ. Sci. Technol., 1998, 32: 2191- 2195.
    [76]Coates J D, Woodward J, Allen J. Anaerobic degradation of polycyclic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments[J]. Environ. Microbiol, 1997, 63: 3589-3593.
    [77]卢丽君,孙远军,李小平.用生物促生剂修复受污染底泥[J].中南民族大学学报, 2006, 26(4): 27-31.
    [78]冯奇秀,谢骏,刘军.底泥生物氧化与城市黑臭河涌治理[J].水利渔业, 2003, 23(6): 42-44.
    [79]Vogel T M. Bioaugmentation as a soil bioremediation approach[J]. Current Opinion in Biotechnology, 1996, 7:311-316.
    [80]Fantroussi S E, Agathos S N. Is bioaugmentation a feasible strategy for pollutant removal and site remediation?[J]. Current Opinion in Microbiology, 2005, 8: 268-275.
    [81]祁真,杨京平.几种微生物制剂和微藻在水产养殖中的应用[J].水生生物学报, 2004, 28(1): 85-89.
    [82]李维桐,倪永珍.自然农业的发展与EM有效微生物技术, EM技术研究与应用[M].北京:中国农业科技出版社, 1996
    [83]邢承华,蔡妙珍,于洪波. EM有效微生物技术在环境保护中的应用[J].微生物学杂志, 2007, 27(5): 93-97.
    [84]戴肖云,赵宋敏,李定龙,等. EM技术在废水处理中的应用与发展[J].安徽农业科学, 2010, 38(15):8162-8164.
    [85]车美琴,汪翙,朱亮.有效微生物(EM)处理食品废水的试验研究[J].环境科学研究, 2002, 15(3):53-56.
    [86]曲源,王修俊,孙倩.发酵和酶解共处理玉米秸秆研究[J]. 2010, 38(19): 10484-10488.
    [87]黄川,王里奥,宋珍霞,等.有效微生物和多功能复合微生物制剂生物强化提高化粪池粪便污泥减量效率研究[J].环境工程学报, 2010, 4(7): 1636-1642.
    [88]Rubertoa L, Vazqueza S C, Mac Cormack W P. Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil[J]. International Bioeterioration & Biodegradation, 2003, 52:115-125.
    [89]Niu G L, Zhang J J, Zhao S, et al. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73[J]. Environmental Pollution, 2009, 157:763-771.
    [90]Young S O, Doo S S, Sang J K.. Effects of nutrients on crude oil biodegradation in the upper intertidal zone[J]. Marine pollution bulletin 2001, 24(12): 1367-1372.
    [91]Abbondanzia F, Bruzzib L, Campisi T, et al. Biotreatability of polycyclic aromatic hydrocarbons in brackish sediments: Preliminary studies of an integrated monitoring[J]. International Biodeterioration & Biodegradation , 2006, 57: 214–221.
    [92]曹阳,宋菁.固定化微生物技术对受污染缓流水体底泥生态修复的研究[J].黄石理工学院学报, 2009, 25(3): 11-14.
    [93]Yamamoto T, Goto I, Kawaguchi O, et al. Phytoremediation of shallow organically enriched marine sediments using benthic microalgae[J]. Mar. Pollut. Bull., 2008, 57: 108-115.
    [94]Kinoshita K, Tamaki S, Yoshioka M, et al. Bioremediation of organically enriched sediment deposited below fish farms with artificially mass-cultured colonies of a deposit-feeding polychaete Capitella sp. I[J]. Fisheries Science, 2008, 74: 77-87.
    [95]Tsutsumi H,Montani S. Utilization of biological activities of capitellid polychaete for treatment of (Hedoro) (organically enriched sediment) deposited on the marine bottom just below net pen culture[J]. Nippon Suisan Gakkaishi 1993, 59: 1343-1347.
    [96]Gallizia I, Vezzulli L, Fabiano M. Oxygen supply for biostimulation of enzymatic activity in organic-rich marine ecosystems[J]. Soil Biology & Biochemistry, 2004, 36:1645-1652.
    [97]Lee B D, Hosomi M. A bybrid fenton oxidention-microbial treatment for soil highly contaminated with benz(a)anthracene[J]. Chemosphere, 2001,43:1127-1132.
    [98]Bautista P, Mohedano A F, Gilarranz M A, et al. Application of Fenton oxidation to cosmetic wastewaters treatment[J]. J. Hazard. Mater. 2007, 143: 128-134.
    [99]Carberry J B, Benzing T M. Peroxide pre-oxidation of recalcitrant toxic waste to enhance biodegradation[J]. Water. Sci. Technol.,1991, 23: 367-376.
    [100]Valderrama C, Alessandri R, Aunola T, et al. Oxidation by Fenton’s reagent combined with biological treatment applied to a creosote-contaminated soil[J]. J. Hazard. Mater., 2009, 166: 594-602.
    [101]Rodrigues C S D, Madeira L M, Boaventura R A R. Treatment of textile effluent by chemical (Fenton’s Reagent) and biological (sequencing batch reactor) oxidation[J]. J. Hazard. Mater. 2009, 172: 1551-1559.
    [102]Cheng S A, Fung W K, Chan K Y, et al.Optimizing electron spin resonance detection of hydroxyl radical in water[J]. Chemosphere 2003, 52: 1797-1805.
    [103]燕启社,孙红文,周长波,等.类Fenton氧化在污染土壤修复中的应用[J].生态环境, 2008, 17(1): 216-220.
    [104]方茹,于怀东,伍林,等.芳环羟基化荧光法检测类Fenton反应产生的?OH[J].武汉大学学报(理学版), 2005, 51(4): 501-505.
    [105]邵晓梅,陈玲,刘德启,等.室温Fenton反应过程H2O2有效利用率的影响因素研究[J].环境科学与管理, 2009, 3(34): 51-55.
    [106]陈传好,谢波,任源,等. Fenton试剂处理废水中各影响因子的作用机制[J].环境科学, 2000, 5(21): 93-96.
    [107]董蓓,颜家保,庄容,等. Fenton试剂?OH生成率的影响因素研究[J].化学工程师, 2009, 3: 14-16.
    [108]崔英杰,杨世迎,王萍,等. Fenton原位化学氧化法修复有机污染土壤和地下水研究[J].化学进展, 2008,7/8(20): 1196-1201.
    [109]Arantes V, Baldocchi C, Milagres A M F. Degradation and decolorization of a biodegradable- resistant polymeric dye by chelator-mediated Fenton reaction[J]. Chemosphere, 2006, 63 (10): 1764-1772.
    [110]Shah V, Verma P, Stopka P, et al. Decolorization of dyes with copper (Ⅱ) / organic acid/ hydrogen peroxide systems[J]. Applied Catalysis B: Environmental, 2003, 46: 287-292.
    [111]Fernandez J, Dhananjeyan M, Kiwi J, et al. Evidence for Fenton photoassisted processes mediated by encapsulated Fe ions at biocompatible pH value[J] . Phys Chem B, 2000, 104: 5298-5301.
    [112]Lu M C, Chen J N, Chang C P. Effect of inorganic ions on the oxidation of dichlorvos insecticide with Fenton's reagent[J]. Chemosphere,1997, 35(10): 2285-2293.
    [113]郑第,洪军,袁连新,等.无机离子对Fenton处理活性艳红X- 3B染料废水的影响[J].环境科学与技术, 2009, 5(32): 119-122.
    [114]Eisenhaner H R. Oxidation of phenolic waste water[J]. Water pollution control federation, 1964,33: 11-16.
    [115]Lin S H, Lin C M, Leu H G. Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation[J]. Water Resources, 1999, 33(7): 1735-1741.
    [116]Kuo W G. Decolorizing dye wastewater with Fenton’s reagent[J]. Water Resources, 1992, 26(7): 881-886.
    [117]Watts R J, Dilly S E. Evaluation of iron catalysts for the Fenton-like remediation of diesel-contaminated soils[J]. Journal of Hazardous Materials, 1996, 51: 209-224.
    [118]孙燕英,陈鸿汉,何炜,等.土壤中石油类污染物的化学氧化去除研究[J].土壤, 2008, 40(1): 130-134.
    [119]曾华冲,杨利芝,徐宏勇,等. Fenton试剂氧化法修复2,4-二氯酚污染土壤的研究[J].生态环境, 2008, 17(1): 221-226.
    [120]Arienzo M. Use of abiotic oxidative-reductive technologies for remediation of munition contaminated soil in a bioslurry reactor[J]. Chemosphere, 2000, (40): 441-448.
    [121]Watts R J, Udell M D, Rauch P A, et al. Treatment of pentachlorophenol-contaminated soils using Fenton’s reagent[J]. Hazardous Waste and Hazardous Material, 1990, 7(4): 335-345.
    [122] Ferrarese E, Andreottola G, Oprea I A. Remediation of PAH-contaminated sediments by chemical oxidation[J]. Journal of Hazardous Materials, 2008, 152(1):128-139.
    [123]Mecozzi R., Palma L.D and Filippis P.D.. Effect of modified Fenton treatment on the thermal behavior of contaminated harbor sediments[J]. Chemosphere, 2008, 71:843–852.
    [124]Xu M J, Wang Q S, Hao Y L. Removal of organic carbon from wastepaper pulp effluent by lab-scale solar photo-Fenton process[J]. Journal of Hazardous Materials, 2007, 148: 103-109.
    [125]Ndjou’ou A C, Cassidy D P. Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil[J]. Chemosphere, 2006, 65: 1610-1615.
    [126]Mantzavinos D, Kalogerakis N. Treatment of olive mill effluents. Part I. Organic matter degradation by chemical and biological processes—an overview[J]. Environment International, 2005, 31: 289-295.
    [127]Bressan M, Liberatore L, D’Alessandro N, et al. Improved Combined Chemical and Biological Treatments of Olive Oil Mill Wastewaters[J]. Journal of Agricultural and Food Chemistry, 2004, 52: 1228-1233.
    [128]国家海洋局.GB17378.5—2007海洋监测规范[S].北京:中国标准出版社,2008.
    [129]国家海洋局.海洋生物生态调查技术规程[M].北京:海洋出版社,2006:13-23.
    [130]易志刚,蚁伟民,丁明懋,等.鼎湖山三种主要植被类型土壤碳释放研究[J].生态学报,2003,23(8):207-212.
    [131]张效龙,徐家声,金永德,等.天津永定新河口海区海底表层沉积物的污染[J].海洋地质动态,2006,22(5):11-14.
    [132]山东省人民政府.山东省海洋功能区划报告[M].北京:海洋出版社,2004:132-134.
    [133]王文强,韦献革,温琰茂.哑铃湾网箱养殖海域沉积物中的硫化物[J].海洋环境科学,2006,25(3):13-16.
    [134]Barrera-alba J J, GianesellaS M F, Moser G A O, et al. Influence of allochthonous organic matter on bacterioplankton biomass and activity in a eutrophic, sub-tropical estuary[J]. Estuarine, Coastal and Shelf Science, 2009, 82(1):84-94.
    [135]Alongi D M, Tirendi F, Dixon P, et al. Mineralization of organic matter in intertidal sediments of a tropical semi-enclosed Delta[J]. Estuarine, Coastal and Shelf Science, 1999, 48(4):451-467.
    [136]赵兴青,杨柳燕,尹大强,等.不同空间位点沉积物理化性质与微生物多样性垂向分布规律[J].环境科学,2008,29(12):3538-3545.
    [137]Robinson C, Brovelli A, Barry D A, et al. Tidal influence on BTEX biodegradation in sandy coastal aquifers[J]. Advances in Water Resources, 2009,32(1):16-28.
    [138]Besser J M, Ingersoll C G, Giesy J P. Effects of spatial and temporal variation of acid-volatile sulfide on the bioavailability of copper and zinc in freshwater sediments[J]. Environ ToxicolChem, 1996,15(3):286-293.
    [139]方涛,陈晓国,张维昊,等.水体沉积物中酸挥发性硫化物垂直分布模型的参数计算及相关分析[J].环境化学,2002,21(1):14-18.
    [140]Allen H E, Fu G, Deng B. Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments[J]. Environ Toxicol Chem, 1993,12(8):1441-1453.
    [141]Horel A, SchiewerS. Investigation of the physical and chemical parameters affecting biodegradation of diesel and synthetic diesel fuel contaminating Alaskan soils[J]. Cold Regions Science and Technology, 2009,58(3):113-119.
    [142]Bonde A T. Microbial biomass as a fraction of potentially mineralizable in soil from long-term field experiments[J]. Soil Biol Biocthem, 1988,20(4):447-453.
    [143]Hansen K. KRISTENSEN E. The impact of the polychaete Nereis diversicolor and enrichment with macroalgal (Chaetomorpha linum) detritus on benthic metabolism and nutrient dynamics in organic-poor and organic-rich sediment[J]. Journal of Experimental Marine Biology and Ecology, 1998,231(2):201-223.
    [144]薛廷耀.海洋细菌学[M].北京:科学出版社, 1962.
    [145]刘凤枝,刘潇威.土壤和固体废弃物监测分析技术[M].北京:化学工业出版社, 2007.
    [146]姚槐英,黄昌勇.土壤微生物生态学及其实验技术[M].北京:科学出版社, 2006.
    [147]Lahajnar N, Rixen T, Gaye-Haake B, et al. Dissolved organic carbon (DOC) fluxes of deep-sea sediments from the Arabian Sea and NE Atlantic[J]. Deep-Sea Research II, 2005, 52:1947-1964.
    [148]国家环保总局.水和废水监测分析方法[M].北京:中国环境科学出版社, 2002.
    [149]张玉兰,孙彩霞,陈振华,等.红外光谱法测定肥料施用26年土壤的腐殖质组分特征[J].光谱学与光谱分析, 2010, 30(5):1210-1213.
    [150]陈广银,王德汉,吴艳,等.添加蘑菇渣对落叶堆肥过程中有机物的影响[J].环境化学, 2008, 27(5): 629-633.
    [151]赵庆良,张静,卜琳. Fenton深度处理渗滤液时DOM结构变化[J].哈尔滨工业大学学报, 2010, 42(6): 977-981.
    [152]张玉兰,孙彩霞,陈振华,等.红外光谱法测定肥料施用26年土壤的腐殖质组分特征[J].光谱学与光谱分析, 2010, 30(5): 1210-1213.
    [153]Shin W S, Pardue J H, Jackson W A.Oxygen demand and sulfate reduction in petroleum hydrocarbon contaminated salt marsh soils[J]. Wat. Res., 2000, 34(4): 1345-1353.
    [154]Gevertz, D., Telang, A.J., Voordouw, G., et al.Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine[J]. Applied and Environmental Microbiology, 2000, 66: 2491-2501.
    [155]Sher, Y., Schneider, K., Schwermer, C.U., et al. Sulfide-induced nitrate reduction in the sludge of an anaerobic digester of a zero-discharge recirculating mariculture system[J]. WaterResearch, 2008, 42, 4386-4392.
    [156]Chakraborty, R., Coates, J.D. Anaerobic degradation of monoaromatic hydrocarbons[J]. Applied Microbiology and Biotechnology, 2004, 64: 437-446.
    [157]Brian Senefelder. In s itu sediment t reatment t echnology [A ]. Summary of remediation technologies development forum sedim ents remediation action meet ing[ C] . 2000.
    [158]宗栋良,张光明.硝酸钙在底泥修复中的作用机理及应用现状[J].中国农村水利水电, 2006, 4:52-54.
    [159]平立凤,骆永明.有机质对多环芳烃环境行为影响的研究进展[J].土壤, 2005, 37(4):362-369.
    [160]Dibble J T, Bartha R. Effect of environmental parameters on the biodegradation of oil sludge Applied and Environmental Microbiology, 1979, 37: 729-739.
    [161]Kim S, Choi D H, Sim D S, et al. Evaluation of bioremediation effectiveness on crude oil-contaminated sand[J]. Chemosphere, 2005, 59:845-852.
    [162]Benyahia F, Abdulkarim M, Zekri A, et al. Bioremediation of crude oil contaminated soils a black art or an engineering challenge? Process Safety and Environmental Protection, 2005, 83(B4): 364-370.
    [163]Lin Y M, Tay J H, Liu Yu, et al. Biological nitrigication and denitrification processes[J].Biological treatment processes, 2009, 8: 539-588.
    [164]吴耀国,胡思海,曾睿,等.反硝化条件下十二烷基苯磺酸钠对苯生物降解的影响[J].自然科学进展, 2008, 18(9):1075-1080.
    [165]Kim S, Choi D H, Sim D S, et al. Evaluation of bioremediation effectiveness on crude oil-contaminated sand[J]. Chemosphere, 2005, 59:845-852.
    [166]Lee K H, Yi J W, Park J S, et al. An optimization algorithm using orthogonal arrays in discrete design space for structures[J]. Finite Elements in Analysis and Design 2003, 40: 121-135.
    [167]赵嘉平,唐明,李堆淑,等.有效微生物群(EM)的研究进展[J].西北林学院学报, 2003, 18(3): 50-53.
    [168]White D M, Irvine R L, Woolard C R. The use of solid peroxides to stimulate growth of aerobic microbes in tundra[J]. Journal of Hazardous Materials, 1998, 57:71-78.
    [169]Cassidy D P, Irvine R L. Use of calcium peroxide to provide oxygen for contaminant biodegradation in a saturated soil[J]. Journal of Hazardous Materials, 1999, B69: 25-39.
    [170]田从学.多孔性过氧化钙在水产养殖中的应用研究[J].攀枝花学院学报, 2002, 19(6): 80-86.
    [171]Northup A, Cassidy D. Calcium peroxide (CaO_2) for use in modified Fenton chemistry[J]. Journal of Hazardous Materials, 2008, 152: 1164-1170.
    [172]Kang N, Hua I. Enhanced chemical oxidation of aromatic hydrocarbons soil systems[J]. Chemosphere, 2005, 61(7): 909-922.
    [173]Gryzenia J, Cassidy D, Hampton D. Production and accumulation of surfactants during thechemical oxidation of PAH in soil[J]. Chemosphere, 2009, 77(4): 540-545.
    [174]Bogan B W, Trbovic V, Paterek J R, Inclusion of vegetable oil in Fenton’s chemistry for remediation of PAH-contaminated soils[J]. Chemosphere, 2003, 50(1): 15-21.
    [175]翟永清,丁士文,姚子华,等. CaO2对可溶性染料废水的脱色处理[J].河北大学学报(自然科学版), 2003, 23(4): 381-384.
    [176]翟永清,丁士文,姚子华,等.CaO2/H+/FeSO4体系处理染料废水的研究[J].工业水处理, 2003, 23(10): 24-27.
    [177]李方,郑怀礼.黄酮配合物抗自由基活性的亚甲基蓝光谱测定体系的研究[J].光谱学与光谱分析, 2006, 26(12): 2294-2297.
    [178]Lucas M S, Peres J A. Removal of COD from olive mill wastewater by Fenton’s reagent: Kinetic study[J]. Journal of Hazardous Materials, 2009, 168:1253-1259.
    [179]Kang Y W, Hwang K Y. Effects of reaction conditions on the oxidation efficiency in the Fenton process[J]. Water Research, 2000, 34: 2786-2790.
    [180]Sedlak D L, Andren A W. Oxidation of chlorobenzene with Fenton’s reagent[J]. Environ. Sci. Technol., 1991, 25: 777-782.
    [181]Bouasla C, Samar M E H, Ismail F. Degradation of methyl violet 6B dye by the Fenton process[J]. Desalination, 2010, 254: 35-41.
    [182]Lucas M S., Peres J A, 2009. Removal of COD from olive mill wastewater by Fenton’s reagent: Kinetic study[J]. J. Hazard. Mater. 168, 1253-1259.
    [183]Arienzo M. Degradation of 2,4,6-trinitrotoluene in water and soil slurry utilizing a calcium peroxide compound[J]. Chemosphere, 2000, 40: 331-337.
    [184]Kang Y W, Hwang K Y. Effects of reaction conditions on the oxidation efficiency in the Fenton process [J]. Water Research, 2000, 34: 2786-2790.
    [185]Gryzenia J, Cassidy D, Hampton D. Production and accumulation of surfactants during the chemical oxidation of PHA in soil. Chemosphere, 2009, 77: 540-545.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700