用户名: 密码: 验证码:
苹果园土壤生物活性及土壤镉行为的生物调节
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在调查山东苹果产区不同生产水平果园土壤生物活性的基础上,以二年生红富士和三年生冬红果盆栽苹果幼树以及15年生成龄红富士苹果树及其土壤为材料(砧木均为平邑甜茶Malus hupenhensis Rhed),通过蚯蚓和有效微生物群(EM,Effective microorganisms)处理,研究了蚯蚓和EM对土壤生物活性、土壤镉吸附解吸行为及苹果幼树生长发育的调节作用,结果如下:
     1、不同土壤类型果园的土壤生物活性具有明显差异,土壤酶的活性及土壤微生物碳、氮含量与土壤有机质含量有一定的关联度。在所研究的果园土壤类型(褐土、棕壤和潮土)中,土壤脲酶及碱性磷酸酶的活性以褐土为最高,酸性磷酸酶的活性以棕壤为最高,褐土微生物碳、氮含量明显高于潮土及棕壤。
     2、苹果园产量与土壤生物活性具有很高的相关性。产量越高,土壤脲酶、酸性磷酸酶和碱性磷酸酶的活性越大,土壤微生物碳、氮的含量也越高,在同一土壤类型的果园中,这种规律更为明显。超高产、高产及中产果园的土壤微生物商大于1,低产果园小于1;高产果园的土壤微生物碳氮比低于低产果园,高产果园土壤氮素的生物有效性高,土壤微生物群落中以细菌为主。
     3、果园引入蚯蚓提高了土壤生物活性,但蚯蚓对土壤生物活性的影响程度与土壤类型密切相关。褐土、潮土和棕壤土中脲酶、酸性磷酸酶及碱性磷酸酶的活性在蚯蚓处理后均显著增高,其中脲酶活性在棕壤中增幅最大,酸性及碱性磷酸酶活性在潮土增幅中最大。褐土和潮土中微生物碳含量在蚯蚓处理后明显增加,其中在潮土增幅最大;褐土、潮土和棕壤中的微生物氮含量在蚯蚓处理后均明显增加,其中在棕壤增幅最大。
     4、土壤施肥后再引入蚯蚓,土壤生物活性的变化因肥料种类和土壤类型而明显不同。褐土施肥后再引入蚯蚓,施用有机肥和无机肥的土壤酶活性和微生物碳、氮含量差异不显著;潮土及棕壤施用有机肥后再经蚯蚓处理,土壤脲酶、酸性磷酸酶和碱性磷酸酶的活性以及微生物碳、氮含量均明显高于施用无机肥料的土壤。
     5、应用EM提高了土壤生物活性,提高程度因土壤类型不同有较大差异。褐土经EM处理后,其脲酶、酸性磷酸酶及碱性磷酸酶的活性均显著提高;潮土和棕壤中的脲酶和酸性磷酸酶活性在EM处理后提高,脲酶活性在棕壤中增幅最大,酸性磷酸酶活性在潮土中增幅最大。EM处理明显增加了褐土和潮土微生物碳含量,其中在潮土中增幅最大;EM处理也增加了褐土、潮土和棕壤的土壤微生物氮含量,其中在棕壤中增幅最大。
     6、EM对土壤酶活性及微生物碳、氮含量的影响因施肥条件而不同。施用有机肥的褐土,经过EM处理后,其脲酶及碱性磷酸酶的活性较施用无机肥的提高更显著;不论在褐土、潮土还是在棕壤中,有机肥与EM组合处理后,土壤酶活性都最高。施用有机肥的褐土、潮土和棕壤,经EM处理后,它们的微生物碳含量均明显高于施用无机肥的;褐土及棕壤中的微生物氮含量,在施用有机肥比施用无机肥后提高显著。
     7、褐土、潮土和棕壤引入蚯蚓和EM后,苹果幼树根系的活力提高,根尖数、根系总长度、表面积及体积增加,地上部生长加快。
     8、蚯蚓和EM降低了土壤对Cd2+的吸附率和最大吸附量,EM效果更为明显。随着外加Cd2+浓度的提高,蚯蚓及EM对土壤镉解吸率总体上呈逐渐增大趋势,而且随着Cd2+吸附量的增加,解吸量随之提高,特别是土壤Cd2+的吸附量大于500mg.kg-1时,Cd2+解吸量的增加尤为显著。因此,蚯蚓和EM的存在,增加了土壤Cd2+浓度,能够明显增进根系对镉的吸收及镉在果实中的积累,尤其在土壤镉浓度较高时,效果更显著。
Soil biological activity of different productive level orchards in Shandong apple production areas were investigated; the effect of earthworms and effective microorganisms(EM) on the soil biological activity, the adsorption-desorption of cadmium and the growth and development of young apple trees with 2-year-old Fuji trees, 3-year-old Donghongguo apple trees and 15-year-old perennial bearing Fuji trees as materials (with Malus hupenhensis Rhed. as the apple stock) have been studied in pot or field experiments. The results are as follows.
     1.There are significant difference in biological activity of different types of soil. The activity of soil enzyme, the content of SMBC and SMBN were in a certain degree of correlation with the content of organic matter in orchard. Among all kinds of soil which were studied including cinnamon soil, brown soil, fluvo-aquic soil , the activity of urease and alkaline phosphatase were highest in cinnamon soil, the activity of acid phosphatase was highest in brown soil,the content of SMBC and SMBN in cinnamon soil was significantly higher than that in fluvo-aquic and brown earth soil.
     2. Orchard output and soil biological activity has a high correlation. The higher the yield, the greater activity of urease, acid and alkaline phosphatase, the richer content of SMBC and SMBN, which was more apparent among the same type of orchard. Generally, in super-high-yielding, high-yielding and mid-yielding orchards, qMB is more than 1, however in low-yielding,qMB is less than 1 in contrast. The ratio of SMBC and SMBN in high-yielding orchards is lower than that in low-yielding ones. The soil nitrogen is more bioavailability in high-yielding orchards, and bacterial communities consists the majority of soil microbial communities.
     3. The earthworms improves the biological activity of soil, but the extent of this impact was closely realeated to the type of soil. Earthworms enhanced the activity of urease, acid and alkaline phosphatase in cinnamon, brown, and fluvo-aquic soil significantly. To the increased extent, urease came to the highest in brown soil, while acid and alkaline phosphatase was in fluvo-aquic soil. The content of SMBC was increased significantly after the applied of earthworms in cinnamon and fluvo-aquic soil, thereinto the fluvo-aquic soil had higher incerased content of SMBC. The earthworms obviously increases the content of SMBN in all these three types soil, and the largest increasing range is in brown soil.
     4. If we introduced earthworms after the fertilization in soil, it would bring different results to soil enzyme activity depending on the different type of fertilizers and soil.Using earthworms after the fertilization in cinnamon soil, there was no significant difference in soil enzyme activity, the content of SMBC and SMBN compared with organic fertilizers and fertilizers. Introduced earthworms after the organic fertilizers used in fluvo-aquic and brown soil, the activity of urease, acid and alkaline phosphatase , the content of SMBC and SMBN were significantly higher than that in soils applied of fertilizer.
     5. Application of EM increased the soil's biological activity, but the extent of this impact were different depending on the type of soil. EM Significantly improved the activity of urease, acid and alkalescence phosphatase in cinnamon soil, and enhanced the activity of urease, acid phosphatase in fluvo-aquic and brown soil. Thereinto the activity of urease has the highest increased in cinnamon soil, while the acid phosphatase was in fluvo-aquic soil. Application of EM increased the content of SMBC in cinnamon and fluvo-aquic soil, then the larger increasing range is in fluvo-aquic soil. It also increased the content of SMBN in three types of soil, and the largest increasing range was in brown soil.
     6. Under different fertilizing conditions, EM had different effects on the activity of soil enzyme and the content of SMBC and SMBN. After treated cinnamon soil with EM and organic fertilizers , compared with fertilizers, application of organic fertilizers significantly increased the activity of urease and alkaline phosphatas. Under“EM + organic fertilizers”treatment the activities of soil enzyme was highest in three types of soil. After treated by EM, the content of SMBC was much higher when organic fertilizers were added to these soils,.And after used organic fertilizers, the content of SMBN in brown and cinnamon soil was significantly rised.
     7. The participation of earthworms and EM in cinnamon, brown and fluvo-aquic soil enhanced the activity of root of young apple trees, increased the number of root tips, the length of roots, the surface area and volume of roots , accelerated the growth of the part above-earth.
     8. Earthworms and EM decreased the Cd2+ absorption ratio and maximum absorption capacity of soil, EM had more evidently effect. With the increase of Cd2+ concentration added to soil , the effect of earthworms and EM on soil desorption ratio went up gradually on general. And with the augmentation of the amount of Cd2+ absorbed, the amount of desorption increased naturally. Especially, when the amount of Cd2+ absorption was bigger than 500mg.kg-1, the amount of desorption increased significantly. Therefore, the existence of earthworms and EM increased the soil Cd2+ concentration, and it could significantly promote the Cd2+ absorption in the root system and Cd2+ accumulation in fruits, especially, the effects were more pronounced when the Cd2+ concentration was rather high.
引文
鲍士旦.土壤农化分析.中国农业出版社.2000.
    曹裕松,李志安,邹碧.根际环境的调节与重金属污染土壤的修复.生态环境, 2003,12(4):493-497.
    曹慧,崔中利,李顺鹏.中国土壤生物学研究的回顾与展望.土壤学报, 2008,45(5):830-836.
    成杰民,俞协治,黄铭洪.蚯蚓-菌根在植物修复镉污染土壤中的作用.生态学报, 2005,25(6):1256-1263.
    成杰民,俞协治,黄铭洪.蚯蚓-菌根相互作用对土壤-植物系统中Cd迁移转化的影响.环境科学学报,2007,27(2):228-234.
    程森,吴家森,王平,徐秋芳,张伟峰,秦华,唐宇,曹志洪.绿肥、鸡粪和钙肥使用对新垦红壤土壤肥力和烟草生长的影响.中国烟草学报,2008,14(5):39-44.
    陈雯莉,黄巧云,郭学军.根瘤菌对土壤铜、锌和镉形态分配的影响.应用生态学报, 2003,14(8):1278-1282.
    陈怀满.土壤对镉的吸附与解吸.土壤学报,1998,25(1):65-74.
    陈国潮,何振立.红壤不同利用方式下微生物量的研究.土壤通报,1998,29(6):276-278.
    陈俊蓉,洪伟,吴承祯,张文娟,李键,范海兰,陈灿.不同桉树土壤微生物数量的比较.亚热带农业研究,2008,4(2):146-150.
    陈元镇,范金帅.营养型酸性土壤改良剂对桔柚生长和土壤肥力的效应研究.安徽农学通报,2006,12(10):86-88.
    仇少君,彭佩钦,刘强,荣湘民.土壤微生物生物量氮及其在氮素循环中作用.生态学杂志, 2006,25(4):443-448.
    仇少君,彭佩钦,李玲,刘强,荣湘民.栽条件下红黄泥微生物量氮和固定态铵的动态变化.中国农业科学,2007,40(3):524-531.
    崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展.土壤通报, 2004,35(3):366-370.
    丁永祯,李志安,邹碧.红壤中镉在有机酸作用下的解吸行为.应用生态学报,2006,17(9):1688-1692.
    邓立宝,薛进军,梁忠明.蚯蚓粪对红壤中柑橘根系生长和铁吸收的影响.福建果树,2008,3:36-38.
    杜相革,董民,再红,史咏竹.有机农业和土壤生物多样性.中国农学通报, 2004,20(4):80-83.
    董莉丽,郑粉莉.黄土丘陵区不同土地利用类型下土壤酶活性和养分特征.生态环境, 2008,17(5):2050-2058.
    冯固,张玉凤,李晓林.丛枝菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响.水土保持学报,2001,15(4):99-102.
    冯建国,陶训,张安盛,于毅.苹果园农药和重金属污染及其治理对策.中国农学通报, 1998,14(3)29-31.
    冯凤玲,成杰民,王德霞.蚯蚓在植物修复重金属污染土壤中的应用前景.土壤通报, 2006,37(4):809-814.
    傅丽君,杨文金. 4种农药对枇杷园土壤磷酸酶活性及微生物呼吸的影响,中国生态农业学报,2007,15(6):113-116.
    郭朝晖,廖柏寒,黄昌勇.模拟酸雨下Cd、Cu、Zn复合污染对土壤微生物量碳和酶活性的影响.应用与环境生物学报,2003,9(4):382-385.
    郝晶,洪坚平,谢英荷,刘冰,张健.石灰性土壤磷细菌的分离、筛选及解磷效果.山西农业科学,2005,33(4):56-59.
    郝晶,洪坚平,刘冰,张健.石灰性土壤中高效解磷细菌菌株的分离、筛选及组合.应用与环境生物学报,2006,12(3):404-408.
    黄初龙,张雪萍.蚯蚓环境生态作用研究进展.生态学杂志,2005,24(12):1466-1470.
    黄健,徐芹,孙振钧,王冲,郑东梅.中国蚯蚓资源研究.中国农业大学学报, 2006,11(6):9-20.
    黄福珍.蚯蚓.北京:农业出版社.1982.
    何振立.土壤微生物量及其在养分循环和环境质量评价中的意义.土壤,1997,29(2):61-69.
    韩玉萍,宋光煜,杨万勤.土壤生态学的理论体系及其研究领域.生态学杂志, 2000,19(4):53-56.
    韩晓日,郭鹏程,陈恩凤,邹德乙.壤微生物对施入肥料氮的固持及其动态研究.土壤学报, 1998,35(3):412-418.
    胡亚林,汪思龙,颜绍馗.响土壤微生物活性与群落结构因素研究进展.土壤通报,2006,37(1):170-176.
    胡诚,曹志平,罗艳蕊,马永良.长期施用生物有机肥对土壤肥力及微生物生物量碳的影响.中国生态农业学报, 2007,15(3):48-51.
    胡佩,刘德辉,胡锋,沈其荣.蚓粪中的植物激素及其对绿豆插条不定根发生的促进作用.生态学报,2002,22:1211一1214.
    胡国成,章明奎,韩常灿.红壤团聚体力学和酸碱稳定性的初步研究.浙江农业科学, 2000,3:125-127.
    胡日利,吴晓芙.土壤微生物生物量作为土壤质量生物指标的研究.中南林学院学报, 2002,22(3):51-53.
    焦文涛,蒋新,余贵芬.土壤有机质对镉在土壤中吸附-解吸行为的影响.环境化学, 2005,24(5):545-549.
    金发会,李世清,卢红玲,李生秀.黄土高原不同土壤微生物量碳、氮与氮素矿化势的差异.生态学报,2008,28(1):227-236.
    贾伟,周怀平,解文艳,关春林,郜春花,石彦琴.长期有机无机肥配施对褐土微生物生物量碳、氮及酶活性的影响.植物营养与肥料学报,2008,14(4):700-705.
    李辉信,胡锋,沈其荣,陈小云,仓龙,王霞.接种蚯蚓对秸秆还田土壤碳、氮动态和作物产量的影响.应用生态学报,2002,13(12):1637-1641.
    李典友,潘根兴,向昌国,褚清河,丁玉川.土壤中蚯蚓资源的开发应用研究及展望.中国农学通报,2005,21(10):340-347.
    李荣林,沈寿国,陈浩,李优琴.微生物对土壤中Pb Cd的溶解作用研究.农业环境科学学报,2006,25(增刊):124-126.
    李酉开.土壤农业化学常规分析方法.北京:科学出版社.1983.
    李娟,赵秉强,李秀英,姜瑞波, Hwat Bing So.长期不同施肥制度下几种土壤微生物学特征变化.植物生态学报,2008,32(4)891-899.
    李潮海,王小星,王群,郝四平.不同质地土壤玉米根际生物活性研究.中国农业科学, 2007,40(2):412-418.
    李东坡,武志杰,陈利军,杨杰,朱平,任军,彭畅,高红军.长期培肥黑土脲酶活性动态变化及其影响因素.应用生态学报,2003,14(12):2208-2212.
    李春俭,张福锁.微生物产生的生长调节物质与植物生长.世界农业,1995,8:42-43.
    李映强.有机质与土壤结构,热带亚热带土壤科学,1997,6(1):45-50.
    李忠佩,林心雄,程励励.施肥条件下瘠薄红壤的物理肥力恢复特征.土壤, 2003,2:112-117.
    黎宁,李华兴,朱凤娇,邝培锐,梁友强,张育灿,林日强.菜园土壤的理化性质和微生物生态特征与种植年限的关系.生态环境,2005,14(6):925-929.
    黎宁,李华兴,朱凤娇,刘远金,邝培锐.菜园土壤微生物生态特征与土壤理化性质的关系.应用生态学报,2006,17(2):285-290.
    廖敏,黄昌勇.镉在有机酸存在时对红壤中微生物生物量的影响.应用生态学报, 2002,13(3):300-302.
    林琦,郑春荣,陈怀满.根际环境中镉的形态转化.土壤学报,1998,15(4):461-467.
    刘玉真,朱宇恩,成杰民.赤子爱胜蚓(Eisenia foetida)对三种土壤Zn、Pb有效态含量的影响.生态环境,2006,15(4):739-742.
    刘健,薛进军,梁高生,蒙海龙,张能.蚯蚓粪在小白菜穴盘育苗上应用研究.广西农业科学,2008,39(5):628-631.
    刘守龙,苏以荣,黄道友,肖和艾,吴金水.微生物商对亚热带地区土地利用及施肥制度的响应.中国农业科学,2006,39(7):1411-1418.
    刘小虎,许艳华,杨劲峰,韩晓日,施骥.不同施肥处理对棕壤几个肥力指标的影响.土壤通报,2005,26(4):474-478.
    刘晓利,何园球,李成亮,王艳玲.不同利用方式和肥力红壤中水稳性团聚体分布及物理性质特征.土壤学报,2008,45(3):459-465.
    刘霞,刘树庆,王胜爱,冯大领.重金属复合污染对土壤微生物生态特征的影响研究.农业环境科学学报,2007,26(增刊):17-21.
    刘恩玲,孙继,王亮.不同土壤改良剂对菜地系统铅镉累积的调控作用.安徽农业科学, 2008,36(27):11992-11994.
    刘德鸿,成杰民,刘德辉.蚯蚓对土壤中铜、镉形态及高丹草生物有效性的影响.应用与环境生物学报,2007,13(2):209-214.
    刘晓冰,邢宝山.土壤质量及其评价指标.农业系统科学与综合研究, 2002,18(2):109-112.
    鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社. 1999.
    吕国红,周广胜,赵先丽,周莉.土壤碳氮与土壤酶相关性研究进展.辽宁气象,2005,2:6-8.
    梁建根,竺利红,施跃峰.试论植物与微生物的互作.现代农业科技,2008,20:337-338.
    马维娜,杨京平,汪华.不同水分模式分次施氮对水稻根际土壤微生物生态效应的影响.浙江大学学报(农业与生命科学版),2007,33(2):184-189.
    马淑敏,孙振钧,王冲.蚯蚓-甜高梁复合系统对土壤镉污染的修复作用及机理初探.农业环境科学学报,2008,27(1):0133-0138.
    孟立君,吴凤芝.土壤酶研究进展.东北农业大学学报,2004,35(5):622-626.
    聂继云,董雅凤.果园重金属污染的危害与防治.中国果树,2002,1:44-47.
    庞学勇,刘庆,刘世全,吴彦,林波,何海.川西亚高山针叶林植物群落演替对生物学特性的影响.水土保持学报,2004,18(3):45-48.
    庞欣,张福锁,王敬国.不同供氮水平对根际微生物量氮及微生物活度的影响.植物营养与肥料学报,2000,6(4):476-480.
    曲贵伟,依艳丽.聚丙烯酸铵对重金属离子的吸附效应及在土壤修复上的应用.安徽农业科学,2006,34(20):5331-5333,5335.
    任天志,Stefano Grego.持续农业中的土壤生物指标研究.中国农业科学,2000,33(1):68-75.
    沈宏,曹志洪.长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响.热带亚热带土壤科学,1998,7(1):1-5.
    孙瑞莲,赵秉强,朱鲁生,徐晶,张夫道.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用.植物营养与肥料学报,2003,9:406-410.
    孙秀山,封海胜,万书波,左学青.连作花生田主要微生物类群与土壤酶活性变化及其交互作用.作物学报,2001,27(5):617-621.
    孙红霞,武琴,郑国祥,王振忠. EM对茄子、黄瓜抗连作障碍和增强土壤生物活性的效果.土壤,2001,5:264-267.
    孙翠玲,郭玉文,佟超然.杨树混交林地土壤微生物与酶活性的变异研究.林业科学, 1997,33(6):488-496.
    孙中涛,姚良同,孙凤鸣,张刚.微生物肥料对棉田土壤生态与棉花生长的影响.中国生态农业学报,2005,13(3):54-56.
    史奕,陈欣,沈善敏.土壤团聚体的稳定机制及人类活动的影响.应用生态学报, 2002,13(11):1491-1494.
    宋日,吴春胜,牟金明,姜岩,郭继勋.玉米根茬留田对土壤微生物量碳和酶活性动态变化特征的影响.应用生态学报,2002,13(4):303-306.
    同小娟,李维炯,倪永珍.EM堆肥堆夏玉米生长发育的影响研究.中国生态农业学报, 2003,11(4):18-20.
    同小娟,李俊,李维炯.长期施用有效微生物肥对冬小麦-夏玉米生长和产量的影响.华北农学报,2007,22(6):165-170.
    文倩,关欣.土壤团聚体形成的研究进展.干旱区研究,2004,21(4):434-438.
    王霞,胡锋,李辉信,沈其荣.秸秆不同还田方式下蚯蚓对旱作稻田土壤碳、氮的影响.生态环境,2003,12(4):462-466.
    王霞,李辉信,胡锋,王丹丹.蚯蚓活动对麦田生态系统中土壤氮素渗漏的影响.土壤学报, 2004,41(6):987-990.
    王清奎,汪思龙.土壤团聚体形成与稳定机制及影响因素.土壤通报, 2005,36(3):415-421.
    王小利,苏以荣,黄道友,肖和艾,汪立刚,吴金水.土地利用对亚热带红壤低山区土壤有机碳和微生物碳的影响,中国农业科学,2006,39(4):750-757.
    王韵,王克林,邹冬生,李林,陈志辉.广西喀斯特地区植被演替对土壤质量的影响.水土保持学报,21(6):130-134.
    王莹.重金属污染土壤的微生物多样性研究进展.现代农业科技,2008,17:174-175.
    吴金水,林启美,黄巧云,肖和艾.土壤微生物生物量测定方法及其应用.北京:气象出版社.2006,54-74.
    王术,戴俊英,王伯伦,顾宜睛,王铮.有效微生物群(EM)对水稻秧苗素质的影响.沈阳农业大学学报,2003,34(2):81-84.
    王学翠,童晓茹,温学森,杨德奎.植物与根际微生物关系的研究进展.山东科学, 2007,20(6):40-50.
    王光华,金剑,徐美娜,刘晓冰.植物、土壤及土壤管理对土壤微生物群落结构的影响.生态学杂志,2006,25(5):550-556.
    王超,吴凡,刘训理,刘兵.不同肥力条件下烟草根际微生物的初步研究.中国烟草科学, 2005,(2):l2-l4.
    王延军,宗良纲,李锐,魏增贵,杨永岗,肖兴基.有机栽培和常规栽培水稻体系土壤酶及微生物量的比较研究.中国生态农业学报,2008,16(1):47-51.
    夏运生,王凯荣,张格丽.土壤镉生物毒性的影响因素研究进展.农业环境保护,2002,21(3):272-275.
    徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002,39(1):89-96.
    许晓平,汪有科,冯浩,赵西宁.土壤改良剂改土培肥增产效应研究综述.中国农学通报, 2007,23(9):331-334.
    叶锦韶,尹华,彭辉.微生物抗重金属毒性研究进展.环境污染治理技术与设备, 2002,3(4):1-4.
    俞协治,成杰民.蚯蚓对土壤中铜、镉生物有效性的影响.生态学报, 2003,23(5):922-928.
    于树,汪景宽,高艳梅.地膜覆盖及不同施肥处理对土壤微生物量碳和氮的影响.沈阳农业大学学报,2006,37(4):602—606.
    阳文锐,李维炯,陈展.EM堆肥对土壤生物影响的研究.中国生态农业学报, 2007,15(6):88-91.
    杨世关,刘亚纳,张百良.赤子爱胜蚓处理鸡粪的试验研究.中国生态农业学报,2007,15(1):55-57.
    杨招弟,蔡立群,张仁陟,李爱宗.不同耕作方式对旱地土壤酶活性的影响.土壤通报, 2008,39(3):514-517.
    杨海儒,宫伟光.不同土壤改良剂对松嫩平原盐碱土理化性质的影响.安徽农业科学, 2008,36(20):8715-8716,8809.
    严小龙,廖红,戈振扬,罗锡文.植物根构型特性与磷吸收效率.植物学通报, 2000,17(6):511-519.
    姚槐应,何振立,陈国潮,黄昌勇.红壤微生物量在土壤-黑麦草系统中的肥力意义.应用生态学报,1999,10(6):725-728.
    姚槐应,黄昌勇.土壤微生物生态学及其实验技术.北京:科学出版社.2006.
    袁方曜,王玢,牛振荣,王峰.华北代表性农田的蚯蚓群落与重金属污染指示研究.环境科学研究,2004,17(6):70-72.
    员学锋,汪有科,吴普特,冯浩.聚丙烯酰胺减少土壤养分的淋溶损失研究.农业环境科学学报,2005,24(5):929-930.
    赵吉.土壤健康的生物学监测与评价.土壤,2006,38(2):136-142.
    赵先丽,程海涛,吕国红,贾庆宇.土壤微生物生物量研究进展.气象与环境学报,2006,22(4):68-72.
    赵春燕,孙军德,宁伟,何瀛.重金属对土壤微生物酶活性的影响.土壤通报,2001,32 (2):93-94.
    张卫信,陈迪马,赵灿灿.蚯蚓在生态系统中的作用.生物多样性,2007,15(2):142-153.
    张信娣,曹慧,徐冬青,金叶飞,陈银科.光合细菌和有机肥对土壤主要微生物类群和土壤酶活性的影响.土壤,2008,40(3):443-447.
    张志良,瞿伟菁.植物生理学实验指导.北京:高等教育出版社.2003,23-25.
    张亮,程智慧,周艳丽,董小艳,魏玲.百合生育期根际土壤微生物和酶活性的变化.园艺学报,2008,35(7):1031-1038.
    张咏梅,周国逸,吴宁.土壤酶学的研究进展.热带亚热带植物学报,2004,12(1):83-90.
    张彦,张惠文,苏振成,张成刚.长期重金属胁迫对农田土壤微生物生物量、活性和种群的影响.应用生态学报,2007,18(7):1491-1497.
    张燕,冯浩,汪有科,赵西宁.土壤结构改良剂在节水农业中的研究与应用.中国农学通报,2007,23(9):585-598.
    张竹青,谭德军.四季豆、黄豆、绿豆对重金属的超量积累效应.贵州农业科学, 2008,36(6):81-83.
    章明奎,何振力,陈国潮.利用方式对红壤水稳性团聚体形成的影响.土壤学报, 1997,34(4):359-365.
    章家恩,廖宗文.试论土壤的生态肥力及其培育.土壤与环境,2000,9(3):253-256.
    章家恩,刘文高,胡刚.同土地利用方式下土壤微生物数量与土壤肥力的关系.土壤与环境,2002,11(2):140-143.
    郑立臣,宇万太,马强,王永宝.农田土壤肥力综合评价研究进展.生态学杂志,2004,23 (5):156-161.
    郑兆飞. EM有机生物肥对毛竹林地土壤性质的影响.竹子研究汇刊,2008,27(2):38-41.
    周礼恺,张志明.土壤酶的测定方法.土壤通报,1980,5:37-38.
    周桦,宇万太,姜子绍,张璐.不同土地利用方式对土壤微生物生物量氮的影响.土壤通报, 2008,39(4):734-737.
    曾路生,廖敏,黄昌勇,罗运阔.镉污染对水稻土微生物量、酶活性及水稻生理指标的影响.应用生态学报,2005,16(11):2162-2167.
    宗良纲,徐晓炎.土壤中镉的吸附解吸研究进展.生态环境,2003,12(3):331-335.
    朱立安,魏秀国.土壤动物群落研究进展.生态科学,2007,26(3):269-273.
    朱同彬,诸葛玉平,刘少军,娄燕宏.不同水肥条件对土壤酶活性的影响.山东农业科学, 2008,3:74-78.
    郑本暖,杨玉盛,谢锦升,郑世群,何宗明,陈光水.亚热带红壤严重退化生态系统封禁管理后生物多样性的恢复.水土保持研究,2002,9(4):57-63.
    周鑫斌,洪坚平,谢英荷.磷细菌群对石灰性土壤磷有效性影响的研究.山西农业大学学报,2003,3:68-72.
    周东美,郝秀珍,薛艳,仓龙,王玉军,陈怀满.污染土壤的修复技术研究进展.生态环境, 2004,13(2):234-242.
    Abbott LK, Murphy DV. Soil biological fertility–A key to sustainable land use in agriculture. Netherlands: Kluwer Academic Publishers. 2003.
    Albiach R,Canet R,Pomanes F,Ingelmo F. Microbial biomass content and enzymatic activities after the app lication of organic amendments to ahorticultural soil. Bioresource Technology,2000.75: 43-48.
    Amador JA, Gorres JH, Savin MC.Carbon and nitrogen dynamics in Lumbricus terrestris (L.) burrow soil: Relationship to plant residues and macropores. Soil Science Society of America Journal, 2003,67:1755-1762.
    Amann RL,Ludwig W,Sehleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiological Reviews, 1995,59:143-169.
    Anderson JPE,Domsch KH. Quantities of plant nutrients in the microbial biomass of selected soils.Soil Science,1980,30:211-216.
    Anderson TH, Domsch KH. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry,1989,21:471-479.
    Azam F,Yousaf M,Hussain F, Malik KA. Determination of biomass N in some agricultural soils of Punjab ,Pakistan. Plant Soil,1989,113:223-228.
    Basker A,Maceregor AN,Kirkman JA. Influence of soil ingestion by earthworms and the availability in soil: an incubation experiment. Biology and Fertility of Soils, 1992,14:300-303.
    Bhattacharyya P,Chakrabarti K, Chakraborty A. Microbial biomass and enzyme activities insubmerged rice soil mended with solid waste compost and decomposed cow manure. Chemosphere,2005,60(3):310-318.
    Blanchart E. Restoration by earthworms (Megascolecidae) of the macroaggregate structure of a destructured savanna soil under field conditions. Soil Biology and Biochemistry, 1992,24(12): 1587-1594.
    Boekhold AE,Temminghoff EJM,Vander Zee SEATM. Influence of electrolyte composition and PH on cadmium sorption by an acid sandy soil.Soil Science,1993,44:85-96.
    Bohlen PJ,Edwards CA. Earthworm effects on N dynamics and soil respiration in microcosms receiving organic and inorganic nutrients.Soil Biology and Biochemistry, 1995,27:341-348.
    Bohlen PJ,Parmelee RW,Mccartney DA , Edwards CA . Earthworm efects on carbon and nitrogen dynamics of surface litter in corn agroecosystems. Ecological Applications, 1997,4:1341-1349.
    Bossuyt H,Six J,Hendrix PF. Protection of soil carbon by microaggregates within earthworm casts.Soil Biology and Biochemistry,2005,37:251-258.
    Brown GG,Barois L,Lavelle P. Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains.European Journal of Soil Biology,2000,36:177-198.
    Brown GG,Edwards CA,Brussaard L. How earthworms affect plant growth: Burrowing into the mechanisms. In:Earthworm Ecology. CRC Press LLC,2004,13-49.
    Campbell CA,Blederbeck VO,Zentner RP, Lafond GP. Efect of crop rotations and cultural practices on soil organic matter,microbial biomass and respiration in a thin black chernozem.Can J Soil Science,1991,71:363-376.
    Cesare FD,Garzillo AMV,Buonocore V. Use of sonication for measuring acid phosphatase activity in soil. Soil Biology and Biochemistry,2000,32:825-832.
    Chang EH,Chung RS,Tsai YH. Efect of diferent application rates of organic fertilizer on soil enzyme activity and microbial pdlufion.Soil Science and Plant Nutrition, 2007,53(2):132-140.
    Cheng JM,Wong MH. Effects of earthworms on Zn fractionation in soils.Biology and Fertility of Soils,2002,36(1):72-78.
    Chilima J,Huang CY,Wu CF. Microbial biomass carbon trends in black and red soils under single straw application : Effect of straw placement mineral N addition and tillage.Pedosphere,2002,12(1):59-72.
    Cortez J,Billes G,Bouche M B. Effect of climate, soil type, earthworm activity on nitrogen transfer from a nitrogen-15-labelled decomposing material under field conditions.Biology and Fertility of Soils,2000,30:318–327 .
    De Caire GZ, De Cano MS, Palma RM, De Mule CZ. Changes in soil enzyme activities following additions of cyanobacteria biomass and exopoly saccharide. Soil Biology and Biochemistry,2000,32:1985-1987.
    Desjardin V. Effect of microbial activity on the mobility of chromium in soils.Waste Manag, 2002,22(2):195-200.
    Devliegher W,Verstraete W. Lumbricus terrestris in a soil core experiment:effects of nutrient enrichment proceses (NEP)and associated processes(GAP). Soil Biology and Biochemistry,1996,29:341-346.
    Doran JW,Coleman DC, Stewart BA. Defining soil quality for a sustainable environment. Soil Science Society of America, Inc.American Society of Agronomy, Inc. Madison, Wisconsin, USA.1994.
    Doran JW,SarrantonioM,Liebig MA. Soil health and sustainability.Advances in Agronomy, 1996,56:1-54.
    Edwards CA. Earthworm Ecology,2nd edn.CRC Press, Boca Raton, Florida,USA.2004. Edwards CA,Lofty JR. Chapman and Hall-London.Biology of Earthworms, 1977,41-57.
    Edwards CA (Ed). The importance of earthworms as key representatives of the soil fauna. In Earthworm Ecology.CRC Press LLC.2004,3-9.
    Franchini JC, Crispino CC, Souza RA, Torres E, Hungria M. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil and Tillage Research,2007,92:18-29.
    Franzluebbers AJ,Arshad MA. Soil microbial biomass and mineralizable carbon of water-stable aggregates. Soil Science Society of America Journal,1997,61:1090-1097.
    Glendining MJ,Powlson DS,Pouhon PR, Bradbury NJ. The effects of long term application of inorganic nitrogen fertilizer on soil nitrogen in the broadbalk wheat experiment.Journalof Agricultural Sciences,1996,127:347-363.
    Groffman PM,Boblen PJ,Fisk MC, Fahey TJ. Exotic earthworm invasion and microbial biomass in temperate forest soils.Ecosystems,2004,7:45-54.
    Groffman PM,McDowell WH,Myers JC, Merriam JL. Soil microbial biomass and activity in tropical riparian forests.Soil Biology and Biochemistry,2001,33:1339-1348.
    Hallaire V,Curmi P,Duboisset A. Soil structure changes induced by the tropical earthworm Pontoscolex corethrurus and organic inputs in a Peruvian ultiso1.European Journal of Soil Biology,2000,36:35-44.
    Hatton H. Influences of heavy metals on soil microbial activities.Soil Science and Plant Nutrition,1992,38:93-100.
    Haynes R J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand.Soil Biology and Biochemistry,2000,32:211-219.
    Insam H,Mitcheu CC,Dormaar JF. Relationship of soil microbial biomass and activity with fertilization practice and crop yield of three oltisols. Soil Biology and Biochemistry, 1991,23:459-464.
    Jenkinson DS, Ladd JN. Microbial biomass in soil: Measurement and turnover. In: Paul V E A, Ladd J N, eds. Soil Biochenistry. New York: Marcel Dekker,1981,5:415-471.
    Jimenez ML, De la Horra AM, Pruzzo L. Soil quality: a new index based on microbiological and biochemical parameters. Biology and Fertility of Soils,2002,35(4):302-306.
    Kandeler E,Luftenegger G,Schwarz S. Influence of heavy metals on the functional diversity of soil microbial communities.Biology and Fertility of Soils,1997,23:299-306.
    Ketterings QM, Blair JM, Marinissen JCY. Effect of earthworms on soil aggregate stability and carbon and nitrogen storage in a legume cover crop agroecosystem.Soil Biology and Biochemistry,1997,29:401-408.
    Kurek E,Czavan J,Bollag JM. Sorption of cadmium by microorganisms in competition with other soil constituents. Appl Environ Microbiol,1982,43(5):1011-1015.
    Lavelle P. Earthworm activities and the soil system.Biology and Fertility of Soil, 1988,6:237-251.
    Lavelle P, Rangel P, Kanyonyo J. Intestnal mucus production by two species of tropical earthworm: Millsonia lamtoiana (Megasco lecidae) and Pontoscolex corethrurus(Glossoscolecidae). P roc. 8th Intl Co lloq Soil Zoology, Belgium,1983,405- 410.
    Li X,Fisk MC,Fahey TJ, Bohlen PJ. Influence of earthworm invasion on soil microbial biomass and activity in a northern hardwood forest.Soil Biology and Biochemistry, 2002,34:1929-1937.
    Lovell RD,Jarvis SC,Bardgett RD. Soil microbial biomass and activity in long-term grassland:effects of management changes.Soil Biology and Biochemistry, 1995,27:969-975.
    Lynch JM,Panting LM. Variations in the size of the soil biomass.Soil Biology and Biochemistry,1980,12:547-550.
    Macarty GW,Meisinger JJ,Jenniskens FMM. Relationships between total-N, biomass-N and active-N in soil under different tillage and N fertilizer treatments. Soil Biology and Biochemistry,1995,27(10):1245-1250.
    Marcote I, Hernandez T, Garcindez T, Polo A. Influence of one or two successive annual applications of organic fertilizers on the enzyme activities of a soil under barley cultivation . Bioresource Technology,2001,79:147-154.
    Margesin R,W alder G,Schinner F. The impact of hydrocarbon remediation(diesel oil and polycyclic aromatic hydrocarbons)on enzyme activities and microbial properties of soil.Aeta Biotechno1ogica,2000,20:313-333.
    Marinari S,Mancinelli R,Campiglia E, Grego S. Chemical andbiological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecological Indicators, http://ww.elsevier.com/locate/ecolind.2005.
    Martens R. Currentmethods formeasuringmicrobial biomass C in soil Potentials and limitations.Biology Fertilizer Soils,1995,19:87-99.
    Martin JP, Martin WP, Page JB. Soil aggregation. Advance in Agronomy,1995,7:1-37.
    Marumoto T,An derson JPE,Domsch LH. Decomposition of 14C and 15N-1abelled microbial cells in soil. Soil Biology and Biochemistry,1982,14:461-467.
    Mary B,Recous S,RobinD. A method for calculating nitrogen fluxes in soil using 15N tracing. Soil Biology and Biochemistry,1998,30:1963-1979.
    Ma Y,Dickinson NM,Wong MH. Toxicity of Pb/Zn mine tailings to the earthworms Pheretima and the effects of burrowing on metal availability.Biology and Fertihty ofSoils,2002,36(1):79-86.
    Mersi W,Schinner F. An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biology and Fertility of Soils, 1991,11:216-220.
    Moreno JL,Hernandez T,Perez A,Garcia C. Toxicity of cadmium to soil microbial activity : Effect of sewage sludge addition to soil on the ecological dose.Applied Soil Ecology, 2002,21:149-158.
    Mulongoy K. Microbial biomass and maize nitrogen uptake under a posphocarpus palustris live-mulch grown on a tropical alfisol. Soil Biology and Biochemistry, 1986,18:395-398.
    Mulongoy K,Bedoret A. Properties of worm casts and surface soils under various plant covers in the humid tropics. Soil Biology and Biochemistry,1989,21:197-203.
    Nannipieri P,Ascher J,Ceccherini MT,Landi L,Pietramellera G, Renella G. Microbial diversity and soil functions.European Journal of Soil Science,2003,54:655-670.
    Olof A,Thomas K,Riitta H. Projecting soil fauna influence on long-term soil carbon balances from faunal exclusion experiments.Applied Soil Ecology,2001,18(2):177-186.
    Parfitt RL,Yeates GW,Ross DJ,Mackay AD,Budding PJ. Relationships between soil biota,nitrogen and phosphorus availability,and pasture growth under organic and conventional man agement.Applied Soil Ecology,2005,28:l-l3.
    Parkin TB,Berry E. Microbial nitrogen transformations in earthworm burrows. Soil Biology and Biochemistry,1999,31:1765-1771.
    Pascual JA,Moreno JI,Hernandez T,Garcia C. Persistence of immobilized and total urease and phosphatase activities in a soil amended with organic wastes. Bioresource Technology, 2002,82(1):73-78
    Patra DD,Brookes PC,Coleman K,Jenkinson DS. Seasonal changes of soil microbial biomass in an arable and a grassland soil which have been under uniform management for many years . Soil Biology and Biochemistry,1990,22(6):739-742.
    Powlson DS,Brookes PC,Christensen BT. Measurement of soil microbial biomass provides an early indication of changes in total soil organ ic matter due to straw incorporation.Soil Biology and Biochemistry,1987,19:159-164.
    Puri G,Ashman MR. Relationship between soil microbialbiomass and gross N mineralization.Soil Biology and Biochemistry,1992,30:251-256.
    Richard DB,Tania CS,Lisa C,Ian RH. Linkages between soil biota,nitrogen availability,and plant nitrogen uptake in a mountain ecosystem in the Scottish Highlan ds.Applied Soil Ecology,2002,19:l21-134.
    Roscoe R, Buurman P, Velthorst E J. Disruption of soil aggregates by varied amounts of ultrasonic energy in fractionation of organic matter of a clay Latosol: carbon, nitrogen andδ13C distribution in particle-size fractions. European Journal of Soil Science, 2000,51: 445-454.
    Satchell JE. Earthworm ecology from darwin to vermiculture.London:Chapman and Hall Ltd.Cambridge,1983,1-178.
    Serra Wittling C,Houot S,Barriuso E. Soil enzymatic response to addition of municipal solid-waste compost.Biology and Fertility of Soils,1995,20,226-236.
    Singh JS,Raghubanshi AS,Singh RS,Srivastava SC. Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna.Nature,1989,338:499-500.
    Sparling GP. Ratio of microbial biomass Carbon to Soil organic carbon as a sensitive indicator of changes in soil organic matter. Soil Research,1992,30:195-207.
    Spehn EM,Hector A,Joshi J,Scherer-Lorenzen M. Ecosystem effects of biodiversity manipulations in European grasslands.Ecological Monographs,2005,75:37-63.
    Srivastava SC. Microbial C, N and P in dry tropical soils: seasonal changes and influence of soil moisture. Soil Biology and Biochemistry,1992,24(7):711-714.
    Strandberg GW,Shumate II SE,Parrott JR. Microbial cells as biosorbents for heavy metals: accumulation of uranium by saccharomyces cerevisiae and pseudomonas aceruginosa . Applied and Environmental Microbiology,1981,41(1):237-245.
    Swaby RL. Stimulation of plant growth by organic matter.Journal of the Australian Institute of Agricultural Science,1942,8:156-163.
    Taylor JP,Wilson B,Mills MS,Burns RG. Comparison of microbial numbers and enzymatic activities in surface and subsoils using various techniques. Soil Biology and Biochemistry,2002,34,387-401.
    Tian G,Olimah JA,Adeoye GO,Kang BT. Regeneration of earthworm populations in adegraded soil by natura1 and planted fallows under humid tropical conditions. Science Society of America Journal,2000.,64:222-228.
    Tilman D,Downing JA. Biodiversity and stability in grass1and.Nature,1994,367:363-365.
    Tilman D,Reich PB,Knops J,Wedin D,Mielke T. Diversity and productivity in a long-term grassland experiment.Science,2001,294:843-845.
    Tomati U,Galli E. Earthworms, soil fertility and plant productivity. Acta Zoologica Fennica, 1995,196:11-14.
    Torsvik V,Ovreas L. Microbial diversity and function in soil:from genes to ecosystems. Ecology and Industrial Microbiology,2002,5:240-245.
    Valentines M C,Vilapana R,Torres R,Usall J, Larrigaudiere C. Specific roles of enzymatic browning and lignification.Postharvest Biology and Technology,2005,36:227-234.
    Vance ED,Brookes PC,Jenkinson DS. An extraction method for measuring soil microbial biomass C.Soil Biology and Biochemistry,1987,19(6):703-707.
    Van Veen JA,Ladd JN,Frissel MJ. Modeling C and N turnover through the microbial biomass in soil.Plant and Soil,1984,76:257-274 .
    Warentin B. The concept of soil quality.Joural of Soil,Land and Water Conservation, 1995,50:226-228.
    Whalen JK,Parmelee PW,McCartney DA,VanArsdale JL. Movement of N from decomposing earthworm tissue to soil, microbial and plant N pools. Soil Biology and Biochemistry, 1999,31:487-492.
    Wolters V. Invertebrate control of soil organic matter stability.Biology and Fertility of Soils. 2000,31:1-l9.
    Wurst S,Dugassa-Gobena D,Langel Bonkowski M,Scheu S. Combined effects of earthworm sand vesicular-arbuscular mycorrhizas on plant and aphid performance.New phytologist. 2004,163:169-176.
    Yelinda A,Flavio L,Eleusa B. Effect of earthworm addition on soil nitrogen availability, microbial biomass and litter decomposition in mesocosms.Biology and Fertility of Soils, 2004,39:146-15.
    Yin W Y. A brief review and prospect on soil zoology.Buuetin of Biology,2001,36(8):1-3.
    Zhang BG,Li GT,Shen TS,Wang JK,Sun Z. Changes in microbial boimass C ,N ,and P andenzyme activtieis in soil incubated with the earhtworms metaphire guillelmi or eisenia fetida.Soil Biology and Biochemistry,2000,32:2055-2062.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700