用户名: 密码: 验证码:
水体无机碳对沉水植被恢复的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机碳是绿色植物进行光合作用的基本资源。溶解于水体中的无机碳共有三种不同的存在形式:自由CO_2(溶解于水中的分子形式为CO_2和H_2CO_3)、离子态的HCO_3~-和CO_3~(2-)。近年来发现几乎所有沉水植物的内在光合作用潜力都远远超过水体无机碳的供应量,大部分沉水植物的生长经常受到无机碳的潜在限制。
     为了解水华引起的水体无机碳变化对沉水植物生长的影响,对8种沉水植物:金鱼藻,穗花狐尾藻,篦齿眼子菜,光叶眼子菜,微齿眼子菜,伊乐藻,菹草和黑藻在不同无机碳浓度下的生物量、株高、叶绿素以及光合和呼吸速率进行了比较研究。结果表明8种沉水植物均能利用HCO_3~-作为光合无机碳源,外源HCO_3~-浓度在1.5 mmol/L下时能促进金鱼藻、菹草和伊乐藻的生长,提高其光合速率;外源HCO_3~-浓度在2.5 mmol/L下时能促进狐尾藻、光叶眼子菜、黑藻、微齿眼子菜和蓖齿眼子菜的生长,提高其光合速率。在CO_3~(2-)为优势碳源时,8种沉水植物表现出不同的适应性,发现微齿眼子菜、篦齿眼子菜和黑藻在整个实验范围内生长未受抑制,且在不同浓度下表现生长和光合速率的提高,说明这三种沉水植物对[HCO_3~-]/[CO_3~(2-)]比值和pH值具有较广适应范围。而金鱼藻和伊乐藻的生长受到抑制,狐尾藻,菹草和光叶眼子菜均死亡,表明[HCO_3~-]/[CO_3~(2-)]比值和pH值是这5种沉水植物生长的重要限制因子。
     通过添加无机碳和曝气的方式改变滇池水体无机碳构成比例的方法,研究了沉水植物篦齿眼子菜,穗花狐尾藻,微齿眼子菜,光叶眼子菜和马来眼子菜在野外条件下种群扩增,以及对水体无机碳的适应性,结果表明添加4.0 mmol/L无机碳能促进篦齿眼子菜和微齿眼子菜的生长,添加0.5 mmol/L无机碳明显促进狐尾藻的生长,夜间曝气的方式一定程度上可以降低水体叶绿素a浓度,抑制藻类的生长。
     以滇池福保湾生态恢复区非封闭性围隔和围隔外水域为研究对象,研究了富营养化水体中可溶性无机碳的时空动态变化及其相关影响因素,来探索蓝藻水华爆发至消亡过程中水体无机碳在自然水体中的变化规律。结果表明:福保湾水体叶绿素a浓度和CO_3~(2-)浓度呈极显著正相关(P<0.01),与CO_2浓度均呈极显著负相关(P<0.01),与总无机碳浓度和HCO_3~-浓度均呈显著负相关(P<0.05);水体叶绿素a浓度与水体pH值均呈显著正相关(P<0.05)。
Dissolved inorganic carbon(DIC)is a fundamental resource for photosynthesis of plants.The forms of DIC in water include CO_2,HCO_3~- and CO_3~(2-).Recent studies have shown that DIC potentially limited the growth and photosynthesis of several submerged macrophytes.
     In order to elucidate the impacts of variation of DIC caused by water bloom on the growth of submerged macrophytes,the biomass,shoot length,chlorophyll and photosynthetic and respiration rates of eight kinds of submerged macrophytes,including Ceratophyllum demersum L.,Myriophyllum spicatum L.,Potamogeton pectinatus L., Potamogeton lucens Linn.,Potamogeton maackianus,Elodea nattalii,Potamogeton crispus and Hydrilla verticillata,were analysed under different DIC conditions.The results indicated that HCO_3~- can be utilized as carbon source by all the submerged macrophytes tested.Improvement of growth and photosynthetic rates was found on Ceratophyllum demersum L.,Potamogeton crispus L.and Elodea nattalii under exogenous HCO_3~- below 1.5 mmol/L,and also on Myriophyllum spicatum L., Potamogeton lucens Linn.,Hydrilla verticillata,Potamogeton maackianus and Potamogeton pectinatus L.under exogenous HCO_3~- below 2.5 mmol/L.However,when CO_3~(2-)acts as the dorminat carbon source,different effects were found on the eight kinds of submerged macrophytes.Growth and photosynthetic rates of Potamogeton maackianus,Potamogeton pectinatus L.and Hydrilla verticillata were not inhibited,and were improved at certain CO_3~(2-)concentration,which indicates the three species of macrophytes adapt to a wide range of[HCO_3~-]/[CO_3~(2-)]ratio and pH value.However,the growth of Ceratophyllum demersum L.and Elodea nattalii were inhibited,and Myriophyllum spicatum L.,Potamogeton crispus L.and Potamogeton lucens Linn.died when CO_3~(2-)as dominate carbon source,indicating[HCO_3~-]/[CO_3~(2-)]ratio and pH values were the important limiting factors of growth for the above 5 species of submerged macrophytes.
     In the field enclosure experiment,the biomass change of five kinds of submerged macrophytes,including Potamogeton pectinatus L,Myriophyllum spicatum L, Potamogeton maackianus,Potamogeton lucens Linn.and Potamogeton malaianus,were analysed by change the DIC with air aeration and supplement of bicarbonate.It is found that the growth of Potamogeton pectinatus L.and Potamogeton maackianus, Myriophyllum spicatum L were improved under exogenous HCO_3~- at 4.0mmol/L and 0.5mmol/L respectively.Aeration reduced the Chlorophyll a of water and inhibited algae growth considerably.
     In order to elucidate the variation of DIC caused by water bloom,the variation of DIC content and correlated environment factors in different enclosures of Fubao Bay of Lake Dianchi were analysed.The results indicated that the concentration of Chlorophyll a in Fubao Bay was positively correlated to CO_3~(2-)(P<0.01)and pH(P<0.05),negatively correlated to CO_2(P<0.01),DIC and HCO_3~-(P<0.05),respectively.
引文
[1]李尚志等.现代水生花卉[M].广州:广东科技出版社,2003
    [2]刘建康.高级水生生物学[M].北京:科学出版社,1999
    [3]宋碧玉,王建,曹明,等.利用人工围隔研究沉水植被恢复的生态效应[J].生态学杂志,1999,18(5):21-24
    [4]Carpenter S R.Lodge D M.Effects of subnerssed macrophytes on ecosytem process [J].Aquatic Botany,1986,26:341-370
    [5]曹萃禾.水生维管束植物在太湖生态系统中的作用[J].生态学杂志,1987,6(1):37-39
    [6]Lehmann A,Lachanvane J B.Changes in the water quality of lake.geneva indicated by submerged macrophyte[J].Freshwater Biology.1999,42:457-466
    [7]Bark J W,Adams M S,Clesceri N L.Enviromental factors and their consideration in the management of submersed aquatic vegetation:A review[J].Aqutic.Plant Manage.1986,24,1-10
    [8]Phillips G L,Eminson D,Moss B.A mechanism to account for macrophyte decline in progressively eutrophicated freshwater[J],Aquatic Botany.1978,4:103-126
    [9]Moss 13,Balls H,Irvine K,et al.Restoration of two lowland lakes by isolation from nutrient-rich water so with cut removal of sediment[J].Journal of Applied Ecology.1986,23(3):391-414
    [10]Balls H R,Moss B,h'vine K.The loss of submerged plants with eutrophication,Ⅰ:Experimental design water chemistry aquatic plant and phytoplankton biomass in experimental carried out in the Norfolk Broad land[J].Freshwater Biology.1989,22(1):71-87
    [11]Irvine K,Balls H R,Moss B.,The loss 0f submerged plants with eutrophication,Ⅱ:relationships between fishes and zooplankton in a set of experimental ponds and conclusions[J].Freshwater Biology.1989,22(1):89-107
    [12]Bronmark C,Weisner S E B.Indirect effects of fish community structure on submerged vegetation in shallow eutrophic lakes:an alternative machanism[J].Hydrobiologia.1992,243/244:293-301
    [13]Phillips G.L,Eminson D,Moss B.A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters[J].Aquat.Bot.,1978,4:103-126
    [14]Ozimek T.and Kowalczewski A.Long-term changes of the submerged macrophytesin euteophic lake Mikolajskie(North Poland)[J].Aquatic Botany,1984,19:1-11
    [15]Andrzej Kowalczewski and Teresa Ozimek.Further long-term changes in the submerged macrophyte vegetation of the eutrophic Lake Mikolaj skie(North Poland)[J].Aquatic Botany,1993,46(3/4):341-345
    [16]吴振斌,陈德强,邱东茹等.武汉东湖水生植被现状调查及群落演替分析[J].重庆环境科学,2003,(8):54-62
    [17]陈洪达.养鱼对武汉东湖生态系的影响[J].水生生物学报,1989,13(4):359-368
    [18]邱东茹,吴振斌.富营养化浅水湖泊沉水水生植被的衰退与恢复[J].湖泊科学,1997,9(1):82-88
    [19]黄文成.沉水植物在治理滇池草海污染中的作用[J].植物资源与环境,1994,3(4):29-33
    [20]马剑敏,严国安,罗岳平等.武汉东湖受控生态系统中水生植被恢复结构优化及水质动态[J].湖泊科学,1997,9(4):359-363
    [21]马剑敏,严国安,任南等.东湖围隔(栏)中水生植被恢复及结构优化研究[J].应用生态学报,1997,8(5):535-540
    [22]王国祥,成小英,濮培民.湖泊藻型富营养化控制—技术、理论及应用[J].湖泊科学.2002.14(3):273-282
    [23]]Korner S,Dugdale T.Is roach herbivory preventing recolonization of submerged macrophytes in shallow lakes[J].Hydrobiologia,2003,506:497-501
    [24]李文朝,尹澄清等.关于湖泊沉积物释放及其测定方法的刍议.湖泊科学,1997,11(4):296-302
    [25]Qiu Dongru,Wu Zhenbin,et al.The restoration of aquatic macrophytes for improving water quality in a hyper-trophic shallow lake in Hubei Province[J],China.Ecological Engineering,1997,13(5):227-238
    [26]成小英,王国祥等.冬季富营养化湖泊中水生植物的恢复及净化作用[J].湖泊科学.2002,14(2):140-141
    [27]张圣照,王国祥,濮培民.太湖藻型富营养化对水生高等植物的影响及植被的恢复[J].植物资源与环境,1998,7(4):52-57
    [28]Moss B.Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components[J].Hydrobiologia,1990,200/201:367-377
    [29]屠清瑛,章永泰,杨贤智.北京什刹海生态修复试验工程[J].湖泊科学,2004,16(1):61-67
    [30]由文辉.螺类与着生藻类的相互作用及其对沉水植物的影响[J]_生态学杂志,1999,18(3):54-58
    [31]Vermaat J E.Periphyton removal by freshwater micrograzers.In:van.vierssen,etal. (eds)Lake Veluwe,Amacrophyte-dominated system under eutrophication stress[M].Kluwer Academic Publishers,Dordrecht,the Netherlands,1994,213-249
    [32]Phillips G L,Eminson D,Moss B A.mechanism to accoun for macrophyte decline in progressively eutrophicated freshwaters[J].Aquat.Bot.,1978,4:103-126
    [33]宋碧玉,曹明,谢平.沉水植被的重建与消失对原生动物群落结构和生物多样性的影响[J].生态学报,2000,20(2):270-276
    [34]Bronmark C.Interactions between epiphytes,macrophytes and herbivores:an experimental approach[J].Oikos,1985,45:26-30
    [35]邱东茹,吴振斌.富营养浅水湖泊的退化与生态修复[J].长江流域资源与环境.1996,5(4):355-361
    [36]赵晟.滇池水生植物研究概述[J].云南环境科学,1999,9:4-8
    [37]任南.环境因子对东湖几种沉水植物生理的影响研究[J].武汉大学学报(自然科学版),1996,4:213-218
    [38]Corrillion R.Les charophycees de France et d'Europe Occidentale.OttoKoeltzVerlag,Koenigstein-Taunus,1957,499
    [39]Anderws M.Ecoofgiealnad Physiological Sutdies on C.his Pida(L.).1982:142
    [40]Kuster A,Schaible R,Schubert H.Light acclimation of photosynthesis in three charophyte specie[J].Aquatic Botany.2004,79,111-124
    [41]李文朝.五里湖地质条件与水生高等植物的适应性研究[J].湖泊科学,1996b,8(supply):1-10
    [42]Riemer D N.Introduction to freshwater vegetation[M].AVI Publishing Company,1984
    [43]Smolders A,Roelofs J G M.Sulphate mediated iron limitation and eutrophication in aquatic ecosystems.[J].Aquat.Bot,1993,46:247-253
    [44]Van W I J K,De Groot C C J,Grillas P.The effect of an aerobio sediment on the growth ofPotamogeton pectinatul L:the role of organic matter,sulphide and ferrous iron[J].Aquatic Botany 1992,44:31-49.
    [45]Adams M S,Guilizzoni P,Adams S.Relationship of dissolved inorganic carbon to macrophyte photosynthesis on some Italian lakes[J].Limnology and Oceanography,1978,23:912-919
    [46]Barko J W,Adams M S,Clesceri N I.Environmental factors and the inconsideration in the management of submersed aquatic vegetation:A Review[J].Aquatic.Plant Manage.1986,24:1-10
    [47]葛滢,常杰,王晓月等.两种程度富营养化水中不同植物生理生态特性与净化能力的关系[J].生态学报,2000,20(6):1050-1055
    [48]Barko J W,Smart R M,Mc Farl and Get al.Interrelationships between the growth of Hydrilla verticillata(L.f)Royleand sedimentnutrient availability[J].Aquat.Bot,1988,32:205-216
    [49]Anderson M R,Kalff.J Submerged aquatic macrophyte biomass in relation to sedment characteristics in ten temperate lakes[J].Freshwater.Biol.1988:115-121
    [50]Rattray M R,Howad Williams C,Browm J M A.Sediment and water as sources of nitrogen and phosphorus for submerged rooted aquatic macrophytes[J].Aquat.Bot.,1991,40:225-237
    [51]戴树桂主编.环境化学[M].北京:高等教育出版社,1997
    [52]张正斌主编.海洋化学[M].青岛:中国海洋大学出版社,2004
    [53]Brian Moss著,王在华译.淡水生态学[M].武汉:中国地质大学出版社,1988
    [54]Madsen T V.Growth and photosynthetic acclimation by Ranunculus aquatilis L.in response to inorganic carbon availability[J].New Phytology,1993,125:707-715
    [55]Frederick Y S,Hilary AN.The effects of global climate change on seagrasses[J].Aquatic Botany,1999,63:169-196
    [56]Madsen T V,Sand-Jensen K.Photosynthetic carbon assimilation in aquatic macrophytes[J].Aquatic Botany,1991,41:5-40
    [57]Jahnke L S,Eighmy T T,Fagerberg W R.Studies of Elodea nuttalli grown under photorespiratory conditions.Photosynthetic characteristics[J].Plant Cell and Environment,1991,14:147-156
    [58]苏睿丽,李伟.沉水植物光合作用的特点和研究进展[J].植物学通报,2005,22(增刊):128-138
    [59]Maberly S C,Madsen T V.Use of bicarbonateions as a source of carbon in photosynthesis by Callitriche herrnap hroditica[J].Aquatic Botany,2002,73:1-7
    [60]Maberly S C,Madsen T V.Affinity for CO_2 in relation to the ability of freshwater macrophytes to use HCO_3~-[J].Functional Ecology,1998,12:99-106.
    [61]金送笛,李永函,陶永明.有效碳对菹草光合作用及吸收氮、磷的影响[J].大连水产学院学报,1994,9:6-11
    [62]Madsen T V,Maberly S C.High internal resistance to CO_2 uptake by submerged macrophytes that use HCO_3~-:measurements in air,nitrogen and helium[J].Photosynthesis Research,2003,77:183-190
    [63]Penuelas J,M.Mendez.HCO_3~- as an exogenous carbon source for Ruppia cirrhosa (Pentagna)Grande[J].Archiv fur Hydrobiologie,1990,120(1):89-96
    [64]Durako M J.Photosynthetic utilization of CO_2(aq)and HCO_3~- in Yhalassia testudinum(Hydrocharitaceae)[J].Mar Biol,1993,115:272-280
    [65]Larkum A W D,James P L.Towards a model for inorganic carbon uptake in seagrasses involving carbonic anhydrase.In:KuoJ,Philipss R C,Walker D I,Kirk man Heds.Seagrass Biology.Nedlands,Australia:The University of Westem Australia,1996
    [66]Walker N A.The transport systems of Charophyte and Chlorophyte giant algae and their integration into modes of behaviour.In:Spanswick RM,Lucas WJ,Dainty J eds,Plant Membrane Transport:Current Conceptual Issues.Elsevier/North-Holland Biomedical Press,Amsterdam,1980:287-300
    [67]Winter L.Short-term fixation of 14-Carbon by the submerged aquatic angiosperm Potamogeton pectinatus[J].Journal of Experimental Botany,1978,29:1169-1172
    [68]Sand-Jensen K.Photosynthetic carbon sources of stream macrophytes[J].J Exp.Bot.,1983,34:198-210
    [69]Beer S,Wetzel R G.Photosynthesis in submersed macrophytes of a temperate lake [J].Plant Physiology,_1982,70:488-492
    [70]潘瑞炽.植物生理学[M].第三版.北京:高等教育出版社,2000
    [71]Bowes G,Salvucci M E.Plasticity in the photosynthetic carbon metabolism of submerged aquatic macrophytes[J].Aquat Bot.,1989,34:233-266
    [72]Reisldnd J B,Madsen TV,van Ginkel L C,et al.Evidence that inducible C_4-type photosynthesis is a chloroplastic CO_2-concentrating mechanism in Hydrilla,a submersed monocot[J].Plant Cell Environ.,1997,20:211-220
    [73]Teese P.Interspecific variation for CO_2 compensation point and differential growth among variants in a C_3-C_4 intermediate plant[J].Oecologia,1995,102:371-376
    [74]Casati P,Lara MV,Andreo CS.Induction of a C_4-like mechanism of CO_2 fixation in Egeria densa,a submersed aquatic species[J].Plant Physiology,2000,123:1611-1621
    [75]Bowes G,Salvucci ME Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes[J].Aquatic Botany,1989,34:233-266
    [76]Iwan Jones J.The metabolic cost of bicarbonate use in the submerged plant Elodea nuttallii[J].Aquatic Botany,2005,83:71-81
    [77]Keeley J E.Isoetes howellii:a submerged CAM plant[J].American Journal of Botany,1981,68:420-424
    [78]Keeley J E.Distribution of diurnal acid metabolism in the genus Isoetes[J].American Journal of Botany,1982,69:254-257
    [79]Keeley J E.CAM photosynthesis in submerged aquatic plants[J].Botanical Review,1998a,64:121-175
    [80]Holaday A S,Bowes G.C_4 aid metabolism and dark CO_2 fixation in submersed aquatic macrophyte(Hydrilla verticillata)[J].Plant Physiology,1980,65:331-335
    [81]Spencer W E,Wetzel RG,Teeri J.Photosynthetic phenotype plasticity and the role of phosphoenolpyruvate carboxylase in Hydrilla verticillata[J].Plant Science,1996,118:1-9
    [82]Sultemeyer D,Schmidt C,Fock HP.Carbonic anhydrase in higher plants and aquatic microorganisms[J].Plant Physiology,1993,88:179-190
    [83]Rumeau D,Cuine S,Fina L,Gault N,Nicole M,Peltier G.Sub cellular distribution of carbonic anhydrase in Solanum tuberosum L.leaves[J].Planta,1996,199:79-88
    [84]郭敏亮,高毓珠.植物的碳酸酐酶[J].植物生理学通讯,1989,3:75-80
    [85]Mercado J M,Figuroa F L,Niell F X et al.A new method for estimating external carbonic anhydrase activity in marcoalgae[J].Phycol.,1997,33:999-1006
    [86]Haglund K,Bjork M,Ramazanov Z et al.Role of external carbonic anhydrase in photosynthesis and inorganic carbon assimilation in the red alga Gracilaria tenuistipitata[J].Planta,1992,187:275-281
    [87]Haglund K,Bjork M,Ramazanov Z et al.Role of external carbonic anhydrase in light-dependent alkalization serratus L.and L Fucus by aminaria saccharina(L.)Lamour.(Phaeophyta)[J].Planta,1992,188:1-6
    [88]Beer S,Rehnberg J.The acquisition of inorganic carbon by the seagrass Zostera marina[J].Aquat Bot,1997,56:277-283
    [89]Bjrk M,Haglund K,Ramazanov Z,Garcia_Reina G,Pedersen M.Inorganic carbon assimilation in the green seaweed Ulvarigida C.Ag.(Chlorophyta)[J].Planta,1992,187:152-156
    [90]Salvucci M E,Bowes G.The induction of reduced photorespiratory activity in submerged and amphibious aquatic macrophytes[J].Plant Physiology,1981,67:335-340
    [91]Salvucci M E,Bowes G.Ethoxyzolamide repression of the low photorespiration state in two submersed angiosperms[J].Planta,1983b,158:27-34
    [92]Casati P,Lara MV,Andreo CS.Induction of a C4-1ike mechanism of CO_2 fixation in Egeria densa,a submersed aquatic species[J].Plant Physiology,2000,123:1611-1621
    [93]孔杨勇,夏宜平,陈熠初.沉水植物的研究现状及其园林应用[J].中国园林,2005,6:65-68
    [94]国家环境保护总局.水和废水监测分析方法[M].第四版.北京:中国环境出版社,2002,120-124,201-205
    [95]汤鸿霄.水化学[M].北京:科学出版社,1987,129-133
    [96]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    [97]陈开宁.篦齿眼子菜的生物生态学研究及其在滇池生态修复中的应用[D].南 京:中国科学院南京地理与湖泊研究所,2003
    [98]周红.利用净产氧量对水生植物生态阈值的研究[D].北京:北京大学,1995
    [99]陈洪达.11种沉水植物的生产力[J].海洋与湖沼,1988,19(6):525-531
    [100]Thom R M.CO_2 enrichment effects on eelgrass(Zostera marina L.)and bull kelp (Nereocystis luetkeana(Mert.)P.R.)[J].Wat.Air Soil pollut,1996,88:383-391
    [101]Stanley R A,Naylor A W.PhotSosynthesis in eurasion watermilfoil(Myriophyllum Spicatum L.)[J].Plant Physiology,1972,50:149-151
    [102]Adams M S,Guilizzoni P Adams S.Relationship of Dissolved Inorganic Carbon to Macrophyte Photosynthesis in Some Italian Lakes[J].Limnology and Oceanogarphy,1978,23:912-919
    [103]Qiu B S,Gao K S.Effect of CO_2 enrichment on the bloom-forming cyanobacterium Microcystis aeruginosa(cyanophyceace):Physiolocial responses and relationships with the availability of dissolved inorganic carbon[J].Journal of Phycology,2002,38(4):721-729
    [104]Hein M.Inorganic carbon limitation of photosynthesis in lake phytoplankton[J].Freshwater Biology.1997,37(3):545
    [105]苏胜齐,姚维志.沉水植物与环境关系评述.农业环境保护,2002,21(6):570-573
    [106]种云霄.利用沉水植物治理水体富营养化[J].广州环境科学,2005,20(3):41-43
    [107]李香华,胡维平,杨龙元等.太湖梅梁湾冬季水—气界面二氧化碳通量日变化观测研究[J].生态学杂志,2005,24(12):1425-1429
    [108]嵇晓燕,崔广柏,杨龙元等.太湖水—气界面CO_2交换通量观测研究[J].环境科学,2006,27(8):1479-1486
    [109]陈开宁,李文朝,吴庆龙等.滇池蓝藻对沉水植物生长的影响[J].湖泊科学,2003,15(4):364-368
    [110]章宗涉,黄详飞主编.淡水浮游生物研究方法[J].北京:科学出版社,1991:345-347
    [111]刘春光,金相灿,孙凌等.不同氮源和曝气方式对淡水藻类生长的影响[J].环境科学,2006,27(1):101-104
    [112]李文朝,刘正文,胡耀辉等.滇池东北部沿岸带生态修复技术研究及工程示范-环境恶化、生态退化现状及其成因[J].湖泊科学,2004,16(4):305-311
    [113]Eley JH.Effect of carbon dioxide concentration on igrnentation in the blue-green alga Anacystis nidulans[J].Plant&Cell Physiology,1971,12:311-316
    [114]李原,张梅,刘若南.滇池的水华蓝藻的时空变化[J].云南大学学报(自然科学版),2005,27(3):272-276
    [115]William A.Wurts,Robert M.Durborow.Interactions of pH,Carbon Dioxide,Alkalinity and Hardness in Fish Ponds[J].Southern Regional Aquaculture Center,1992:464
    [116]黄富荣.云南滇池地区下寒武统磷块岩的稀土元素特征及其地球化学演化[J].稀土,1995,16(4):48-51
    [117]刘永定,范晓,胡征宇主编.中国藻类学研究[M].武汉:武汉出版社.2001
    [118]张宝玉,李夜光,李中奎等.温度、光照强度和pH对雨生红球藻光合作用和生长速率的影响[J].海洋与湖沼,2003,34(5):558-565
    [119]王正方,张庆,吕海燕.温度、盐度、光照强度和pH对海洋原甲藻增长的效应[J].海洋与湖沼,2001,32(1):15-18
    [120]赵梦绪,韩博平.汤溪水库蓝藻水华发生的影响因子[J].生态学报,2005,25(7):1554-1560
    [121]Berman-Frank Ilana,Kaplan Aaron.Carbonic anhydrase activity in the bloom-forming dinoflagellate Peridinium Gatunense[J].Journal of Phycology,1995,31:906-913
    [122]王志红,崔福义,安全等.pH与水库水富营养化进程相关性研究[J].给水排水,2004,30(5):37-41
    [123]赵文,董双林,李德尚等.盐碱池塘浮游植物初级生产力的研究[J].水生生物学报,2003,23(1):47-54
    [124]Zheng W F,Zeng Z Q.High temperature adaptation of fresh water Cyanobacterium [J].Journal of Lake Science,1994,6(4);56-363
    [125]Nalewajko C,Murphy T P.Effects of.temperature and availability of nitrogen and phosphorus on the abundance of Anabaena and Microcystis in Lake Biwa,Japan:an experimental approach[J].Limnology,2001,2:45-48
    [126]Lin Y X,Han M.The study growth factor of the Microcystis aeruginosa Kiitz during eutrophication of Dianchi Lake[J].Advances in Environmental Science,1998,6(3):82-87
    [127]Chen Y W,Qin B Q,Gao X Y.Prediction of blue-green algae bloom using stepwise multiple regression between algae & related environmental factors in Meiliang Bay.Lake Taihu[J].Journal of Lake Science,2001,13(1):63-71
    [128]Wang W,Fang Z F,Yu W D.Research on restricted factors of Cyanophyceae density in Qian-dao Lake[J].Heilongjiang Environmental Journal,2003,27(2):60-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700