用户名: 密码: 验证码:
有机半导体材料特性测量及有机场效应管应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Measurement of the Characteristics of Organic Semiconductor Materials and the Study of the Application of Organic Field-Effect Transistors
  • 作者:杨石
  • 论文级别:硕士
  • 学科专业名称:测试计量技术及仪器
  • 学位年度:2004
  • 导师:张涛
  • 学科代码:080402
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-05-01
摘要
为了增加对有机半导体材料的认识,本文首先对有机半导体材料进行了简单介绍。包括有机半导体材料的发展历史,有机半导体材料具备的优点和应用前景,以及常见的有机半导体材料,并简述了有机半导体材料的导电性理论。
    由于有机半导体材料特殊的结构,造成其与无机半导体材料相比,无论是电学性质还是其它物理性质方面都有很大差异。因此,在对有机半导体材料的电学性质进行测量时,必须针对这些不同特点设计合理的测量方案。本文对所要测量的并五苯单晶薄膜材料的结构特点和物理特性进行了分析。并五苯单晶的电阻率很高测量中要使用足够稳定的恒流电源和输入阻抗足够高的电压测量设备;有机半导体材料与金属电极间的接触电阻很大测量时应考虑到排除接触电阻的影响;并五苯单晶属于三斜晶系晶体,电阻率各向异性,设计测量方案时应尽量避免各向异性带来的测量误差;材料的机械强度很低易碎易皱,应尽量避免电极触点对材料的破坏。
    考虑到以上因素,我们广泛的研究了半导体材料电阻率和接触电阻测量的方法后,确定了以线性传输线模型法(TLM法)为基础的测量方案,传输线模型法是目前常用于薄膜材料接触电阻的测量。通过对实验数据的处理可以直接分离材料电阻和接触电阻项;样品处理成长条形,并在样品上蒸镀平行的条形电极,使电极间电流密度均匀;电极可延伸到材料外的衬底上,探针不与材料表面直接接触,避免了对材料表面的破坏;测量采用吉士利公司的236源测量设备提供恒定电流和高输入阻抗的电压测量。利用以上测量方案我们对并五苯单晶材料的电阻率和接触电阻进行了测量。
    
    最后,我们还利用长春市应用化学研究所研制的以酞菁铜为活性材料的有机场效应(OFET)管搭建了电光调制晶体驱动电路。晶体电光调制器是光纤通讯领域中应用较为普遍的一种光信号调制方法。它利用铌酸锂等晶体的电光效应来实现对光信号的调制。利用一个电压驱动电路把电压加在电光晶体上时,晶体的折射率随晶体两端电压的变化而变化,从而通过改变透过晶体的光强实现光信号的加载。目前,在晶体电光调制系统中给晶体提供驱动电压的电路,一般由成本较高的高压运放或结构复杂的互补推挽电路构成。本文利用有机场效应晶体管搭建了一个反向放大电路作为电光晶体的驱动电路,并监测了其对光信号的调制效果。测试过程中,由Tektronix AFG310 任意波形发生器分别产生正弦信号和方波信号,调制电路的输出电压加载到电光晶体两端,输出光信号用光电接收器接收,接收器与示波器连接用来显示输出光强。同时利用示波器监视调制输入信号。
    测试结果显示:输出波形正负半周有明显的不对称现象;静态工作点的偏移,我们把晶体管的静态工作点设在VG=-45V,VDS=-45V,示波器的输出波形中显示,输出电压在-38V左右变化;从正弦波和方波的输出信号中都可以看到明显的相位延迟现象,并且在方波输出信号的上升沿和下降沿表现的都很明显,当频率升高时延迟现象更加明显。
    本实验不仅对有机场效应管在晶体电光调制领域中应用的可能性进行了讨论,而且提供了一种检测有机半导体晶体管特性的方法。
For increasing the understanding of the organic semiconductor material, a brief introduction of the organic semiconductor material was given in this thesis first. It included the development history of the organic semiconductor material, the advantages and the applied foreground of such material, and the normal organic semi-conductor material, we also gave a brief for the electric theory of it.
    Compared with the inorganic semiconductor material, It has a large difference between the organic semiconductor material and it in either the electric quantity or the physical quantity, because of the special structure of the organic semiconductor material. So, we must design a reasonable measure plan for these different characters before we measure the electric property of the organic semiconductor material. In this thesis we analysis the character of the structure and the physics of the pentacene single crystal that we want to measure. In the experiment the enough stable constant current source and the voltage measure equipment with enough high input resistance are necessary in measuring because the resistance of pentacene is very high. In the measuring experiment. we should exclude the influence of the contact resistance because it is so large between the organic semi-conductor material and the metal electrode. The pentacene single crystal belongs to triclinic system, the resistance isn’t same in the different direction, so we should exclude the error because of the anisotropism when we design the plan of measuring. And we also exclude the contact between the metal electrode and the material because the mechanical robustness.
    
    Considered the upper reason, we concern the measuring plan by the basic of the transmission line model (TLM) method after we study the measuring method of the semiconductor resistance and the contact resistance, TLM is usually used to measure the contact resistance of the film material. We can divide the term of the material resistance and the contact resistance directly by managing the data. The sample was processed to rectangle, the electrodes was extended to the underlay of the material and evaporated two parallel electrode for making the current between two electrodes symmetrical. The 236 source-measure unit of KEITHLEY company was used which can supply the constant current and the high input resistance. We measured the resistance and the contact resistance of the pentacene by using such method.
     In the last, we set up the modulation circuit of electro-optical modulator using an OFET, whose active material is CuPc supplied by the Institute of Applied Chemistry. Electro-optical modulator using crystal is normal method of optical signal modulation, the optic-electric effect of LiNdO3 crystal etc is used to modulate the optical signal. We used a voltage driving circuit to put the voltage to the optic-electrical crystal, the refractive index will change with the changing of the voltage between the two end of the crystal, and we realized the loading of the optical signal by changing the optical intensity transmitted the crystal. Now, the circuit which supplied the driving voltage for the crystal in the optic-electric modulation system is consist by the expensive high voltage operational amplifier or the complementary circuit with more complex structure. In this thesis, we fabricate a reverse amplification circuit as the modulation circuit of
    
    
    electro-optical modulator using an OFET and measure the modulation results of the light signal. In the process of the measuring, the Tektronix AFG310 random waveform generator supplied the sine signal and the square wave signal, the output voltage of the modulation circuit load to the end of the optic-electric crystal, the output light signal was accepted by the diode, and the diode was connected with the oscilloscope to show the output light intensity, a t the same time we used the oscilloscope to watch the input modulation signal.
    The tested results show: the plus and minus half cycle of the output waveform
    was anisomerous, the quie
引文
[1] Lilienfeld J E. USP: 1745175, 1930.
    [2] Horowitz G . J . Mater ,Chem . ,1999 , 9 ; 2021-2026
    [3] Crone B, Dodabalapur A, Gelperin A, et al. Electronic sensing of vapors with organic transistors. Appl Phys Lett, 2001, 78: 2229~2232
    [4] Drury C J, Mutsaers C M J, Hart C M, et al.Low-cost all-polymer integrated circuits. Appl Phys Lett. 1998, 73: 108~110
    [5] Kudo K,Wang D X,Lizuka M, et al. Organic static induction transistor for display devices. Syth Metal, 2000, 111-112: 11~14
    [6] Rogers J A, Bao Z, Balduin K, et al. Recent progress in plastic electronics. Proceedings of National Academy of Sciences, 2001, 98: 4835~4839
    [7] Crone B, Dodabalapur A, Lin Y Y, et al. Large-scale complementary integrated circuits based on organic transistors, Nature, 2000, 403: 521~523
    [8] Tsumura A, Koezuka H, Ando T. Macromolecular electronic devices: field-effect transistor with a polythiophene film. Appl Phys Lett, 1986, 49(18):1210~1212
    [9] 有机场效应晶体管研究和应用进展 《科学通报》第47卷 第12期 2002年6月
    [10] 有机半导体研究进展 《固体电子学研究与进展》 第23卷 第1期 2003年2月
    [11] 有机/聚合物场效应管 《化学通报》 2002年 第4期
    [12] 有机半导体材料中的电荷转移 《高等学校化学学报》 第21卷
    
    
    第8期 2000年8月
    [13] Enhanced Physical Properties in a Pentacene Polymorph Angew. Chem. Int. Ed. 2001, 40,No. 9
    [14] Murilo L. Tiago and Steven G. Louie. Surface energetics and growth of pentacene. Physical Review B 66, 121404(R) (2002)]
    [15] J. Chem. Phy. Vol. 118, No. 2, 8 January 2003
    [16] R. B. Campbell, J. Monteath Robertson and J. Trotter. The Crystal and Molecular Structure of Pentacene. Acta Cryst. (1961). 14, 705]
    [17] 《金属半导体接触》 [英]E. H. 罗德利克 著 科学出版社
    [18] 《半导体材料电磁参数的测量》[美]H. H. WIEDER 著 计量出版社
    [19] 《半导体测量和仪器》[美]W. R. 鲁尼安 编著 上海科学技术出版社
    [20] P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, Solid-state Electron. 47, 259(2003)
    [21] H. Klauk, G. Schmid, W. Radilk, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, Solid-state Electron. 47, 279(2003).
    [22] 《金属-半导体界面欧姆接触的原理测试与工艺》 吴鼎芬 颜本达 编著 上海交通大学出版社
    [23] H. H.Berger: J. Electrochem, Soc., 119(1972) 507
    [24] Y. I. Nissim, J.F.Gibbons, and P. B. Gold: IEEE Trano. Electron Devices, ED-28(1981) 607
    [25] H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, Chem. Commun,578(1977).
    [26] 《光纤通讯系统》 顾婉仪 李国瑞
    [27] 《激光技术》兰信钜,姚建铨,黄国标 湖南科学技术出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700